Research Article

Approximation Properties of Durrmeyer Type of \((p, q)\)-Bleimann, Butzer, and Hahn Operators

Qing-Bo Cai \(1\), İsmet Yüksel \(2\), Ülkü Dinlemez Kantar \(2\), and Bayram Çekim \(2\)

\(1\) School of Mathematics and Computer Science, Quanzhou Normal University, Quanzhou 362000, China
\(2\) Gazi University, Faculty of Science, Department of Mathematics, Teknikokullar, 06500 Ankara, Turkey

Correspondence should be addressed to Qing-Bo Cai; qbcai@126.com

Received 20 September 2018; Accepted 31 December 2018; Published 3 March 2019

Academic Editor: Wilfredo Urbina

Copyright © 2019 Qing-Bo Cai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this study, we introduce a Durrmeyer type of Bleimann, Butzer, and Hahn operators (BBH) on \((p, q)\)-integers. We derive some approximation properties for these operators. We also give some graphs and numerical examples to illustrate the convergence properties of these operators to certain functions.

1. Introduction

In the literature, especially \(q\)-calculus in approximation theory is an important area and there are some applications of \(q\)-calculus in this theory (see [1–4]). Therefore, the researchers in the area of approximation theory put a particular importance to \(q\)-calculus. After that, the results in approximation theory related to \(q\)-calculus have been extended to the results in \((p, q)\)-calculus. The researchers have presented the \((p, q)\)-extensions of linear positive operators (see [5, 6]) and they have also begun to use these operators for applying in many different areas of science (see [7–9]).

We first give some notations related to \((p, q)\)-calculus as in [10–13]. For \(0 < q < p \leq 1\) and each natural number \(n\), the \((p, q)\)-integer of \(n\) denoted by \([n]_{p, q}\), \((p, q)\)-factorial denoted by \([n]_{p, q}!\) was defined by

\[
[n]_{p, q}! = \begin{cases} \frac{p^n - q^n}{p - q}, & p \neq q \\ np^{n-1}, & p = q \neq 1; \\ [n]_{q}, & p = 1; \\ n, & p = q = 1, \end{cases}
\]

and

\[
[n]_{p, q}! = \begin{cases} [n]_{p, q} [n - 1]_{p, q} \cdots [1]_{p, q}, & n \geq 1 \\ 1, & n = 0, \end{cases}
\]

respectively. Also, the binomial representation was given by

\[
\binom{n}{k}_{p, q} = \frac{[n]_{p, q}!}{[n - k]_{p, q}! [k]_{p, q}!},
\]

where

\[
(1 \oplus x)_{p, q}^n = (1 + x) (p + qx) \cdots \left(p^{n-1} + q^{n-1} x\right).
\]

In [1], \(q\)-beta function was defined by

\[
B_q(r, s) = K(A, r) \int_0^{\cos A} \frac{t^{r-1}}{(1 + t)^{r+s}} d_q t,
\]

where

\[
K(A, r) = \frac{A^r}{1 + A} \left(1 + \frac{1}{A}\right)_q^r, \quad A > 0.
\]
We have $K(A, r) = q^{(r-1)/2}$ for the special case of $r \in \mathbb{N}$ and $K(A, 0) = 1$. Through formula (6), in [14], the authors define the (p, q)-beta function $B_{p,q}(k, n)$ which is a generalization of $B_{q}(k, n)$ as follows:

$$B_{p,q}(k, n) = p^{(n-k)/2} q^{k(n-k)/2} \int_0^A \frac{t^{k-1}}{(1 + t)^{pn+1} q^{(n+1)k} d_{p,q} t},$$

$$A > 0, \ n, k \in \mathbb{N} \setminus \{0\}.$$

Now we note that the definitions of (p, q)-integral are as follows:

$$\int_0^f (t) d_{p,q} t = (q - p) \sum_{k=-\infty}^{\infty} p^k (1 + t)^{n-k} \frac{t^{k-1}}{q^{k+1}}, \quad \left| \frac{p}{q} \right| < 1,$$

$$\int_0^f (t) d_{p,q} t = (p - q) \sum_{k=-\infty}^{\infty} q^k (1 + t)^{n-k} \frac{t^{k-1}}{p^{k+1}}, \quad \left| \frac{q}{p} \right| < 1$$

for an arbitrary function f in [15]. The BBH operators have been studied in [16–24] in the approximation theory. For this reason, we define a new (p, q)-Durrmeyer generalization of the BBH operators and obtain the approximation theorems involving these operators.

2. Durrmeyer Type of (p, q)-BBH Operators

There are many papers mentioned about Durrmeyer type positive linear operators, such as [25–28] and so on. The Durrmeyer type of (p, q)-BBH operators can be introduced via equations (1), (2), (3), (4), (5), and (8) as follows:

$$D_{n,p,q} (f, x) = \frac{n + 1}{p_{n,q}} \sum_{k=1}^{n} b_{n,k} (p, q, x) \cdot \int_0^A \frac{t^{k-1}}{(1 + t)^{pn+1} q^{(n+1)k} d_{p,q} t} + f (0) \frac{p^{(k-1)/2}}{q^{(k-1)/2}},$$

where

$$b_{n,k} (p, q, x) = \begin{cases} p^n q^n & \text{if } m = 0 \\ \frac{n!}{k!} \frac{x^n}{(1 + x)^n} & \text{if } m \geq 1. \end{cases}$$

Let us give the following lemma to evaluate the values of the test functions.

Lemma 1. If $e_0(t) = 1$, $e_1(t) = t/(1 + t)$, and $e_m(t) = t^m/(1 + t)(p^{m+1} + q^{m+1}) \cdots (p^{n+m+1} + q^{n+m+1})$ for integer m with $m \geq 2$, then, we get the following result:

$$\int_0^A \gamma_{n,k-1} (p, q, t) e_m (t) d_{p,q} t = \begin{cases} p^{(n-k)/2} q^{(k-1)/2} & \text{if } m = 0 \\ \frac{n!}{k!} \frac{x^n}{(1 + x)^n} & \text{if } m \geq 1. \end{cases}$$

Proof. Firstly, let us give the proof of $m = 0$. Writing

$$\gamma_{n,k-1} (p, q, t) = \frac{p^{(n-k)/2} q^{(k-1)/2}}{(p + q t)^n (p^{n+1} + q^{n+1} (q/p) t)^{n-k+1}} \left[n \begin{atop} k \end{atop} \right]_{p,q}$$

instead of $\gamma_{n,k-1} (p, q, t)$, we have

$$\int_0^A \gamma_{n,k-1} (p, q, t) d_{p,q} t = p^{(n-k)/2} q^{(k-1)/2} \left[n \begin{atop} k \end{atop} \right]_{p,q} \cdot \frac{1}{(1 + (q/p) t)^n} d_{p,q} t.$$
Substitute \(u = (q/p)t \), and use \(d_{p,q} = (q/p) \) and \((p^n + q^n u)(p^{n+1} + q^{n+1} u) (1 + u)_{p,q}^n = (1 + u)_{p,q}^{n+2} \) and

\[
(p^n + q^n u)(p^{n+1} + q^{n+1} u) (1 + u)_{p,q}^n = (1 + u)_{p,q}^{n+2} \tag{16}
\]
in the following integral; we get the result

\[
\int_0^{\cos/A} y_{n,k-1} \left(p, q, \frac{q}{p} t \right) d_{p,q} t
\]

\[
= p^{(n-k)^2+n-k+1} q^{k-2-k} \left[\frac{n}{k-1} \right]_{p,q} \tag{17}
\]

And then by (8) and the equation

\[
B_{p,q} (k, n + 2 - k) = \frac{[k-1]_{p,q}! [n - k + 1]_{p,q}!}{[n + 1]_{p,q}!}, \tag{18}
\]

respectively, we get the proof of \(m = 0 \):

\[
\int_0^{\cos/A} y_{n,k-1} \left(p, q, \frac{q}{p} t \right) d_{p,q} t
\]

\[
= p^{(n-k)^2+n-k+1} q^{k-2-k} \left[\frac{n}{k-1} \right]_{p,q} \tag{19}
\]

Secondly, let us give the proof of \(m = 1 \). Writing

\[
y_{n,k-1} \left(p, q, \frac{q}{p} t \right)
\]

\[
= \frac{p^{(n-k)^2+n-k-1} q^{k-2-k+1}}{(p^n + q^n (q/p) t) (p^{n+1} + q^{n+1} (q/p) t) (1 + q/p) t^n} \frac{t}{1 + t} d_{p,q} t.
\tag{20}
\]

instead of \(y_{n,k-1} (p, q, (q/p)t) \), we have

\[
\int_0^{\cos/A} y_{n,k-1} \left(p, q, \frac{q}{p} t \right) d_{p,q} t
\]

\[
= \frac{1}{(1 + t)^{n+3}} \frac{(q/p) t^{k-1}}{p^{(n-k)^2+n-k} q^{k-2-k+1}} \left[\frac{n}{k-1} \right]_{p,q} \tag{21}
\]

Now using

\[
(1 + t) \left[\frac{q}{p} \right]_{p,q}^n \left(p^n + q^n \frac{q}{p} \right) \left(p^{n+1} + q^{n+1} \frac{q}{p} \right) = \frac{(1 + t)^{n+3}}{p^{m+2}}, \tag{22}
\]

we get

\[
\int_0^{\cos/A} y_{n,k-1} \left(p, q, \frac{q}{p} t \right) \frac{t}{1 + t} d_{p,q} t
\]

\[
= p^{(n-k)^2+n-k} q^{k-2-k+1} \left[\frac{n}{k-1} \right]_{p,q} \tag{23}
\]

\[
\cdot \int_0^{\cos/A} \frac{t^k}{(1 + t)^{n+2}} d_{p,q} t.
\]

And then by (8) and the equation

\[
B_{p,q} (k + 1, n + 2 - k) = \frac{[k]_{p,q}! [n - k + 1]_{p,q}!}{[n + 2]_{p,q}!} \tag{24}
\]

respectively, we get the proof of \(m = 1 \):

\[
\int_0^{\cos/A} y_{n,k-1} \left(p, q, \frac{q}{p} t \right) \frac{t}{1 + t} d_{p,q} t
\]

\[
= p^{(n-k)^2+n-k} q^{k-2-k+1} \left[\frac{n}{k-1} \right]_{p,q} \tag{25}
\]

Lastly, let us give the proof of \(m > 1 \). Writing

\[
y_{n,k-1} \left(p, q, \frac{q}{p} t \right)
\]

\[
= \frac{p^{(n-k)^2+n-k} q^{k-2-k+1}}{(p^n + q^n (q/p) t) (p^{n+1} + q^{n+1} (q/p) t) (1 + q/p) t^n} \frac{t^{k-1}}{(1 + t)^n} d_{p,q} t.
\tag{26}
\]
instead of $\gamma_{n,k-1}(p, q, (q/p)t)$, we have

\[
\int_0^{\infty/A} \gamma_{n,k-1} \left(\frac{p, q, q_t}{p} \right) \frac{t^m}{(1 + t) (p^{n+3} + q^{n+3}t) \cdots (p^{n+1+m} + q^{n+1+m}t)} \, d_{p,q} t = p^{(n-k)^2 + n-k, k^2+1} \left(\frac{n}{k-1} \right)_{p,q}.
\]

Now using

\[
\left(1 + t \right) \left(\frac{1}{p} \right) \left(q^m + q^n \frac{q_t}{p} \right) \left(p^n + q^{n+1} \frac{q_t}{p} \right) \cdot \left(p^{n+1} + q^{n+1+m} t \right) \left(p^{n+2} + q^{n+2} t \right) = \left(1 + t \right) \left(1 \right) \left(\frac{n+m+2}{p} \right) \left(p^{n+1} + q^{n+1+m} t \right) \left(p^{n+2} + q^{n+2} t \right)
\]

in the following integral, we get the result

\[
\int_0^{\infty/A} \gamma_{n,k-1} \left(\frac{p, q, q_t}{p} \right) \frac{t^m}{(1 + t) (p^{n+3} + q^{n+3}t) \cdots (p^{n+1+m} + q^{n+1+m}t)} \, d_{p,q} t.
\]

\[
= \left(p^{(n-k)^2 + n-k, k^2+1} \right) \left(\frac{n}{k-1} \right)_{p,q}.
\]

(27)

Now using

\[
\left(1 + t \right) \left(\frac{1}{p} \right) \left(q^m + q^n \frac{q_t}{p} \right) \left(p^n + q^{n+1} \frac{q_t}{p} \right) \cdot \left(p^{n+1} + q^{n+1+m} t \right) \left(p^{n+2} + q^{n+2} t \right)
\]

in the following integral, we get the result

\[
\int_0^{\infty/A} \gamma_{n,k-1} \left(\frac{p, q, q_t}{p} \right) \frac{t^m}{(1 + t) (p^{n+3} + q^{n+3}t) \cdots (p^{n+1+m} + q^{n+1+m}t)} \, d_{p,q} t
\]

\[
= \left(p^{(n-k)^2 + n-k, k^2+1} \right) \left(\frac{n}{k-1} \right)_{p,q}.
\]

(29)

(28)

And then by (8) and the equation

\[
B_{p,q} \left(k + m, n + 2 - k \right)
\]

\[
= \left[k + m - 1 \right]_{p,q} \left[n - k + 1 \right]_{p,q} \left[n + m + 1 \right]_{p,q}
\]

(30)

respectively, we get the proof of $m > 1$:

\[
\int_0^{\infty/A} \gamma_{n,k-1} \left(\frac{p, q, q_t}{p} \right) \frac{t^m}{(1 + t) (p^{n+3} + q^{n+3}t) \cdots (p^{n+1+m} + q^{n+1+m}t)} \, d_{p,q} t
\]

\[
= \left(p^{(n-k)^2 + n-k, k^2+1} \right) \left(\frac{n}{k-1} \right)_{p,q} \left[k + m - 1 \right]_{p,q} \left[n + m + 1 \right]_{p,q}.
\]

(31)

Lemma 2. The following results for the Durrmeyer type of (p, q)-generalization of the BBH operators are verified:

(i) $D_{n,p,q}(e_0, x) = 1$,

(ii) $D_{n,p,q}(e_1, x) = (p^2[n]_{p,q}/[n + 2]_{p,q})(x/(1 + x))$,

(iii) $D_{n,p,q}(e_2, x) = (p^2[2]_{p,q}[n]_{p,q}/[n + 2]_{p,q}[n + 3]_{p,q})(x^2/(1 + x)(x^{p_n+1} + q^{n+1}x)) + (p^{n+1}q^{n+2}[2]_{p,q}[n]_{p,q}/[n + 3]_{p,q}[n + 3]_{p,q})(x/(x^{p_n+1} + q^{n+1}x))$.

Proof. (i) Firstly, let us give the proof of (i). Using (10), (3), and Lemma 1, we get the following result:

\[
D_{n,p,q}(e_0, x) = \sum_{k=1}^{n} \left(p^{(n-k)^2} \right) \frac{q^k}{(1 + x)_{p,q}^{n-k}}.
\]

(32)

(ii) Secondly, let us prove (ii). From (10) and Lemma 1, we have

\[
D_{n,p,q}(e_1, x) = \sum_{k=0}^{n} \left(p^{(n-k)^2} \right) \frac{q^k}{(1 + x)_{p,q}^{n-k}}.
\]
Finally, using (3), we derive the desired relation:
\[
D_{n,p,q}(e_2, x) = \frac{p^2 [n]_{p,q} x}{[n+2]_{p,q} [n+3]_{p,q} (1+x)^2} \sum_{k=0}^{n-1} \binom{n-1}{k} \frac{1}{k+1} (p+q x)^k \frac{(q/p) x^{k+1}}{1+q x}.
\]

(33)

Thus from (3), we have the desired relation in (ii).

(iii) Lastly, let us prove (iii). We use (10) and Lemma 1 to get
\[
D_{n,p,q}(e_2, x) = \sum_{k=1}^{n} b_{n,k}(p, q, x)
\]
\[
= \frac{(q/p)^{n+1} p^{(n-k)/2} q^{(k^2-5k)/2} [k]_{p,q} [k+1]_{p,q}}{[n+2]_{p,q} [n+3]_{p,q}} \frac{1}{(1+q x) x^{k+1}} (p+q x)^k (1+q r_{p,q})
\]
\[
= \frac{(q/p)^{n+1} p^{(n-k)/2} q^{(k^2-5k)/2} [k]_{p,q} [k+1]_{p,q}}{[n+2]_{p,q} [n+3]_{p,q}} \frac{1}{(1+q x) x^{k+1}} (p+q x)^k (1+q x)^{n+1} (p+q x)^{n+1} x^{k+1}.
\]

(34)

Using the relation \([k+1]_{p,q} = q^2 [k-1]_{p,q} + p^{k-1} [2]_{p,q}\) in the above equation, we reach
\[
D_{n,p,q}(e_2, x) = q^2 \sum_{k=2}^{n} [2]_{p,q} [n-2]_{p,q} [n]_{p,q} [n-1]_{p,q} \frac{(q/p)^{k-1} p^{(n-k)/2} q^{(k^2-5k)/2}}{[n+2]_{p,q} [n+3]_{p,q} (1+q x)^2} \frac{1}{k+1} (p+q x)^k x^{k+1}.
\]

(35)

Upon necessary arrangements that have been done, we have
\[
D_{n,p,q}(e_2, x) = \frac{q^2 [n-1]_{p,q} [n]_{p,q}}{[n+2]_{p,q} [n+3]_{p,q}} \frac{1}{x} \frac{x^2}{1+q x} \sum_{k=0}^{n-2} \binom{n-2}{k} \frac{1}{k+1} (p+q x)^k \frac{(q/p) x^{k+1}}{1+q x}.
\]

(36)

Finally, using (3), we derive the desired relation:
\[
D_{n,p,q}(e_2, x) = \frac{p^2 [n-1]_{p,q} [n]_{p,q}}{[n+2]_{p,q} (1+x)^2} \sum_{k=0}^{n-1} \binom{n-1}{k} \frac{1}{k+1} (p+q x)^k x^k.
\]
\[
\sum_{k=0}^{n-2} \binom{n-2}{k} \frac{p^{n-2-k}}{(n-2)!} \frac{q^{k}}{(n-2)!} \left(\frac{q/p}{x} \right)^{k} \left(1 + \frac{q}{p} x \right)^{n-2} = \frac{p^{n+1} q^{-2} [2]_{p,q} [n+1]_{p,q} x}{[n+2]_{p,q} [n+3]_{p,q} p^{-1} + q^{-1} x} \\
\sum_{k=0}^{n-1} \binom{n-1}{k} \frac{p^{n-2-k}}{(n-2)!} \frac{q^{k}}{(n-2)!} \left(\frac{q/p}{x} \right)^{k} \left(1 + \frac{q}{p} x \right)^{n-2} = \frac{p^{n+1} q^{-2} [2]_{p,q} [n+1]_{p,q} x}{[n+2]_{p,q} [n+3]_{p,q} p^{-1} + q^{-1} x}
\]

which completes the proof.

\(\Box\)

Remark 3. The following result is valid when \(0 < q_n < p_n \leq 1\), \(p_n \to 1\), \(q_n \to 1\), \(p_n^\alpha \to 1\), and \(q_n^\alpha \to 1\) as \(n \to \infty\):

\[
D_{n,p,q}(e_2, x) = \frac{2x}{1+x} D_{n,p,q}(e_1, x) + \left(\frac{x}{1+x} \right)^2 D_{n,p,q}(e_0, x)
\]

\[
D_{n,p,q}(e_2, x) = \frac{p^n [n-1]_{p,q} [n]_{p,q} x^2}{[n+2]_{p,q} [n+3]_{p,q} (1+x) (p_n^{n-1} + q_n^{n-1} x)}
\]

\[
- 2 \frac{p^n [n]_{p,q} [n+1]_{p,q}}{[n+2]_{p,q}} \left(\frac{x}{1+x} \right)^2 + \left(\frac{x}{1+x} \right)^2
\]

\[
+ \frac{p^{n+1} q^{-2} [2]_{p,q} [n]_{p,q} x}{[n+2]_{p,q} [n+3]_{p,q} p_n^{n-1} + q_n^{n-1} x} \to 0.
\]

3. Genuine Type of \((p, q)\)-Durrmeyer BBH Operators

Now, we define the genuine type of Durrmeyer BBH operators denoted by \(D_{n,p,q}^*\) for \(0 < q < p \leq 1\) as follows:

\[
D_{n,p,q}^*(f, x) := D_{n,p,q}(f, \sigma_n (p, q, x)).
\]

where

\[
\sigma_n (p, q, x) = \frac{x}{p^n [n]_{p,q} / [n+2]_{p,q} + (p^n [n]_{p,q} / [n+2]_{p,q} - 1) x}
\]

for \(0 \leq x < \alpha_n/(1 - \alpha_n)\), \(\alpha_n = p^n [n]_{p,q} / [n+2]_{p,q}\).

We first give the following lemma for the test functions.

Lemma 4. For \(x \in [0, \alpha_n/(1 - \alpha_n)]\), \(0 < q < p \leq 1\), and \(e(t) = (t/(1+t))^j\), where \(j = 0, 1, 2\), the operators \(D_{n,p,q}^*(e_j, x)\) satisfy the following properties:

(i) \(D_{n,p,q}^*(1, x) = 1\),

(ii) \(D_{n,p,q}^*(t/(1+t), x) = x/(1+x)\),

(iii) \(D_{n,p,q}^*((t/(1+t))^2, x) \leq \left((n-1)_{p,q} q^{n+1} [n]_{p,q} x/(1+x)^2 \right) + \left(2/[p,q] q^{n+3} [n]_{p,q} x/(1+x)\right)\).

Lemma 5. The operators \(D_{n,p,q}^*\) satisfy the following inequality for \(x \in [0, \alpha_n/(1 - \alpha_n)]\):

\[
0 \leq D_{n,p,q}^* \left(\left(\frac{t}{1+t} - \frac{x}{1+x} \right)^2, x \right) \leq \left(\frac{[n-1]_{p,q}}{q^{n+1} [n]_{p,q} - 1} \right) \left(\frac{x}{1+x} \right)^2 + \left(\frac{2}{p,q} q^{n+3} [n]_{p,q} \right) - 1 \right)
\]

\[
\leq 2 \left(\frac{[n-1]_{p,q}}{q^{n+1} [n]_{p,q} + 2/p,q q^{n+3} [n]_{p,q}} - 1 \right).
\]

4. Approximation Properties of the Operators \(D_{n,p,q}^*\)

In this section, we will consider the space of all bounded and continuous functions on the interval \([0, \infty)\) denoted by \(C_0(0, \infty)\) and use the supremum norm \(\|f\|_{C_0} = \sup \{ f(t) \} \) for \(f \in C_0(0, \infty)\). Let \(H_\omega\) be the space of all-real valued functions defined on \([0, \infty)\) satisfying the following condition:

\[
|f(t) - f(x)| < \omega \left(f, \frac{t}{1+t} - \frac{x}{1+x} \right),
\]

where any \(t, x \in [0, \infty)\) and \(\omega\) is the modulus of continuity in \([0, \infty)\) satisfying the following conditions:

(i) \(\omega\) is a nonnegative increasing function on \([0, \infty)\),

(ii) \(\omega(f, \delta_1 + \delta_2) \leq \omega(f, \delta_1) + \omega(f, \delta_2)\),

(iii) \(\lim_{\delta \to 0} \omega(f, \delta) = 0\),

(iv) \(\omega(f, \lambda \delta) \leq (1 + \lambda) \omega(f, \delta)\).

Readers might see [29] for details. Now, we remember the Korovkin theorem for the linear positive operators acting from \(H_\omega\) into \(C_0(0, \infty)\) in [22].

Theorem 6 (see [22]). If the linear positive operators \(L_n\) acting from \(H_\omega\) into \(C_0(0, \infty)\) satisfy the conditions,

\[
\left\| L_n \left(\left(\frac{t}{1+t} \right)^y, x \right) - \left(\frac{x}{1+x} \right)^y \right\|_{C_0} \to 0,
\]

\[
n \to \infty,
\]
for $y = 0, 1, 2$, then we get
\[\|L_n(f, x) - f\|_{C_{\alpha}} \to 0, \quad n \to \infty \] (44)
for any function $f \in H_\omega$.

Theorem 7. Assume that (p_n) and (q_n) are two sequences with $0 < q_n < p_n \leq 1$, $p_n \to 1$, $q_n \to 1$, $p_n^* \to 1$, and $q_n^* \to 1$ as $n \to \infty$. Then the assertion
\[\lim_{n \to \infty} \sup_{x \in (0, \alpha_n/(1-\alpha_n))} \left| D^{*}_{p_n, q_n}(f, x) - f(x) \right| = 0 \] (45)
holds for any function $f \in H_\omega$.

Proof. Considering the operators,
\[
D^{*}_{p_n, q_n}(f, x) = \begin{cases}
D^{*}_{p_n, q_n}(f, x); & \text{if } 0 \leq x < \frac{\alpha_n}{1 - \alpha_n}, \\
(f(x); & \text{if } x \geq \frac{\alpha_n}{1 - \alpha_n},
\end{cases}
\]
we have
\[\left\| D^{*}_{p_n, q_n}(f, x) - f(x) \right\|_{C_{\alpha}} = \sup_{x \in (0, \alpha_n/(1-\alpha_n))} \left| D^{*}_{p_n, q_n}(f, x) - f(x) \right|. \] (46)

It is clear that $\left\| D^{*}_{p_n, q_n}(1, x) - 1 \right\|_{C_{\alpha}} = 0$ and $\left\| D^{*}_{p_n, q_n}(t/(1 + t), x) - x/(1 + x) \right\|_{C_{\alpha}} = 0$. Using Lemma 5, we have the following inequality:
\[\left\| D^{*}_{p_n, q_n}(\left(\frac{t}{1 + t}\right)^2, x) - \left(\frac{x}{1 + x}\right)^2 \right\|_{C_{\alpha}} = \sup_{x \in (0, \alpha_n/(1 - \alpha_n))} \left| D^{*}_{p_n, q_n}\left(\left(\frac{t}{1 + t}\right)^2, x\right) - \left(\frac{x}{1 + x}\right)^2 \right|. \] (47)

From (48), we get
\[\lim_{n \to \infty} \left\| D^{*}_{p_n, q_n}(\left(\frac{t}{1 + t}\right)^2, x) - \left(\frac{x}{1 + x}\right)^2 \right\|_{C_{\alpha}} = 0, \] \[y = 0, 1, 2. \] (49)
Applying Theorem 6 for the operators $D^{*}_{p_n, q_n}$, we have
\[\lim_{n \to \infty} \left\| D^{*}_{p_n, q_n}(f, x) - f(x) \right\|_{C_{\alpha}} = 0 \] (50)
for any function $f \in H_\omega$. Hence using (47), we obtain
\[\lim_{n \to \infty} \sup_{x \in (0, \alpha_n/(1-\alpha_n))} \left| D^{*}_{p_n, q_n}(f, x) - f(x) \right| = 0. \] (51)
Thus, we finish the proof of Theorem 7.

Theorem 8. Assume that (p_n) and (q_n) are two sequences with $0 < q_n < p_n \leq 1$, $p_n \to 1$, $q_n \to 1$, $p_n^* \to 1$, and $q_n^* \to 1$ as $n \to \infty$. For the operators $D^{*}_{p_n, q_n}$, we get the following estimation property:
\[\left| D^{*}_{p_n, q_n}(f, x) - f(x) \right| \leq 2 \omega(f, \delta(n, p_n, q_n)), \] (52)
where
\[\delta(n, p_n, q_n) = \sqrt{2 \left(\frac{[n-1]_{p_n, q_n}}{q_n^{n+3}[n]_{p_n, q_n}} + \frac{[2]_{p_n, q_n}}{q_n^{n+3}[n]_{p_n, q_n}} - 1 \right)}. \] (53)

The distance of x and E is defined by
\[d(x, E) = \inf \left\{ |x - y| : y \in E \right\}. \] (60)
Theorem 9. Assume that \((p_n)\) and \((q_n)\) are two sequences satisfying the conditions \(0 < q_n < p_n \leq 1, p_n \rightarrow 1, q_n \rightarrow 1, p_n^a \rightarrow 1,\) and \(q_n^a \rightarrow 1\) as \(n \rightarrow \infty.\) Then for each \(f \in W_{α,E},\) we get the following inequality:

\[
\left| D_{n,p,q}^*(f,x) - f(x) \right| \leq M \left((\bar{\delta}(n,p_n,q_n))^{n/2} + 2(d(x,E))^α \right),
\]

for each \(x \in [0,α_n/(1-α_n))\) and \(\bar{\delta}(n,p_n,q_n) = 2[(n-1)p_n^{α+1}|n|_{p_n,q_n} + [2]p_n^{α+3}|n|_{p_n,q_n}-1].\)

Proof. The closure of the set \(E\) is denoted by \(\overline{E}.\) Then we have \(x_0 \in \overline{E}\) such that \(|x-x_0| = d(x,E)\) for \(x \in [0,α_n/(1-α_n)).\) Thus we have

\[
\left| f(t) - f(x) \right| \leq \left| f(t) - f(x_0) \right| + \left| f(x_0) - f(x) \right|.
\]

Using \(f \in W_{α,E}\) and linear and positive operator \(D_{n,p,q}^*,\) we get

\[
\left| D_{n,p,q}^*(f,x) - f(x) \right| \leq D_{n,p,q}^*(\left| f(t) - f(x_0) \right|, x) + \left| f(x_0) - f(x) \right|.
\]

Using the well-known inequality \((a + b)^α \leq a^α + b^α\) for \(a \geq 0, b \geq 0,\) for \(0 < α \leq 1\) and \(t \in [0,∞),\) we have

\[
\left| t - \frac{x_0}{1+x_0} \right|^α \leq \left| \frac{t}{1+t} - \frac{x}{1+x} \right|^α + \left| \frac{x}{1+x} - \frac{x_0}{1+x_0} \right|^α.
\]

Thus we can write

\[
D_{n,p,q}^*(\left| t - \frac{x_0}{1+x_0} \right|^α, x) \leq D_{n,p,q}^*(\left| t - \frac{x}{1+x} \right|^α, x) + \left| \frac{x}{1+x} - \frac{x_0}{1+x_0} \right|^α.
\]

Using (63), the proof of Theorem 9 is completed.

5. Numerical Results

In this section, we will analyze the theoretical results presented in the previous sections by numerical examples.

Example 1. Let \(g_2(x) = x^β/(1 + x)(p^{n+3} + q^{n+3}x),\) the graphs of \(D_{n,p,q}^*(g_2;x)\) with \(p = 0.99999999, q = 0.999999, n = 20, 30, 50, 100\) are shown in Figure 1. In Figure 2, fix \(n = 100\) and let \(p_3 = 0.9999, q_3 = 0.9999;\) the curves of \(g_2(x)\) (the black curve, denoted by \(g_2(x,p_3,q_3)\) in Figure 2) and \(D_{n,p,q}^*(g_2;x)\) (the red curve) are shown; let \(p_2 = 0.9999, q_2 = 0.9999;\) the curves of \(g_2(x)\) (the purple curve, denoted by \(g_2(x,p_2,q_2)\) in Figure 2) and \(D_{n,p,q}^*(g_2;x)\) (the brown curve) are shown; let \(p_3 = 0.999999, q_3 = 0.999999;\) the
curves of $g_2(x)$ (the green curve, denoted by $g_2(x, p_3, q_3)$ in Figure 2) and $D_{n,p,0}(g_2; x)$ (the brown curve) are shown. In Figure 3, the graphs of $D_{n,p,q}(g_2; x)$ and $D^*_{n,p,q}(g_2; x)$ with $p = 0.9999, q = 0.999,$ and $n = 100$ are shown. Tables 1 and 2 are the absolute error bound of $D_{n,p,q}(g_2; x)$ to $g_2(x)$ and $D^*_{n,p,q}(g_2; x)$ to $g_2(x)$ with different values of p and q. One can see from Tables 1 and 2, the latter operators $D^*_{n,p,q}(g_2; x)$ are better than the former ones $D_{n,p,q}(g_2; x)$.

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant no. 11601266), the Natural Science Foundation of Fujian Province of China (Grant no. 2016J05017), the Program for New Century Excellent Talents in Fujian Province University, We also thank Fujian Provincial Key Laboratory of Data-Intensive Computing, Fujian University...
Table 1: The absolute error bound of $D_{n,p,q}(g_2;x)$ to g_2 with $p = 1 - 10^{-m}$ and $q = 1 - 10^{-m+1}$.

<table>
<thead>
<tr>
<th>m</th>
<th>$n = 100$</th>
<th>$n = 200$</th>
<th>$n = 500$</th>
<th>$n = 1000$</th>
<th>$n = 2000$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.0306017</td>
<td>0.0156756</td>
<td>0.00647738</td>
<td>0.00337185</td>
<td>0.00181546</td>
</tr>
<tr>
<td>6</td>
<td>0.0303806</td>
<td>0.0154181</td>
<td>0.00626919</td>
<td>0.00315343</td>
<td>0.00159127</td>
</tr>
<tr>
<td>7</td>
<td>0.0303675</td>
<td>0.01544054</td>
<td>0.00624065</td>
<td>0.00315343</td>
<td>0.00159127</td>
</tr>
<tr>
<td>8</td>
<td>0.0303646</td>
<td>0.01543841</td>
<td>0.00623853</td>
<td>0.00313215</td>
<td>0.00156799</td>
</tr>
<tr>
<td>9</td>
<td>0.0303644</td>
<td>0.01543822</td>
<td>0.00623832</td>
<td>0.00312981</td>
<td>0.00156759</td>
</tr>
<tr>
<td>10</td>
<td>0.0303643</td>
<td>0.01543818</td>
<td>0.00623832</td>
<td>0.00312979</td>
<td>0.00156757</td>
</tr>
</tbody>
</table>

Table 2: The absolute error bound of $D_{n,p,q}^*(g_2;x)$ to g_2 with $p = 1 - 10^{-m}$ and $q = 1 - 10^{-m+1}$.

<table>
<thead>
<tr>
<th>m</th>
<th>$n = 100$</th>
<th>$n = 200$</th>
<th>$n = 500$</th>
<th>$n = 1000$</th>
<th>$n = 2000$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.00493872</td>
<td>0.00258649</td>
<td>0.00113532</td>
<td>0.00065426</td>
<td>0.00043724</td>
</tr>
<tr>
<td>6</td>
<td>0.00489344</td>
<td>0.00246397</td>
<td>0.00100536</td>
<td>0.00051145</td>
<td>0.00026317</td>
</tr>
<tr>
<td>7</td>
<td>0.00487061</td>
<td>0.00245211</td>
<td>0.00099337</td>
<td>0.00049933</td>
<td>0.00025083</td>
</tr>
<tr>
<td>8</td>
<td>0.00480644</td>
<td>0.00245093</td>
<td>0.00099281</td>
<td>0.00049814</td>
<td>0.00024963</td>
</tr>
<tr>
<td>9</td>
<td>0.00480632</td>
<td>0.00245081</td>
<td>0.00099206</td>
<td>0.00049802</td>
<td>0.00024951</td>
</tr>
<tr>
<td>10</td>
<td>0.00480631</td>
<td>0.00245080</td>
<td>0.00099205</td>
<td>0.00049801</td>
<td>0.00024950</td>
</tr>
</tbody>
</table>

References

Laboratory of Intelligent Computing and Information Processing, and Fujian Provincial Big Data Research Institute of Intelligent Manufacturing of China.

