Research Article

Commutators of the Bilinear Hardy Operator on Herz Type Spaces with Variable Exponents

Shengrong Wang and Jingshi Xu

School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China

Correspondence should be addressed to Jingshi Xu; jingshixu@126.com

Received 25 February 2019; Accepted 14 May 2019; Published 9 June 2019

Academic Editor: Yoshihiro Sawano

Copyright © 2019 Shengrong Wang and Jingshi Xu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we obtain the boundedness of bilinear commutators generated by the bilinear Hardy operator and BMO functions on products of Herz spaces and Herz-Morrey spaces with variable exponents.

1. Introduction

Denote by $L_{1, \text{loc}}^1(\mathbb{R}^n)$ the set of all complex-valued locally integrable functions on \mathbb{R}^n. The Hardy operator was first considered in [1] as follows:

$$Hf(x) = \frac{1}{x} \int_0^x f(t) \, dt, \quad x \neq 0,$$

for $f \in L_{1, \text{loc}}^1(\mathbb{R})$. In 1976, Faris [2] generalized it to the n-dimensional Euclidean space as

$$Hf(x) = \frac{1}{\Omega_n |x|^n} \int_{|y|<|x|} f(y) \, dy, \quad x \in \mathbb{R}^n \setminus \{0\},$$

where $f \in L_{1, \text{loc}}^1(\mathbb{R}^n)$ and $\Omega_n = \pi^{n/2}/\Gamma(1 + n/2)$ is the volume of the unit ball in \mathbb{R}^n. In [3], Christ and Grafakos proved that the Hardy operator is bounded on $L^p(\mathbb{R}^n)$.

For $m \in \mathbb{N}$, the m-linear Hardy operator was defined in [4] as

$$H(f_1, \ldots, f_m)(x) = \frac{1}{\Omega_{mn} |x|^{mn}} \int_{|y_1|<|x|} \cdots \int_{|y_m|<|x|} f_1(y_1) \cdots f_m(y_m) \, dy_1 \cdots dy_m,$$

for $f_1, \ldots, f_m \in L_{1, \text{loc}}^1(\mathbb{R}^n)$. The 2-linear operator will be referred to as a bilinear operator.

A function b belongs to $\text{BMO}(\mathbb{R}^n)$ (bounded mean oscillation), if $b \in L_{1, \text{loc}}^1(\mathbb{R}^n)$ and

$$\|b\|_* = \sup_{B} \frac{1}{|B|} \int_B |b(x) - b_B| \, dx < \infty,$$

where the supremum is taken over all balls in \mathbb{R}^n, b_B is the mean of b on B, and what follows $|E|$ is the Lebesgue measure of measurable set E in \mathbb{R}^n.

Let $b_i \in \text{BMO}(\mathbb{R}^n)$ for $i = 1, \ldots, m$. Then the commutator generated by the m-linear Hardy operator and b_1, \ldots, b_m is defined by

$$H_{b_i}(f_1, \ldots, f_m)(x) = \sum_{i=1}^m H_{b_i}^i(f_1, \ldots, f_m)(x),$$

where

$$H_{b_i}^i(f_1, \ldots, f_m)(x) = b_i(x) H(f_1, \ldots, f_m)(x) - H(f_1, \ldots, f_i-1, b_i, f_{i+1}, \ldots, f_m)(x).$$

When $m = 1$, the operator is $H_b(f)(x) = b(x) Hf(x) - H(bf)(x)$.

Since the fundamental paper [5] by Kováčik and Rákosník appeared in 1991, the Lebesgue spaces with variable exponent have attracted a great attention. Many constant exponent
function spaces are generalized to variable exponent setting, such as Bessel potential spaces with a variable exponent [6], Besov and Triebel-Lizorkin spaces with variable exponents [7–12], Hardy spaces with variable exponents [13], Morrey spaces with variable exponents [14], Herz spaces with variable exponents [15], and Herz-Morrey spaces with variable exponents [16, 17]. These spaces have many applications, such as in the electrorheological fluid [18]; image restoration [19–23]; the Black-Scholes equation [24]; ordinary and partial differential equations [25–27] and references therein.

The boundedness of the Hardy operator was considered in many function spaces, such as in variable Lebesgue spaces [28, 29], variable exponent Sobolev spaces [30]. The boundedness of commutators of the Hardy operator was obtained in λ-central BMO spaces [31], Herz spaces $K_{p,q}^\alpha(R^n)$ with variable exponent $p(\cdot)$ [32]. In [33], Wu proved the boundedness of multilinear commutators of fractional Hardy operators on Herz-Morrey spaces $MK_j^{\alpha,\lambda}$. In [34], Wu considered the boundedness for fractional Hardy type operator on Herz-Morrey spaces $MK_{\alpha,p,q}^{\alpha,\lambda}$. Wu and Zhang considered the boundedness of commutators of the fractional Hardy operators on Herz-Morrey spaces $MK_j^{\alpha,\lambda}(R^n)$ with variable exponent $\alpha(\cdot)$ and the boundedness of variable fractional Hardy type operators on Herz-Morrey spaces $MK_{\alpha,p}^{\alpha,\lambda}(R^n)$ with variable exponent $\alpha(\cdot)$ [35, 36]. Wu and Zhang considered the boundedness of commutators of the fractional Hardy operators on Herz-Morrey spaces $MK_{\alpha,p}^{\alpha,\lambda}(R^n)$ with variable exponent $\alpha(\cdot)$ and the boundedness of fractional Hardy type operators on Herz-Morrey spaces $MK_{\alpha,p-q}^{\alpha,\lambda}(R^n)$ with variable exponents $\alpha(\cdot)$ and $p(\cdot)$ in [37]. Wu and Zhao proved the boundedness for variable fractional Hardy type operator on variable exponent Herz-Morrey spaces $MK_{\alpha,p}^{\alpha,\lambda}(R^n)$ in [38]. In [39], Xu and Yang introduced the Herz-Morrey-Hardy spaces $HMK_{\alpha,p}^{\alpha,\lambda}(R^n)$ with variable exponents and with variable exponents in terms of atom. Moreover, applying the characterization, they obtained the boundedness of some singular integral operators on these spaces.

Motivated by the mentioned works, in this paper, we will consider the boundedness of m-linear commutators generated by the m-linear Hardy operator and BMO functions on Herz spaces and Herz-Morrey spaces with variable exponents.

2. Main Results

To state our results, let us first recall some definitions and notations. Let Ω be a positive measurable subset of \mathbb{R}^n, given a measurable function $p(\cdot) : \Omega \rightarrow [1, \infty)$. The Lebesgue space with variable exponent $L^{p(\cdot)}(\Omega)$ is defined by

$$L^{p(\cdot)}(\Omega) = \left\{ f : \Omega \rightarrow \mathbb{R} \mid \text{f is measurable:} \int_{\Omega} \left(\frac{|f(x)|}{\lambda} \right)^{p(x)} \, dx < \infty \text{ for some } \lambda > 0 \right\}. \quad (7)$$

The Lebesgue space $L^{p(\cdot)}(\Omega)$ becomes a Banach function space equipped with the norm

$$\|f\|_{L^{p(\cdot)}} = \inf \left\{ \lambda > 0 : \int_{\Omega} \left(\frac{|f(x)|}{\lambda} \right)^{p(x)} \, dx \leq 1 \right\}. \quad (8)$$

The space $L^{p(\cdot)}(\mathbb{R}^n)$ is the collection of all functions f such that $f_{|S} \in L^{p(\cdot)}(\mathbb{R}^n)$ for each compact subset $S \subset \mathbb{R}^n$. Here and what follows, χ_S denotes the characteristic function of a measurable set $S \subset \mathbb{R}^n$. Let $p(\cdot) : \mathbb{R}^n \rightarrow (0, \infty)$; we denote $p_- = \inf_{x \in \mathbb{R}^n} p(x)$, $p_+ = \sup_{x \in \mathbb{R}^n} p(x)$. The set $p(\cdot)$ consists of all $p(\cdot)$ such that $p_- > 1$ and $p_+ < \infty$; $\mathcal{P}(\mathbb{R}^n)$ consists of all $p(\cdot)$ such that $p_- > 0$ and $p_+ < \infty$. If $p(\cdot) \in \mathcal{P}(\mathbb{R}^n)$, then the space $L^{p(\cdot)}$ is similarly defined as above. $p(\cdot)$ means that the conjugate exponent of $p(\cdot)$ that means $1/p(\cdot) + 1/p(\cdot) = 1$.

The standard Hardy-Littlewood maximal operator M is defined for $L^{p(\cdot)}(\mathbb{R}^n)$ function f by

$$Mf(x) = \sup_{B \ni x} \frac{1}{|B|} \int_B |f(y)| \, dy, \quad \forall x \in \mathbb{R}^n, \quad (9)$$

where B is a ball. We denote by $\mathcal{B}(\mathbb{R}^n)$ the set of $p(\cdot) \in \mathcal{P}(\mathbb{R}^n)$ such that M is bounded on $L^{p(\cdot)}(\mathbb{R}^n)$. The common sufficient conditions for variable exponent to be in $\mathcal{B}(\mathbb{R}^n)$ are the following well known log-Hölder continuity, which introduced in [40–42].

Definition 1. Let $\alpha(\cdot)$ be a real-valued measurable function on \mathbb{R}^n.

(i) If there exists a constant C_1 such that

$$|\alpha(x) - \alpha(y)| \leq \frac{C_1}{\log(e + 1/|x-y|)}, \quad \forall x, y \in \mathbb{R}^n, \quad |x-y| < \frac{1}{2}, \quad (10)$$

then the function $\alpha(\cdot)$ is called locally log-Hölder continuous.

(ii) If there exists a constant C_2 such that

$$|\alpha(x) - \alpha(0)| \leq \frac{C_2}{\log(e + 1/|x|)}, \quad \forall x \in \mathbb{R}^n, \quad (11)$$

then the function $\alpha(\cdot)$ is called log-Hölder continuous at the origin and denoted by $\alpha(\cdot) \in \mathcal{P}_0^\log(\mathbb{R}^n)$;

(iii) If there exist $\alpha_{\infty} \in \mathbb{R}$ and a positive constant C_3 such that

$$|\alpha(x) - \alpha_{\infty}| \leq \frac{C_3}{\log(e + |x|)}, \quad \forall x \in \mathbb{R}^n, \quad (12)$$

then the function $\alpha(\cdot)$ is called log-Hölder continuous at infinity and denoted by $\alpha(\cdot) \in \mathcal{P}_ {\infty}^\log(\mathbb{R}^n)$.
(iv) If $\alpha(\cdot)$ are both locally log-Hölder continuous and log-Hölder continuous at the infinity, then the function $\alpha(\cdot)$ is called global log-Hölder continuous and denoted by $\alpha(\cdot) \in \mathcal{P}^{log}(\mathbb{R}^n)$.

To state the definitions of Herz space and Herz-Morrey space with variable exponents, we use the following notations. For each $k \in \mathbb{Z}$ we denote $B_k := \{x \in \mathbb{R}^n : |x| \leq 2^k\}$, $D_k := B_k \setminus B_{k-1}$, $X_k = X_{D_k}$, $\tilde{X}_m = X_m$, $m \geq 1$, $\tilde{X}_0 = X_B$.

Definition 2. Let $0 < q \leq \infty$, $p(\cdot) \in \mathcal{P}(\mathbb{R}^n)$, and $\alpha(\cdot) : \mathbb{R}^n \to \mathbb{R}$ with $\alpha \in L^\infty(\mathbb{R}^n)$.

(i) The homogeneous Herz space $K^{\alpha(\cdot),q}_{p(\cdot)}(\mathbb{R}^n)$ is defined by

$$K^{\alpha(\cdot),q}_{p(\cdot)}(\mathbb{R}^n) := \left\{ f \in L^p_{\text{loc}}(\mathbb{R}^n \setminus \{0\}) : \|f\|_{K^{\alpha(\cdot),q}_{p(\cdot)}} < \infty \right\},$$

where

$$\|f\|_{K^{\alpha(\cdot),q}_{p(\cdot)}} := \left\{ \sum_{k=-\infty}^{\infty} \left(\int_{D_k} |x|^{\alpha(\cdot)} f(x) \, dx \right)^{\frac{q}{p}} \right\}^{\frac{1}{q}} < \infty.$$ \hspace{1cm} (14)

(ii) The inhomogeneous Herz space $K^{\alpha(\cdot),q}_{p(\cdot)} (\mathbb{R}^n)$ is defined by

$$K^{\alpha(\cdot),q}_{p(\cdot)} (\mathbb{R}^n) := \left\{ f \in L^p_{\text{loc}} (\mathbb{R}^n) : \|f\|_{K^{\alpha(\cdot),q}_{p(\cdot)}} < \infty \right\},$$

where

$$\|f\|_{K^{\alpha(\cdot),q}_{p(\cdot)}} := \left\{ \sum_{m=0}^{\infty} \left(\sum_{k=0}^{\infty} \int_{D_k} |x|^{\alpha(\cdot)} f(x) \, dx \right)^{\frac{q}{p}} \right\}^{\frac{1}{q}} < \infty.$$ \hspace{1cm} (16)

Remark 3. Obviously, if $0 < q_1 \leq q_2 \leq \infty$, then $K^{\alpha(\cdot),q_1}_{p(\cdot)}(\mathbb{R}^n) \subseteq K^{\alpha(\cdot),q_2}_{p(\cdot)}(\mathbb{R}^n)$. If both $\alpha(\cdot)$ and $p(\cdot)$ are constants, then $K^{\alpha(\cdot),q}_{p(\cdot)}(\mathbb{R}^n) = K^{\alpha, q}_{p(\cdot)}(\mathbb{R}^n)$ is the classical Herz spaces in [43].

To generalize the above spaces to variable exponent $q(\cdot)$, we need the notation of the variable mixed sequence space $e^{\ell_1/(\mathbb{P}^{\ell_1})}$, which is defined as follows. Given a sequence of functions $(f_j)_{j \in \mathbb{Z}}$, define the modular

$$\rho_{e^{\ell_1/(\mathbb{P}^{\ell_1})}} \left((f_j)_{j} \right) := \sum_{j \in \mathbb{Z}} \inf \left\{ \lambda_j > 0 : \rho_{p(\cdot)} \left(\lambda_j^{-1} f_j \right) \leq 1 \right\},$$

where \(\lambda^{1/\infty} = 1\). If $q^+ < \infty$ or $q(\cdot) \leq p(\cdot)$, the above can be written as

$$\rho_{e^{\ell_1/(\mathbb{P}^{\ell_1})}} \left((f_j)_{j} \right) = \sum_{j \in \mathbb{Z}} \left\| f_j (\cdot) \right\|_{e^{\ell_1/(\mathbb{P}^{\ell_1})}}.$$ \hspace{1cm} (18)

The norm is

$$\left\| (f_j) \right\|_{e^{\ell_1/(\mathbb{P}^{\ell_1})}} := \inf \left\{ \mu > 0 : \rho_{e^{\ell_1/(\mathbb{P}^{\ell_1})}} \left(\left(\frac{f_j}{\mu} \right)_{j} \right) \leq 1 \right\}. \hspace{1cm} (19)$$

Now, the space $K^{\alpha(\cdot),q(\cdot)}_{p(\cdot)}$ is the collection of all functions $f \in L^p_{\text{loc}}(\mathbb{R}^n \setminus \{0\})$ such that

$$\|f\|_{K^{\alpha(\cdot),q(\cdot)}_{p(\cdot)}} := \left\{ \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} f(x) \, dx \right)^{\frac{q(\cdot)}{p(\cdot)}} \, dx \right\}^{\frac{1}{q(\cdot)}} < \infty,$$ \hspace{1cm} (20)

and the space $K^{\alpha(\cdot),q(\cdot)}_{p(\cdot)}$ is the collection of all functions $f \in L^p_{\text{loc}}(\mathbb{R}^n)$ such that

$$\|f\|_{K^{\alpha(\cdot),q(\cdot)}_{p(\cdot)}} := \left\{ \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} f(x) \, dx \right)^{\frac{q(\cdot)}{p(\cdot)}} \, dx \right\}^{\frac{1}{q(\cdot)}} < \infty.$$

In [44], Driehm and Seghiri proved the following result.

Lemma 4 (see [44, Proposition 1]). Let $\alpha(\cdot) \in L^\infty(\mathbb{R}^n), p(\cdot), q(\cdot) \in \mathcal{P}_0(\mathbb{R}^n)$. If $\alpha(\cdot)$ and $q(\cdot)$ are log-Hölder continuous at infinity, then

$$K^{\alpha(\cdot),q(\cdot)}_{p(\cdot)}(\mathbb{R}^n) = K^{\alpha, q}_{p(\cdot)}(\mathbb{R}^n).$$

Additionally, if $\alpha(\cdot)$ and $q(\cdot)$ have a log decay at the origin, then

$$\|f\|_{K^{\alpha(\cdot),q(\cdot)}_{p(\cdot)}} \approx \left(\sum_{k=0}^{\infty} \int_{D_k} |x|^{\alpha(\cdot)} f(x) \, dx \right)^{\frac{1}{q(\cdot)}} + \left(\sum_{k=0}^{\infty} \int_{D_k} |x|^{\alpha(\cdot)} f(x) \, dx \right)^{\frac{1}{q(\cdot)}},$$

Definition 5. Let $0 < q \leq \infty$, $p(\cdot) \in \mathcal{P}(\mathbb{R}^n), \lambda < \infty$, and $\alpha(\cdot) : \mathbb{R}^n \to \mathbb{R}$ with $\alpha \in L^\infty(\mathbb{R}^n)$.

(i) The homogeneous Herz-Morrey space $MK^{\alpha(\cdot),q(\cdot)}_{p(\cdot),\lambda}(\mathbb{R}^n)$ is defined by

$$MK^{\alpha(\cdot),q(\cdot)}_{p(\cdot),\lambda}(\mathbb{R}^n) := \left\{ f \in L^p_{\text{loc}}(\mathbb{R}^n \setminus \{0\}) : \|f\|_{MK^{\alpha(\cdot),q(\cdot)}_{p(\cdot),\lambda}} < \infty \right\},$$

where

$$\|f\|_{MK^{\alpha(\cdot),q(\cdot)}_{p(\cdot),\lambda}} := \sup_{L \in \mathbb{N}} \left\{ \int_{D_k} \left(\int_{D_k} |x|^{\alpha(\cdot)} f(x) \, dx \right)^{\frac{q(\cdot)}{p(\cdot)}} \, dx \right\}^{\frac{1}{q(\cdot)}}.$$ \hspace{1cm} (25)

(ii) The inhomogeneous Herz space $MK^{\alpha(\cdot),q(\cdot)}_{p(\cdot),\lambda}(\mathbb{R}^n)$ is defined by

$$MK^{\alpha(\cdot),q(\cdot)}_{p(\cdot),\lambda}(\mathbb{R}^n) := \left\{ f \in L^p_{\text{loc}}(\mathbb{R}^n \setminus \{0\}) : \|f\|_{MK^{\alpha(\cdot),q(\cdot)}_{p(\cdot),\lambda}} < \infty \right\},$$

where

$$\|f\|_{MK^{\alpha(\cdot),q(\cdot)}_{p(\cdot),\lambda}(\mathbb{R}^n)} := \sup_{L \in \mathbb{N}} \left\{ \int_{D_k} \left(\int_{D_k} |x|^{\alpha(\cdot)} f(x) \, dx \right)^{\frac{q(\cdot)}{p(\cdot)}} \, dx \right\}^{\frac{1}{q(\cdot)}}.$$ \hspace{1cm} (27)
Remark 6. If $\alpha(\cdot)$ is constant, then $\mathcal{MK}^{\alpha(\cdot),q(\cdot)}(\mathbb{R}^n) = \mathcal{MK}^{\alpha(\cdot)}_{p(\cdot),\lambda}(\mathbb{R}^n)$ was defined in [45]. If $\lambda = 0$, then $\mathcal{MK}^{\alpha(\cdot),q(\cdot)}(\mathbb{R}^n) = \mathcal{K}^{\alpha(\cdot)}_{p(\cdot),\lambda}(\mathbb{R}^n)$. If both $\alpha(\cdot)$ and $p(\cdot)$ are constants and $\lambda = 0$, then $\mathcal{MK}^{\alpha(\cdot),q(\cdot)}(\mathbb{R}^n) = \mathcal{K}^{\alpha(\cdot)}_{p(\cdot)}(\mathbb{R}^n)$ is the classical Herz space in [43].

Definition 7. Let $p(\cdot) \in \mathcal{P}(\mathbb{R}^n)$, $q(\cdot) \in \mathcal{P}_0^{\log}(\mathbb{R}^n) \cap \mathcal{P}^{\log}(\mathbb{R}^n)$, $0 \leq \lambda < \infty$. Let $\alpha(\cdot)$ be a bounded real-valued measurable function on \mathbb{R}^n. The homogeneous Herz-Morrey space $\mathcal{MK}^{\alpha(\cdot),q(\cdot)}_{p(\cdot),\lambda}$ and nonhomogeneous Herz-Morrey space $\mathcal{MK}^{\alpha(\cdot),q(\cdot)}_{p(\cdot),\lambda}$ are defined, respectively, by

$$\mathcal{MK}^{\alpha(\cdot),q(\cdot)}_{p(\cdot),\lambda} := \left\{ f \in L^{p(\cdot)}_{\text{loc}}(\mathbb{R}^n) : \| f \|_{\mathcal{MK}^{\alpha(\cdot),q(\cdot)}_{p(\cdot),\lambda}} < \infty \right\},$$

and

$$\mathcal{MK}^{\alpha(\cdot)}_{p(\cdot),\lambda} := \left\{ f \in L^{p(\cdot)}_{\text{loc}}(\mathbb{R}^n) : \| f \|_{\mathcal{MK}^{\alpha(\cdot)}_{p(\cdot),\lambda}} < \infty \right\},$$

where

$$\| f \|_{\mathcal{MK}^{\alpha(\cdot),q(\cdot)}_{p(\cdot),\lambda}} := \sup_{L \in \mathcal{Z}} 2^{-\lambda L} \left\| \left(2^{\alpha(\cdot)} f x_k \right)_{k \in \mathbb{Z}} \right\|_{L^{q(\cdot)}(L^p(\cdot))},$$

and

$$\| f \|_{\mathcal{MK}^{\alpha(\cdot)}_{p(\cdot),\lambda}} := \sup_{L \in \mathcal{Z}_0} 2^{-\lambda L} \left\| \left(2^{\alpha(\cdot)} f x_k \right)_{k \in \mathbb{Z}} \right\|_{L^{q(\cdot)}(L^p(\cdot))}.$$
Theorem 11. Let H be a bilinear Hardy operator; $p_1(\cdot), p_2(\cdot) \in \mathcal{S}(\mathbb{R}^n)$ satisfying $1/p(\cdot) = 1/p_1(\cdot) + 1/p_2(\cdot)$, $\alpha(\cdot) \in L^{\infty}(\mathbb{R}^n) \cap \mathcal{S}^{\alpha_1}_0(\mathbb{R}^n) \cap \mathcal{S}^{\alpha_2}_0(\mathbb{R}^n)$, $\alpha(0) = \alpha_1(0) + \alpha_2(0)$, $\alpha_{\text{coo}} = \alpha_{1 \text{coo}} + \alpha_{2 \text{coo}}$, $\alpha > 0 \leq \infty$, $\delta_0 > \alpha_{\text{coo}} + \alpha_{\text{coo}}$, $q(\cdot) \in \mathcal{S}^{\delta_0}_0(\mathbb{R}^n) \cap \mathcal{S}^{\delta_0}_{\infty}(\mathbb{R}^n)$, $1/q(\cdot) = 1/q_1(\cdot) + 1/q_2(\cdot)$, $0 \leq \lambda_1, \lambda_2 < \infty$, $\delta_1, \delta_2 \in (0, 1)$ are the constants in Lemma 10 for exponents $p_j(\cdot)$. If $j = 1, 2$, with $\lambda_1 + n\delta_1 > \alpha_{\text{coo}} \geq \alpha(0)$, then $H_{B,0}^1$ is bounded from $MK^{\alpha_{1 \text{coo}},q_1}_0(\mathbb{R}^n) \times MK^{\alpha_{2 \text{coo}},q_2}_0(\mathbb{R}^n)$ to $MK^{\alpha_{\text{coo}},q}_1(\mathbb{R}^n)$, where $\overline{b} = (b_1, b_2, b_1, b_2) \in \text{BMO}$.

Corollary 12. Let H be a bilinear Hardy operator; $p_1(\cdot), p_2(\cdot) \in \mathcal{S}(\mathbb{R}^n)$ satisfying $1/p(\cdot) = 1/p_1(\cdot) + 1/p_2(\cdot)$, $0 < q \leq \infty$, $\alpha(\cdot) \in L^{\infty}(\mathbb{R}^n) \cap \mathcal{S}^{\alpha_1}_0(\mathbb{R}^n) \cap \mathcal{S}^{\alpha_2}_0(\mathbb{R}^n)$, $\alpha(0) = \alpha_1(0) + \alpha_2(0)$, $\alpha_{\text{coo}} = \alpha_{1 \text{coo}} + \alpha_{2 \text{coo}}$, $\alpha > 0 \leq \infty$, $\delta_0 > \alpha_{\text{coo}} + \alpha_{\text{coo}}$, $q(\cdot) \in \mathcal{S}^{\delta_0}_0(\mathbb{R}^n) \cap \mathcal{S}^{\delta_0}_{\infty}(\mathbb{R}^n)$, $1/q(\cdot) = 1/q_1(\cdot) + 1/q_2(\cdot)$, $0 \leq \lambda_1, \lambda_2 < \infty$, $\delta_1, \delta_2 \in (0, 1)$ are the constants in Lemma 10 for exponents $p_j(\cdot)$. If $j = 1, 2$, with $n\delta_1 > \alpha_{\text{coo}} \geq \alpha(0)$, then $H_{B,0}^1$ is bounded from $K^{\alpha_{1 \text{coo}},q_1}_1(\mathbb{R}^n) \times K^{\alpha_{2 \text{coo}},q_2}_1(\mathbb{R}^n)$ to $K^{\alpha_{\text{coo}},q}_1(\mathbb{R}^n)$, where $\overline{b} = (b_1, b_2, b_1, b_2) \in \text{BMO}$.

Lemma 17 (see [47, Theorem 2.3]). Let $p, p_1, p_2 \in \mathcal{S}(\mathbb{R}^n)$ such that $1/p(x) = 1/p_1(x) + 1/p_2(x)$. Then there exists a constant C depending only on p, p_1 such that
\[
\|fg\|_{L^{p}(\mathbb{R}^n)} \leq C \|f\|_{L^{p_1}(\mathbb{R}^n)} \|g\|_{L^{p_2}(\mathbb{R}^n)}
\]
holds for every $f \in L^{p_1}(\mathbb{R}^n)$ and $g \in L^{p_2}(\mathbb{R}^n)$.

Lemma 18 (see [32, Theorem 3]). Let $p(\cdot) \in \mathcal{S}(\mathbb{R}^n), t \in \mathbb{N}$ and $k > i$ $(k, i \in \mathbb{N})$, there exists a positive constant C such that, for $b \in \text{BMO}(\mathbb{R}^n)$,
\[
C^{-1} \|b\|_t \leq \sup_{B \subset \mathbb{R}^n} \frac{1}{|B|} \left(\|b - b_B\|_{L^{p}(\mathbb{R}^n)} \right) \leq C \|b\|_t.
\]
Indeed, if $t = 1$, then for all balls B and $k, j \in \mathbb{Z}$ with $k > i$, we have
\[
\left(\sup_{B \subset \mathbb{R}^n} \frac{1}{|B|} \left(\|b - b_B\|_{L^{p}(\mathbb{R}^n)} \right) \right)^t \leq C \left(\sup_{B \subset \mathbb{R}^n} \frac{1}{|B|} \left(\|b - b_B\|_{L^{p}(\mathbb{R}^n)} \right) \right)^t.
\]
From the definition of BMO, it is easy to know that
\[
\|b_{B_k} - b_{B_{k+1}}\|_{t} \leq (k - i) \|b\|_t
\]
for $k > i$.

3. Proof of Theorem 11

Since Corollaries 12–14 are special case of Theorem 11, we only need to prove Theorem 11.

To proceed, we need the following lemmas.

Lemma 15 (see [45, Lemma 2]). If $p(\cdot) \in \mathcal{S}(\mathbb{R}^n)$, then there exists a constant $C > 0$ such that, for all balls B in \mathbb{R}^n,
\[
C^{-1} \leq \frac{1}{|B|} \left(\|X_B\|_{L^{p_1}(\mathbb{R}^n)} \right) \left(\|X_B\|_{L^{p_2}(\mathbb{R}^n)} \right) \leq C.
\]

Lemma 16 (see [5, Theorem 2.1]). Let $p(\cdot) \in \mathcal{S}(\mathbb{R}^n)$. Then for every $f \in L^{p_1}(\mathbb{R}^n)$ and every $g \in L^{p_2}(\mathbb{R}^n)$,
\[
\int_{\mathbb{R}^n} |f(x)| \cdot |g(x)| \cdot dx \leq r_p \|f\|_{L^{p_1}(\mathbb{R}^n)} \|g\|_{L^{p_2}(\mathbb{R}^n)},
\]
where $r_p = 1 + 1/p_+ - 1/p_-$.
Since $1/p = 1/p_1 + 1/p_2$, $1/p_1 + 1/p'_1 = 1$ and $1/p_2 + 1/p'_2 = 1$. Using Hölder's inequality, we have

$$1 \leq 2^{-2kn} \sum_{j=-\infty}^{k} \int_{D_j} \left| f_1(y_1) f_2(y_2) \right| dy_1 dy_2$$

\[
\cdot \left| b_1(x) - (b_1)_{B_k} \right| dy_1 dy_2 \leq 2^{-2kn} \left| b_1(x) - (b_1)_{B_k} \right| dy_1 dy_2
\]

\[
= c 2^{-2kn} \left| b_1(x) - (b_1)_{B_k} \right| \sum_{j=-\infty}^{k} \int_{D_j} \left| f_2(y_2) \right| dy_2 \leq 2^{-2kn} \left| b_1(x) - (b_1)_{B_k} \right|
\]

\[
\sum_{j=-\infty}^{k} \left\| f_2 \right\|_{L^{p_2}(D_j)} \left\| f_2 \right\|_{L^{p'_2}(D_j)} \leq 2^{-2kn} \left| b_1(x) - (b_1)_{B_k} \right|
\]

By Lemma 18, Hölder's inequality (Lemma 17), and Lemmas 10 and 15, we have

$$\left\| \chi_k \right\|_{L^{p_1}(\Omega)} \leq 2^{-2kn} \left((b_1 - (b_1)_{B_k}) \right) \chi_k \|_{L^{p_1}(\Omega)}$$

\[
\sum_{i=-\infty}^{k} \left\| f_1 \chi_i \right\|_{L^{p_1}(\Omega)} \left\| \chi_i \right\|_{L^{p'_1}(\Omega)} \leq 2^{-2kn} \left((b_1 - (b_1)_{B_k}) \right) \chi_k \|_{L^{p_1}(\Omega)}
\]

$$\sum_{j=-\infty}^{k} \left\| f_2 \chi_j \right\|_{L^{p_2}(\Omega)} \left\| \chi_j \right\|_{L^{p'_2}(\Omega)} \leq 2^{-2kn} \left((b_1 - (b_1)_{B_k}) \right) \chi_k \|_{L^{p_1}(\Omega)}$$

Then we consider the term II.

$$II \leq 2^{-2kn} \sum_{j=-\infty}^{k} \int_{D_j} \left| f_1(y_1) \right| \left| b_1(y_1) - (b_1)_{B_k} \right| dy_1$$

\[
\times \sum_{j=-\infty}^{k} \left\| f_2 \chi_j \right\|_{L^{p_2}(\Omega)} \left\| \chi_j \right\|_{L^{p'_2}(\Omega)}
\]

By Lemma 18 and Hölder's inequality (Lemma 16), we have

$$II_1 \leq 2^{-2kn} \sum_{i=-\infty}^{k} \left\| f_1 \chi_i \right\|_{L^{p_1}(\Omega)} \left((b_1 - (b_1)_{B_k}) \right) \chi_i \|_{L^{p'_1}(\Omega)}$$

$$\sum_{j=-\infty}^{k} \left\| f_2 \chi_j \right\|_{L^{p_2}(\Omega)} \left\| \chi_j \right\|_{L^{p'_2}(\Omega)} \leq 2^{-2kn} \left((b_1 - (b_1)_{B_k}) \right) \chi_k \|_{L^{p_1}(\Omega)}$$

By Lemma 18 and Hölder's inequality (Lemma 16), we have

$$II_2 \leq 2^{-2kn} \sum_{i=-\infty}^{k} \left((b_1)_{B_k} - (b_1)_{B_k} \right) \left\| f_1 \chi_i \right\|_{L^{p_1}(\Omega)}$$

$$\sum_{j=-\infty}^{k} \left\| f_2 \chi_j \right\|_{L^{p_2}(\Omega)} \left\| \chi_j \right\|_{L^{p'_2}(\Omega)} \leq 2^{-2kn} \left((b_1)_{B_k} - (b_1)_{B_k} \right) \chi_k \|_{L^{p_1}(\Omega)}$$

Thus, we have

$$\left\| b_k \right\|_{L^{p_1}(\Omega)} \leq \sum_{i=-\infty}^{k} \left\| f_1 \chi_i \right\|_{L^{p_1}(\Omega)} \sum_{j=-\infty}^{k} \left\| f_2 \chi_j \right\|_{L^{p_2}(\Omega)} \left\| \chi_j \right\|_{L^{p'_2}(\Omega)} \leq 2^{-2kn} \left((b_1 - (b_1)_{B_k}) \right) \chi_k \|_{L^{p_1}(\Omega)}$$

\[
\sum_{j=-\infty}^{k} \left\| f_2 \chi_j \right\|_{L^{p_2}(\Omega)} \left\| \chi_j \right\|_{L^{p'_2}(\Omega)} \leq 2^{-2kn} \left((b_1)_{B_k} - (b_1)_{B_k} \right) \chi_k \|_{L^{p_1}(\Omega)}
\]
By Hölder’s inequality (Lemma 16) and Lemmas 10 and 15, we have
\[
\| \Pi_1 X_k \|_{L^{p}} \leq 2^{-2kn} \left\| b_1 \right\| \| X_0 \|_{L^{p}} \sum_{k = -\infty}^{\infty} \| f_1 X_k \|_{L^{p}} \| X_B \|_{L^{p}} \leq 2^{-2kn} \left\| b_1 \right\| \sum_{k = -\infty}^{\infty} \| f_1 X_k \|_{L^{p}} \| X_B \|_{L^{p}}.
\]
\[
\leq \left\| b_1 \right\| \sum_{k = -\infty}^{\infty} \| f_1 X_k \|_{L^{p}} \| X_B \|_{L^{p}} \leq \left\| b_1 \right\| \sum_{k = -\infty}^{\infty} \| f_1 X_k \|_{L^{p}} \| X_B \|_{L^{p}} \leq 2^{-2kn} \left\| b_1 \right\| \sum_{k = -\infty}^{\infty} \| f_1 X_k \|_{L^{p}} \| X_B \|_{L^{p}}.
\]
By Hölder’s inequality (Lemma 16) and Lemmas 10 and 15, we get
\[
\| \Pi_2 X_k \|_{L^{p}} \leq 2^{-2kn} \left\| b_1 \right\| \| X_0 \|_{L^{p}} \sum_{k = -\infty}^{\infty} \| f_1 X_k \|_{L^{p}} \| X_B \|_{L^{p}} \leq 2^{-2kn} \left\| b_1 \right\| \sum_{k = -\infty}^{\infty} \| f_1 X_k \|_{L^{p}} \| X_B \|_{L^{p}}.
\]
Therefore, we have
\[
\| H^j_b (f_1, f_2) \|_{L^{p}} \leq \left\| b_1 \right\| \sum_{k = -\infty}^{\infty} \| f_1 X_k \|_{L^{p}} \leq 2^{-2kn} \left\| b_1 \right\| \sum_{k = -\infty}^{\infty} \| f_1 X_k \|_{L^{p}} \| X_B \|_{L^{p}}.
\]
By Proposition 8, we obtain that
\[
\| H^j_b (f_1, f_2) \|_{MK^{\alpha,\delta}_{\lambda}} \leq \max \left\{ \sup_{L > 0} 2^{-L \lambda} \| (2^{\alpha} f, 2^{\alpha} H^j_b (f_1, f_2) \|_{L^{p}}, \right\}
\]
\[
\sup_{L > 0} 2^{-L \lambda} \| (2^{\alpha} f, 2^{\alpha} H^j_b (f_1, f_2) \|_{L^{p}} = \max \{ E, F + G \},
\]
where
\[
E = \sup_{L \leq 0} 2^{-L \lambda} \| (2^{\alpha} f, 2^{\alpha} H^j_b (f_1, f_2) \|_{L^{p}},
\]
\[
F = \sup_{L > 0} 2^{-L \lambda} \| (2^{\alpha} f, 2^{\alpha} H^j_b (f_1, f_2) \|_{L^{p}},
\]
\[
G = \sup_{L > 0} 2^{-L \lambda} \| (2^{\alpha} f, 2^{\alpha} H^j_b (f_1, f_2) \|_{L^{p}}.
\]
Since \(\alpha(0) = \alpha_1(0) + \alpha_2(0), 1/q(0) = 1/q_1(0) + 1/q_2(0), \) and \(\lambda = \lambda_1 + \lambda_2, \) by (56) and Hölder’s inequality, we have
\[
E = \sup_{L \leq 0} 2^{-L \lambda} \left(\sum_{k = -\infty}^{\infty} \| 2^{\alpha(0)} H^j_b (f_1, f_2) \|_{L^{p}} \right)
\]
\[
\cdot \left\| \chi_k \right\|_{L^{p}} \leq \left\| b_1 \right\| \sup_{L \leq 0} 2^{-L \lambda},
\]
\[
\times \left\{ \sum_{k = -\infty}^{\infty} \left(\sum_{k = -\infty}^{\infty} 2^{\alpha(0)} \| f_1 X_k \|_{L^{p}} \right) \right\}^{1/q(0)} \leq 2^{-L \lambda},
\]
\[
\times \left\{ \sum_{k = -\infty}^{\infty} \left(\sum_{k = -\infty}^{\infty} 2^{\alpha(0)} \| f_1 X_k \|_{L^{p}} \right) \right\}^{1/q(0)} \leq 2^{-L \lambda},
\]
\[
\times \left\{ \sum_{k = -\infty}^{\infty} \left(\sum_{k = -\infty}^{\infty} 2^{\alpha(0)} \| f_1 X_k \|_{L^{p}} \right) \right\}^{1/q(0)} \leq 2^{-L \lambda},
\]
\[
\times \left\{ \sum_{k = -\infty}^{\infty} \left(\sum_{k = -\infty}^{\infty} 2^{\alpha(0)} \| f_1 X_k \|_{L^{p}} \right) \right\}^{1/q(0)} \leq 2^{-L \lambda}.
\]
\[\| f_2 X_i \|_{L^2} 2^{j-k} (n^2_{22} - \alpha_i(0)) \right) q_i(0) \right) \right) }^{1/q_i(0)} = \| b_i \| \, F_1 \times F_2. \]

\[E_1 \times E_2. \]

Since \(n \delta_{12} - \alpha_i(0) > 0 \), by Lemma 19 we obtain that

\[E_1 \leq \sup_{L>0, L \in Z} 2^{-L A_1} \left(\sum_{k=-\infty}^{k=\infty} \| 2^{j \alpha_i(0)} f_1 X_i \|_{L^{q_i(0)}} \right) \]

\[\leq \| f_1 \|_{MK^{\alpha_1}_{1}(q_1)} , \]

where we wrote \((k - i) 2^{-j}(n^2_{12} - \alpha_i(0)) \leq 2^{-j} \| e_1 \| \) for some \(e_1 \in (0, n \delta_{12} - \alpha_i(0)) \). Since \(n \delta_{12} - \alpha_i(0) > 0 \), again by Lemma 19 we obtain that

\[E_2 \leq \sup_{L>0, L \in Z} 2^{-L A_1} \left(\sum_{j=-\infty}^{j=\infty} \| 2^{j \alpha_2(0)} f_2 X_j \|_{L^{q_2(0)}} \right) \]

\[\leq \| f_2 \|_{MK^{\alpha_2}_{1}(q_2)} , \]

Thus, we obtain

\[E \leq \| b_1 \| \times \| f_1 \|_{MK^{\alpha_1}_{1}(q_1)} \| f_2 \|_{MK^{\alpha_2}_{1}(q_2)} . \]

Since \(a(0) = \alpha_1(0) + \alpha_2(0) \), \(1/q = 1/q_1(0) + 1/q_2(0) \), and \(\lambda = \lambda_1 + \lambda_2 \), by (56) and Hölder’s inequality, we have

\[F = \sup_{L>0, L \in Z} 2^{-L A_1} \left(\sum_{k=-\infty}^{k=\infty} \| 2^{k \alpha_1(0)} H_b^j (f_1, f_2) \right) \]

\[\times \left(\sum_{j=-\infty}^{j=\infty} \| 2^{j \alpha_2(0)} \right) 2^{-L A_1} \left(\sum_{k=-\infty}^{k=\infty} \| 2^{j \alpha_2(0)} f_2 X_j \|_{L^{q_2(0)}} \right) \]

\[\times 2^{-L A_2} \left(\sum_{k=-\infty}^{k=\infty} \| 2^{j \alpha_2(0)} q_i(0) \right) \right) }^{1/q_i(0)} = \| b_i \| \, F_1 \times F_2. \]

Here

\[F_1 = \sup_{L>0, L \in Z} 2^{-L A_1} \left(\sum_{k=-\infty}^{k=\infty} \left(\sum_{j=-\infty}^{j=\infty} 2^{-j \alpha_1(0)} \right) \right) \]

\[\cdot (k - i) 2^{-j} \| n^2_{12} - \alpha_i(0) \| q_i(0) \right) \right) }^{1/q_i(0)} , \]

\[F_2 = \sup_{L>0, L \in Z} 2^{-L A_1} \left(\sum_{k=-\infty}^{k=\infty} \left(\sum_{j=-\infty}^{j=\infty} 2^{-j \alpha_2(0)} \right) \right) \]

\[\cdot (k - i) 2^{-j} \| n^2_{12} - \alpha_i(0) \| q_i(0) \right) \right) }^{1/q_i(0)} . \]

Since \(n \delta_{12} - \alpha_i(0) > 0 \), by Lemma 19 we obtain that

\[F_1 = \sup_{L>0, L \in Z} 2^{-L A_1} \left(\sum_{k=-\infty}^{k=\infty} \left(\sum_{j=-\infty}^{j=\infty} 2^{-j \alpha_1(0)} \right) \right) \]

\[\cdot (k - i) 2^{-j} \| n^2_{12} - \alpha_i(0) \| q_i(0) \right) \right) }^{1/q_i(0)} , \]

\[F_2 = \sup_{L>0, L \in Z} 2^{-L A_1} \left(\sum_{k=-\infty}^{k=\infty} \left(\sum_{j=-\infty}^{j=\infty} 2^{-j \alpha_2(0)} \right) \right) \]

\[\cdot (k - i) 2^{-j} \| n^2_{12} - \alpha_i(0) \| q_i(0) \right) \right) }^{1/q_i(0)} . \]

Thus, we obtain

\[\| f_2 X_i \|_{L^2} 2^{j-k} (n^2_{22} - \alpha_i(0)) \right) q_i(0) \right) \right) }^{1/q_i(0)} = \| b_i \| \, F_1 \times F_2. \]

Therefore, we get

\[F \leq \| b_1 \| \times \| f_1 \|_{MK^{\alpha_1}_{1}(q_1)} \| f_2 \|_{MK^{\alpha_2}_{1}(q_2)} . \]
where

\[G_1 = \sup_{L>0, L \in \mathbb{Z}} 2^{-\lambda_1} \left\{ \sum_{k=0}^{L} f_{x_i}(0) \left(k - i \right) 2^{i-k \alpha_{12}} \right\}^{1/q_{120}}, \]

\[G_2 = \sup_{L>0, L \in \mathbb{Z}} 2^{-\lambda_1} \left\{ \sum_{k=0}^{L} 2^{k \alpha_{200}} \right\}^{1/q_{200}}. \]

To go on, we need further preparation. If \(i < 0 \), by Proposition 8, we have

\[\| f_{x_i} \|_{L_1} = 2^{-i \alpha_{12}} \left(2^{i \alpha_{12}} \| f_{x_i} \|_{L_1} \right) \left\{ \sum_{k=0}^{L} 2^{k \alpha_{12}} \right\}^{1/q_{120}} \leq 2^{-i \alpha_{12}} \left(\sum_{k=0}^{L} 2^{k \alpha_{12}} \right)^{1/q_{120}}. \]

Similarly, if \(j < 0 \), we have

\[\| f_{x_j} \|_{L_1} = 2^{j \alpha_{12}} \left(2^{j \alpha_{12}} \| f_{x_j} \|_{L_1} \right) \left\{ \sum_{k=0}^{L} 2^{k \alpha_{12}} \right\}^{1/q_{120}} \leq 2^{j \alpha_{12}} \left(\sum_{k=0}^{L} 2^{k \alpha_{12}} \right)^{1/q_{120}}. \]

If \(i \geq 0 \), we have

\[\| f_{x_i} \|_{L_1} = 2^{-i \alpha_{12}} \left(2^{i \alpha_{12}} \| f_{x_i} \|_{L_1} \right) \left\{ \sum_{k=0}^{L} 2^{k \alpha_{12}} \right\}^{1/q_{120}} \leq 2^{-i \alpha_{12}} \left(\sum_{k=0}^{L} 2^{k \alpha_{12}} \right)^{1/q_{120}}. \]

Similarly, if \(j \geq 0 \), we have

\[\| f_{x_j} \|_{L_1} = 2^{j \alpha_{12}} \left(2^{j \alpha_{12}} \| f_{x_j} \|_{L_1} \right) \left\{ \sum_{k=0}^{L} 2^{k \alpha_{12}} \right\}^{1/q_{120}} \leq 2^{j \alpha_{12}} \left(\sum_{k=0}^{L} 2^{k \alpha_{12}} \right)^{1/q_{120}}. \]

Since \(\lambda_1 + n \alpha_{12} > \alpha_{100} \geq \alpha_1(0) \) and by (70) and (72), we obtain that

\[G_1 \leq \| f_i \|_{MK^{\alpha_{12}}_{P_1(\lambda_1)}} \sup_{L>0, L \in \mathbb{Z}} 2^{-\lambda_1} \left\{ \sum_{k=0}^{L} 2^{k \alpha_{12}} \right\}^{1/q_{120}} \]

\[\cdot \left\{ \sum_{k=0}^{L} \left(k - i \right) 2^{i-k \alpha_{12}} \left(\sum_{k=0}^{L} 2^{k \alpha_{12}} \right)^{1/q_{120}} \right\} \leq \| f_i \|_{MK^{\alpha_{12}}_{P_1(\lambda_1)}}. \]

Similarly, since \(\lambda_2 + n \alpha_{22} > \alpha_{200} \geq \alpha_2(0) \), by (71) and (73), we obtain that

\[G_2 \leq \| f_j \|_{MK^{\alpha_{22}}_{P_2(\lambda_2)}} \sup_{L>0, L \in \mathbb{Z}} 2^{-\lambda_2} \left\{ \sum_{k=0}^{L} 2^{k \alpha_{22}} \right\}^{1/q_{220}} \]

\[\cdot \left\{ \sum_{k=0}^{L} \left(k - j \right) 2^{j-k \alpha_{22}} \left(\sum_{k=0}^{L} 2^{k \alpha_{22}} \right)^{1/q_{220}} \right\} \leq \| f_j \|_{MK^{\alpha_{22}}_{P_2(\lambda_2)}}. \]

Thus, we obtain

\[G \leq \| h \|_{MK^{\alpha_{12}}_{P_1(\lambda_1)}} \| f_i \|_{MK^{\alpha_{12}}_{P_1(\lambda_1)}} \| f_j \|_{MK^{\alpha_{22}}_{P_2(\lambda_2)}}. \]

Combining all the estimates for \(E, F, G \) together, we obtain

\[\| H_k \|_{MK^{\alpha_{12}}_{P_1(\lambda_1)}} \| f_i \|_{MK^{\alpha_{12}}_{P_1(\lambda_1)}} \| f_j \|_{MK^{\alpha_{22}}_{P_2(\lambda_2)}} \leq \| P \|_{MK^{\alpha_{12}}_{P_1(\lambda_1)}} \| f_i \|_{MK^{\alpha_{12}}_{P_1(\lambda_1)}} \| f_j \|_{MK^{\alpha_{22}}_{P_2(\lambda_2)}}. \]
Similarly, we have
\[\|H^\beta_{f_1, f_2}\|_{MK^{s_1, s_2}(\mu)} \leq \|b\|_{L^p} \|f_1\|_{MK^{s_1, q_1}(\mu)} \|f_2\|_{MK^{s_2, q_2}(\mu)}. \] (78)

Therefore, the proof of Theorem 11 is completed. \(\square\)

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The second author is partially supported by the National Natural Science Foundation of China (Grant no.11761026) and National Natural Science Foundation of China (Grant no.118CXTD338) and National Natural Science Foundation of China (Grant no.11761026).

References

