Research Article

Conformable Integral Inequalities of the Hermite-Hadamard Type in terms of GG- and GA-Convexities

Yousaf Khurshid,1 Muhammad Adil Khan,1 and Yu-Ming Chu2

1Department of Mathematics, University of Peshawar, Peshawar 25000, Pakistan
2Department of Mathematics, Huzhou University, Huzhou 313000, China

Correspondence should be addressed to Yu-Ming Chu; chuyuming@zjhu.edu.cn

Received 11 October 2018; Accepted 27 December 2018; Published 10 January 2019

1. Introduction

Let \(I \subset \mathbb{R} \) be an interval and let \(h : I \to \mathbb{R} \) be a convex function. Then the well known HH (Hermite-Hadamard) inequality [1] states that

\[
\frac{h(\frac{\alpha_1 + \alpha_2}{2}) - h(\alpha_1)}{2} \leq \int_{\alpha_1}^{\alpha_2} h(x) \, dx \leq \frac{h(\alpha_1) + h(\alpha_2)}{2},
\]

for all \(\alpha_1, \alpha_2 \in I \). It is well known that the convexity has been playing a key role in mathematical programming, engineering, and optimization theory. Recently, many generalizations and extensions for the classical convexity can be found in the literature [2–14]. In [15, 16], Niculescu defined the GA- and GG-convex functions as follows.

Definition 1 (see [15]). A function \(h : I \to [0, \infty) \) is said to be GA-convex if the inequality

\[
h\left(\frac{\alpha_1^{\tau \alpha_2^{1-\tau}}}{\alpha_2^{\tau \alpha_1^{1-\tau}}}\right) \leq \tau h(\alpha_1) + (1-\tau) h(\alpha_2)
\]

holds for all \(\alpha_1, \alpha_2 \in I \) and \(\tau \in [0, 1] \).

Definition 2 (see [16]). A function \(h : I \to [0, \infty) \) is said to be GG-convex if the inequality

\[
h\left(\frac{\alpha_1^{\tau \alpha_2^{1-\tau}}}{\alpha_2^{\tau \alpha_1^{1-\tau}}}\right) \leq h(\alpha_1)^{\frac{\alpha_1}{\alpha_2}} h(\alpha_2)^{\frac{\alpha_2}{\alpha_1}}
\]

holds for all \(\alpha_1, \alpha_2 \in I \) and \(\tau \in [0, 1] \).

Zhang, Ji, and Qi established Lemma 3 and Theorems 4–7.

Lemma 3 (see [17]). Let \(\kappa_1, \kappa_2 \in \mathbb{R}^+ \) and \(h : [\kappa_1, \kappa_2] \to \mathbb{R} \) be a differentiable function on \((\kappa_1, \kappa_2) \). Then the identity

\[
\int_0^1 \left(\frac{\alpha_1^{\tau \alpha_2^{1-\tau}}}{\alpha_2^{\tau \alpha_1^{1-\tau}}}\right) h\left(\frac{\alpha_1^{\tau \alpha_2^{1-\tau}}}{\alpha_2^{\tau \alpha_1^{1-\tau}}}\right) \, d\tau
\]

holds if \(h' \in L([\kappa_1, \kappa_2]) \).

Theorem 4 (see [17]). If the function \(h \) satisfies the conditions of Lemma 3 and, additionally, if \(|h'(x)| \) is GA-convex, then we have the following inequality:

\[
|\kappa_2 h(\kappa_2) - \kappa_1 h(\kappa_1) - \int_{\kappa_1}^{\kappa_2} h(x) \, dx| \leq \frac{|h' (\kappa_2)|}{2} \left(\frac{\kappa_2 - L (\kappa_2, \kappa_1)}{\kappa_2 - \kappa_1}\right)
\]

where and in what follows \(L(\kappa_1, \kappa_2) = (\kappa_2 - \kappa_1)/(\log \kappa_2 - \log \kappa_1) \) is the logarithmic mean of \(\kappa_1 \) and \(\kappa_2 \).
Theorem 5 (see [17]). If the function h satisfies the conditions of Lemma 3 and, additionally, if $|h'(x)|^y$ $(y > 1)$ is GA-convex, then one has

$$
\left| k_2 h(k_2) - k_1 h(k_1) - \int_{k_1}^{k_2} h(x) \, dx \right| \leq (\log k_2 - \log k_1)^{1-1/y} \left(L_{\left\{ k_2, k_1 \right\}}^2 \right)^{1-1/y} \times \left(\frac{\left| h'(k_2) \right| \left[k_2^2 - L_{\left\{ k_2, k_1 \right\}}^2 \right] + \left| h'(k_1) \right| \left[L_{\left\{ k_2, k_1 \right\}}^2 - k_1^2 \right]}{2} \right)^{1/y}.
$$

(6)

Theorem 6 (see [17]). If the function h satisfies the conditions of Lemma 3, then the inequality

$$
\left| k_2 h(k_2) - k_1 h(k_1) - \int_{k_1}^{k_2} h(x) \, dx \right| \leq (\log k_2 - \log k_1)^{1-1/y} \times \left(\frac{\left| h'(k_2) \right| \left[k_2^2 - L_{\left\{ k_2, k_1 \right\}}^2 \right] + \left| h'(k_1) \right| \left[L_{\left\{ k_2, k_1 \right\}}^2 - k_1^2 \right]}{2^y} \right)^{1/y}.
$$

(7)

holds if $|h'(x)|^y$ $(y > 1)$ is GA-convex.

Theorem 7 (see [17]). If $\theta, \gamma > 1$ with $\theta^{-1} + \gamma^{-1} = 1$ and the function h satisfies the conditions of Lemma 3 and, additionally, if $|h'|^y$ is GA-convex, then we have

$$
\left| k_2 h(k_2) - k_1 h(k_1) - \int_{k_1}^{k_2} h(x) \, dx \right| \leq (\log k_2 - \log k_1)^{1-1/y} \times \left(\frac{\left| h'(k_2) \right| \left[k_2^2 - L_{\left\{ k_2, k_1 \right\}}^2 \right] + \left| h'(k_1) \right| \left[L_{\left\{ k_2, k_1 \right\}}^2 - k_1^2 \right]}{2^y} \right)^{1/y},
$$

(8)

where $A(x, y) = (x + y)/2$ is the arithmetic mean of x and y.

Theorem 8 (see [18]). Let $\alpha \in (0, 1]$ and h_1, h_2 be α-differentiable at $t > 0$. Then

(i) \((d_{\alpha}/d_{\alpha}t)(\alpha^n) = n^n \alpha^{-n} \) for all $n \in \mathbb{R}$

(ii) \((d_{\alpha}/d_{\alpha}t)(c) = 0 \) if $c \in \mathbb{R}$ is a constant

(iii) \((d_{\alpha}/d_{\alpha}t)(k_1 h_1(t) + k_2 h_2(t)) = k_1 (d_{\alpha}/d_{\alpha}t)(h_1(t)) + k_2 (d_{\alpha}/d_{\alpha}t)(h_2(t)) \) for all $k_1, k_2 \in \mathbb{R}$

(iv) \((d_{\alpha}/d_{\alpha}t)(h_1(t)h_2(t)) = h_1(t)(d_{\alpha}/d_{\alpha}t)(h_2(t)) + h_2(t)(d_{\alpha}/d_{\alpha}t)(h_1(t)) \)

(v) \((d_{\alpha}/d_{\alpha}t)(h_1(t)/h_2(t)) = (h_2(t)(d_{\alpha}/d_{\alpha}t)(h_1(t)) - h_1(t)(d_{\alpha}/d_{\alpha}t)(h_2(t)))/(h_2(t))^2 \)

(vi) \((d_{\alpha}/d_{\alpha}t)(h_1 h_2(t)) = h_1'(h_2(t))(d_{\alpha}/d_{\alpha}t)(h_2(t)) \) if h_1 is differentiable at $h_2(t)$.

In addition,

$$
\frac{d_{\alpha}}{d_{\alpha}t} (h_1(t)) = t^{1-\alpha} \frac{d}{dt} (h_1(t))
$$

(10)

if h_1 is differentiable.

Definition 9 (see [18], conformable fractional integral). Let $\alpha \in (0, 1]$ and $0 \leq k_1 < k_2$. A function $h : [k_1, k_2] \to \mathbb{R}$ is α-fractional integrable on $[k_1, k_2]$ if the integral

$$
\int_{k_1}^{k_2} h(x) \, d_{\alpha}x := \int_{k_1}^{k_2} h(x) x^{-1} \, dx
$$

(11)

exists and is finite. All α-fractional integrable functions on $[k_1, k_2]$ are indicated by $L_{\alpha}([k_1, k_2])$.

Remark 10.

$$
I_{\alpha}^{k_2} (h_1)(s) = I_{\alpha}^{k_1} \left(s^{1-\alpha} h_1 \right) = \int_{k_1}^{k_2} \frac{h_1(x)}{x^{1-\alpha}} \, dx,
$$

(12)

where the integral is the usual Riemann improper integral and $\alpha \in (0, 1]$.

Recently, the conformable integrals and derivatives have been the subject of intensive research; many remarkable
properties and inequalities involving the conformable integrals and derivatives can be found in the literature [19–37].

Anderson [38] provided the conformable integral version of the HH inequality as follows.

Theorem 11 (see [38]). If \(\alpha \in (0, 1] \) and \(h : [k_1, k_2] \rightarrow \mathbb{R} \) is an \(\alpha \)-fractional differentiable function such that \(D_\alpha^k h \) is increasing, then the inequality

\[
\frac{\alpha}{k_2^\alpha - k_1^\alpha} \int_{k_1}^{k_2} h(x) \, d_x \leq \frac{h(k_2) + h(k_1)}{2}
\]

holds. Moreover if \(h \) is decreasing on \([k_1, k_2] \), then we have

\[
h\left(\frac{k_1 + k_2}{2}\right) \leq \frac{\alpha}{k_2^\alpha - k_1^\alpha} \int_{k_1}^{k_2} h(x) \, d_x.
\]

If \(\alpha = 1 \), then this reduces to the classical HH inequality.

In this paper, we shall establish the Hermite–Hadamard type inequalities for GA and GG-convex functions via conformable fractional integrals and give their applications in the special bivariate means.

2. Main Results

In order to establish our main results, we need a lemma which we present in this section.

Lemma 12. Let \(k_1, k_2 \in \mathbb{R}^+, \alpha \in (0, 1] \), and \(h : [k_1, k_2] \rightarrow \mathbb{R} \) be an \(\alpha \)-fractional differentiable function on \((k_1, k_2)\). Then the identity

\[
k_2^\alpha h(k_2) - k_1^\alpha h(k_1) = \alpha \int_{k_1}^{k_2} h(x) \, d_x
\]

\[
= (\log k_2 - \log k_1) \cdot \int_0^1 \left(k_2^\alpha k_1^{-\alpha} - 1 \right) h' \left(k_2^\alpha k_1^{-\alpha} t \right) t^{1-\alpha} \, dt
\]

holds if \(D\alpha h \in L_q([k_1, k_2]) \).

Proof. Using integration by parts, we have

\[
I = \int_0^1 \left(k_2^\alpha k_1^{-\alpha} - 1 \right) h' \left(k_2^\alpha k_1^{-\alpha} t \right) \, dt
\]

By the change of the variable \(x = k_2^\alpha k_1^{-\alpha} \) and integration by parts, we have

\[
I = \frac{1}{\log k_2 - \log k_1} \int_{k_1}^{k_2} x^\alpha h'(x) \, dx
\]

\[
= \frac{1}{\log k_2 - \log k_1} \left[k_2^\alpha h(k_2) - k_1^\alpha h(k_1) \right]
\]

\[
- \alpha \int_{k_1}^{k_2} h(x) \, d_x
\]

Now multiplying by \((\log k_2 - \log k_1)\), we obtain the required result. \(\square \)

Remark 13. Let \(\alpha = 1 \), then Lemma 12 reduces to Lemma 3.

Theorem 14. If the function \(h \) satisfies the conditions of Lemma 12 and, additionally, if \(|h'(x)| \) is GG-convex, then we have

\[
\left| k_2^\alpha h(k_2) - k_1^\alpha h(k_1) \right| \leq (\log k_2 - \log k_1) \cdot \int_0^1 \left(k_2^\alpha k_1^{-\alpha} - 1 \right) h' \left(k_2^\alpha k_1^{-\alpha} t \right) \, dt
\]

The desired result can be obtained by evaluating the above integral. \(\square \)

Theorem 15. If \(\theta, \gamma > 1 \) with \(\theta^{-1} + \gamma^{-1} = 1 \) and the function \(h \) satisfies the conditions of Lemma 12 and, additionally, if \(|h'|^\gamma \) is GG-convex, then one has

\[
\left| k_2^\alpha h(k_2) - k_1^\alpha h(k_1) \right| \leq (\log k_2 - \log k_1) \cdot \int_0^1 \left(k_2^\alpha k_1^{-\alpha} - 1 \right) h' \left(k_2^\alpha k_1^{-\alpha} t \right) \, dt
\]

The desired result can be obtained by evaluating the above integral. \(\square \)
Theorem 16. If the function h satisfies the conditions of Lemma 12 and, additionally, if $|h'(x)|^\gamma$ ($\gamma > 1$) is GG-convex, then we have the inequality
\begin{equation}
\left| \kappa_2^\gamma h(\kappa_2) - \kappa_1^\gamma h(\kappa_1) - \alpha \int_{\kappa_1}^{\kappa_2} h(x) \, d_\alpha x \right| \leq (\log \kappa_2 - \log \kappa_1) \left(\int_0^1 \left(\kappa_2^\gamma h(\kappa_2) \right)^{1/\gamma} \, dt \right)
\end{equation}
\[(22)\]

Proof. By using Lemma 12 we clearly see that
\begin{equation}
\left| \kappa_2^\gamma h(\kappa_2) - \kappa_1^\gamma h(\kappa_1) - \alpha \int_{\kappa_1}^{\kappa_2} h(x) \, d_\alpha x \right| \leq (\log \kappa_2 - \log \kappa_1) \left(\int_0^1 \left(\kappa_2^\gamma h(\kappa_2) \right)^{1/\gamma} \, dt \right).
\end{equation}
\[(23)\]

Since $\gamma > 1$, we can choose $\theta > 1$ such that $\theta^{-1} + \gamma^{-1} = 1$. Applying the Hölder integral inequality and the GG-convexity of $|h'|^\gamma$ we have
\begin{equation}
\left| \kappa_2^\gamma h(\kappa_2) - \kappa_1^\gamma h(\kappa_1) - \alpha \int_{\kappa_1}^{\kappa_2} h(x) \, d_\alpha x \right| \leq (\log \kappa_2 - \log \kappa_1) \left(\int_0^1 \left(\kappa_2^\gamma h(\kappa_2) \right)^{1/\gamma} \, dt \right)^{1/\gamma}
\end{equation}
\[(24)\]

The desired result can be obtained by evaluating the above integral.

Theorem 17. If the function h satisfies the conditions of Lemma 12 and, additionally, if $|h'(x)|^\gamma$ ($\gamma > 1$) is GG-convex, then we have
\begin{equation}
\left| \kappa_2^\gamma h(\kappa_2) - \kappa_1^\gamma h(\kappa_1) - \alpha \int_{\kappa_1}^{\kappa_2} h(x) \, d_\alpha x \right| \leq (\log \kappa_2 - \log \kappa_1) \left(L \left(\kappa_2^{\gamma+1}, \kappa_1^{\gamma+1} \right) \right)^{1/\gamma}
\end{equation}
\[(25)\]

Proof. From the GG-convexity of $|h'|^\gamma$, the power mean inequality, and the property of the modulus together with Lemma 12 we get
\begin{equation}
\left| \kappa_2^\gamma h(\kappa_2) - \kappa_1^\gamma h(\kappa_1) - \alpha \int_{\kappa_1}^{\kappa_2} h(x) \, d_\alpha x \right| \leq (\log \kappa_2 - \log \kappa_1) \left(\int_0^1 \left(\kappa_2^\gamma h(\kappa_2) \right)^{1/\gamma} \, dt \right)^{1/\gamma}
\end{equation}
\[(26)\]

The desired result can be obtained by evaluating the above integral.

Theorem 18. If the function h satisfies the conditions of Lemma 12 and, additionally, if $|h'(x)|$ is GA-convex, then
\begin{equation}
\left| \kappa_2^\gamma h(\kappa_2) - \kappa_1^\gamma h(\kappa_1) - \alpha \int_{\kappa_1}^{\kappa_2} h(x) \, d_\alpha x \right| \leq \frac{|h'(\kappa_2)|}{\alpha + 1} \left[(\kappa_2^{\gamma+1} - L(\kappa_2^{\gamma+1}, \kappa_1^{\gamma+1})) \right] + \frac{|h'(\kappa_1)|}{\alpha + 1} \left[L(\kappa_2^{\gamma+1}, \kappa_1^{\gamma+1}) - \kappa_1^{\gamma+1} \right].
\end{equation}
\[(27)\]

Proof. It follows from the GA-convexity of $|h'|$ and the property of the modulus together with Lemma 12 that
\begin{equation}
\left| \kappa_2^\gamma h(\kappa_2) - \kappa_1^\gamma h(\kappa_1) - \alpha \int_{\kappa_1}^{\kappa_2} h(x) \, d_\alpha x \right| \leq (\log \kappa_2 - \log \kappa_1) \left(\int_0^1 \left(\kappa_2^\gamma h(\kappa_2) \right)^{1/\gamma} \, dt \right)^{1/\gamma}
\end{equation}
\[(28)\]

The desired result can be obtained by evaluating the above integrals.

Remark 19. By setting $\alpha = 1$ in inequality (27), we regain inequality (5).
Theorem 20. If the function h satisfies the conditions of Lemma 12 and, additionally, if $|h'(x)|^γ$ ($γ > 1$) is GA-convex, then we have the following inequality:

$$
\left| κ_2^α h(κ_2) - κ_1^α h(κ_1) - α \int_{κ_1}^{κ_2} h(x) \, dx \right| \leq (\log κ_2 - \log κ_1)^{1-1/γ} \left(L \left(κ_2^{\alpha+1}, κ_1^{\alpha+1} \right) \right)^{1-1/γ}
$$

\[\times \left(\frac{|h'(κ_2)|^γ [κ_2^{\alpha+1} - L(κ_2^{\alpha+1}, κ_1^{\alpha+1})] + |h'(κ_1)|^γ [L(κ_2^{\alpha+1}, κ_1^{\alpha+1}) - κ_1^{\alpha+1}]}{α + 1} \right)^{1/γ}. \tag{29} \]

Proof. From the GA-convexity of $|h'|^γ$, the power mean inequality, the property of the modulus, and Lemma 12 we clearly see that

$$
\left| κ_2^α h(κ_2) - κ_1^α h(κ_1) - α \int_{κ_1}^{κ_2} h(x) \, dx \right| \leq (\log κ_2 - \log κ_1)^{1-1/γ} \left(L \left(κ_2^{\alpha+1}, κ_1^{\alpha+1} \right) \right)^{1-1/γ}
$$

\[\times \left(\frac{1}{α + 1} \left(\int_0^1 (κ_2^{\gamma+1} - κ_1^{\gamma+1}) \right)^{1/γ} \right). \tag{30} \]

The desired result can be obtained by evaluating the above integrals.

Remark 21. By setting $α = 1$ in inequality (29), we regain inequality (6).

Theorem 22. If the function h satisfies the conditions of Lemma 12 and, additionally, if $|h'(x)|^γ$ ($γ > 1$) is GA-convex, then we have the following inequality:

$$
\left| κ_2^α h(κ_2) - κ_1^α h(κ_1) - α \int_{κ_1}^{κ_2} h(x) \, dx \right| \leq (\log κ_2 - \log κ_1)^{1-1/γ} \left(L \left(κ_2^{\alpha+1}, κ_1^{\alpha+1} \right) \right)^{1-1/γ}
$$

\[\times \left(\frac{1}{α + 1} \left(\int_0^1 (κ_2^{\gamma+1} - κ_1^{\gamma+1}) \right)^{1/γ} \right). \tag{31} \]

The desired result can be obtained by evaluating the above integrals.

Remark 23. By setting $α = 1$ in inequality (31), we regain inequality (7).

Theorem 24. If $θ, γ > 1$ with $θ^{-1} + γ^{-1} = 1$ and the function h satisfies the conditions of Lemma 12 and, additionally, if $|h'|^γ$ is GA-convex, then we have the following inequality:

$$
\left| κ_2^α h(κ_2) - κ_1^α h(κ_1) - α \int_{κ_1}^{κ_2} h(x) \, dx \right| \leq (\log κ_2 - \log κ_1)^{1-1/θ} \left(L \left(κ_2^{\alpha+1}, κ_1^{\alpha+1} \right) \right)^{1-1/θ}
$$

\[\times \left(\frac{1}{θ + 1} \left(\int_0^1 (κ_2^{\gamma+1} - κ_1^{\gamma+1}) \right)^{1/θ} \right). \tag{32} \]
where \(A(x, y) \) represents the arithmetic mean of \(x \) and \(y \).

Proof. With the help of the GA-convexity of \(|h'|^\gamma\), the Hölder integral inequality, the property of the modulus, and Lemma 12, we can write

\[
\kappa^n h(\kappa_2) - \kappa^n h(\kappa_1) - \alpha \int_{\kappa_1}^{\kappa_2} h(x) \, d_a x \\
\leq (\log \kappa_2 - \log \kappa_1) \int_0^1 (\kappa_2^{1-t} - \kappa_1^{1-t})^\alpha \, dt \\
\leq (\log \kappa_2 - \log \kappa_1) \left(\int_0^1 (\kappa_2^{1-t} - \kappa_1^{1-t})^\alpha \, dt \right)^{1/\alpha} \\
\cdot \left(\int_0^1 \left(t |h'(\kappa_2)|^{\gamma} + (1 - t) |h'(\kappa_1)|^{\gamma} \right) \, dt \right)^{1/\gamma}.
\]

(34)

The desired result can be obtained by evaluating the above integrals. \(\square\)

Remark 25. By setting \(\alpha = 1 \) in inequality (33), we regain inequality (8).

3. Applications to Special Means

A bivariate function \(M : (0, \infty) \times (0, \infty) \rightarrow (0, \infty) \) is said to be a bivariate mean if \(\min \{ \kappa_1, \kappa_2 \} \leq M(\kappa_1, \kappa_2) \leq \max \{ \kappa_1, \kappa_2 \} \) for all \(\kappa_1, \kappa_2 \in (0, \infty) \). Recently, the bivariate mean has attracted the attention of many researchers; in particular, many remarkable inequalities for the bivariate means and their related special functions can be found in the literature [39–42].

In this section, we use the results obtained in Section 2 to present several applications to the arithmetic mean

\[
A(\kappa_1, \kappa_2) = \frac{\kappa_1 + \kappa_2}{2}, \quad \kappa_1, \kappa_2 > 0, \tag{35}
\]

logarithmic mean

\[
L(\kappa_1, \kappa_2) = \frac{\kappa_2 - \kappa_1}{\log \kappa_2 - \log \kappa_1}, \quad \kappa_1 \neq \kappa_2, \quad \kappa_1, \kappa_2 \in \mathbb{R}^+, \tag{36}
\]

and \((\alpha, \mu)\)-th generalized logarithmic mean

\[
L_\alpha(\kappa_1, \kappa_2) = \frac{\kappa_2^{\mu+1} - \kappa_1^{\mu+1}}{\alpha (\mu + 1) L_\alpha(\kappa_1, \kappa_2)} \\
= \frac{\alpha (\kappa_2^{\mu+1} - \kappa_1^{\mu+1})}{(\kappa_2^{\mu+1} - \kappa_1^{\mu+1})(\mu + 1)}, \tag{37}
\]

\(\kappa_1 \neq \kappa_2, \mu \neq -1, -\alpha - 1, \alpha \in (0, 1], \mu \in \mathbb{R}.

Proposition 26. Let \(\alpha \in (0, 1], \kappa_1, \kappa_2 \in \mathbb{R}^+, \) and \(\mu > 0. \) Then

\[
\left| \frac{(\kappa_2^\alpha - \kappa_1^\alpha)}{\alpha (\mu + 1)} L_\alpha(\kappa_1, \kappa_2) \right| \leq \frac{\kappa_2^\mu}{\alpha + 1} \left(L_\alpha(\kappa_1, \kappa_2) \right)^{1/\gamma} \\
\times \left[|\kappa_2^\alpha - L_\alpha(\kappa_1, \kappa_2^\alpha)| + |\kappa_1^\mu L_\alpha(\kappa_1, \kappa_2^\alpha) - \kappa_2^\alpha| \right]^{1/\gamma}. \tag{38}
\]

Proof. Let

\[
h(x) = \frac{x^{\mu+1}}{\mu + 1} \tag{39}
\]

for \(x > 0. \) Then \(|h'(x)|^\gamma\) is a GA-convex function on \(\mathbb{R}^+ \) for \(\gamma \geq 1. \) Let \(\gamma = 1. \) Then making use of function (39) in Theorem 18, we obtain the required result. \(\square\)

Proposition 27. Let \(\kappa_1, \kappa_2 \in \mathbb{R}^+, \gamma > 1, \mu > 0, \) and \(\alpha \in (0, 1]. \) Then

\[
\left\| \frac{(\kappa_2^\alpha - \kappa_1^\alpha)}{\alpha (\mu + 1)} L_\alpha(\kappa_1, \kappa_2) \right\| \leq \frac{1}{\mu + 1} \left(L_\alpha(\kappa_1, \kappa_2) \right)^{1/\gamma} \\
\times \left[|\kappa_2^\alpha - L_\alpha(\kappa_1, \kappa_2^\alpha)| + |\kappa_1^\mu L_\alpha(\kappa_1, \kappa_2^\alpha) - \kappa_2^\alpha| \right]^{1/\gamma}. \tag{40}
\]

Proof. Using function (39) in Theorem 20, we obtain the required result. \(\square\)

Proposition 28. Let \(\kappa_1, \kappa_2 \in \mathbb{R}^+, \gamma > 1, \mu > 0, \) and \(\alpha \in (0, 1]. \) Then

\[
\left\| \frac{(\kappa_2^\alpha - \kappa_1^\alpha)}{\alpha (\mu + 1)} L_\alpha(\kappa_1, \kappa_2) \right\| \leq \frac{1}{\mu + 1} \left(L_\alpha(\kappa_1, \kappa_2) \right)^{1/\gamma} \\
\times \left[|\kappa_2^\alpha - L_\alpha(\kappa_1, \kappa_2^\alpha)| + |\kappa_1^\mu L_\alpha(\kappa_1, \kappa_2^\alpha) - \kappa_2^\alpha| \right]^{1/\gamma}. \tag{41}
\]
Proof. Using function (39) in Theorem 22, we obtain the required result. □

Proposition 29. Let $k_1, k_2 \in \mathbb{R}^+, \mu > 0, \alpha \in (0, 1], \text{and } \theta, \gamma > 1$ with $\theta^{-1} + \gamma^{-1} = 1$. Then
\begin{equation}
\left| \frac{k_2^\alpha - k_1^\alpha}{\alpha (\mu + 1)} \left(L \left(k_1^{\mu+1}, k_2^{\mu+1} \right) \right) \right| \leq \left(\log k_2 - \log k_1 \right)
\cdot \left(L \left(k_1^{\theta (\alpha+1)}, k_2^{\theta (\alpha+1)} \right) \right)^{1/\theta} \left(A \left(|k_2|^\mu, |k_1|^\mu \right) \right)^{1/\gamma}.
\end{equation}

Proof. Using function (39) in Theorem 24, we obtain the required result. □

4. Conclusions

In the article, we derive the conformable fractional integrals’ versions of the Hermite-Hadamard type inequalities for GG- and GA-convex functions. Our approach is based on an identity involving the conformable fractional integrals, the Hölder inequality, and the power mean inequality. The proven results generalized some previously obtained results. As applications, we provide several inequalities for some special bivariate means. The present idea may stimulate further research in the theory of inequalities for other generalized integrals, for example, as presented in [35–37].

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Acknowledgments

This project was funded by the Natural Science Foundation of China (Grant nos. 11701176, 11626101, and 11601485) and the Science and Technology Research Program of Zhejiang Educational Committee (Grant no. Y201635325).

References

