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Abstract. 
Let  be a complex Banach space and  be the Banach space of all bounded continuous functions from a Hausdorff space  to , equipped with sup norm. A closed subspace  of  is said to be an -valued function algebra if it satisfies the following three conditions: (i)  is a closed subalgebra of , the Banach space of all bounded complex-valued continuous functions; (ii)  for all  and ; and (iii)  for every  and for every . It is shown that -homogeneous polynomial and analytic numerical index of certain -valued function algebras are the same as those of .

1. Introduction
In this paper, we consider only complex nontrivial Banach spaces. Given a Banach space , we denote by  and  its closed unit ball and unit sphere, respectively. Let  be the dual space of . If  and  are Banach spaces, a -homogeneous polynomial  from  to  is a mapping such that there is a -linear continuous mapping  from  to  such that  for every  in . The Banach space of all -homogeneous polynomials from  to  is denoted by  endowed with the polynomial norm . We refer to [1] for background knowledge on polynomials.
We are mainly interested in the following spaces. For two Banach spaces ,  and a Hausdorff topological space , where  is the interior of . Then  is a Banach space under the sup norm  and both  and  are closed subspaces of . In case that  is the complex scalar field , we just write , , and . Let The spatial numerical range of  in  is defined by and the numerical radius of  is defined by 
Let  be a Banach space. The -homogeneous polynomial numerical index  is defined in [2] by The -analytic numerical index  and -analytic index  are defined, respectively, by It is clear from the definitions that  for all .
Choi, García, Kim, and Maestre showed [3] that  and  for uniform algebras . In general, it is not difficult to see that if  is a (unital) function algebra on a Hausdorff space, then, by the Gelfand transform,  is isometric to a (unital) uniform algebra on  where  is the maximal ideal space of . We present this fact in Proposition 2 for the completeness of the paper. In this paper, we introduce a -valued function algebra and the Gelfand transform does not work in this case. In the proof of [3], they used a very useful Urysohn type theorem, which was obtained by Cascales, Guiro, and Kadets [4]. Recently, Kim and the author found [5] that a Urysohn type theorem holds for some function algebras. It plays an important role in the main results of this paper. For some geometric properties on -homogeneous polynomial (analytic) numerical index, refer to [6, 7].
Let us briefly review some necessary notions. A nontrivial -closed subalgebra of  of  is called a function algebra on a Hausdorff space . For a Banach space , a nontrivial subspace  of  is said to be an -valued function algebra if it satisfies three conditions: (i)  is a function algebra on ; (ii) , where  for ; and (iii)  for every  and , where  for . A subset  of  is said to be norming for  if  holds for all . By unital function algebra, we mean a function algebra containing all constant functions. A function algebra  on a compact Hausdorff space  is said to be a uniform algebra if  separates the points of  (that is, for every  in , there is  such that . Note that the definition of function algebra in this paper is different from the usual one in [8].
Let  be an element of an -valued function algebra . The  is said to be a peak function at  if there exists a unique  such that . A peak function  is said to be a strong peak function at  if  and for every open subset  containing  we get The corresponding point  is called a strong peak point for . We denote by  the set of all strong peak points for . It is easy to see that if  is compact, then every peak function is a strong peak function. It is worth remarking that if  is a nontrivial separating separable subalgebra of  on a compact Hausdorff space , then  is a norming subset for  [9]. There is a compact Hausdorff space  such that  is an empty set [10]. For more information about peak functions and points, refer to [8, 10].
For an -valued function algebra , let . Then . Indeed, if  is a strong peak function at , then choose  such that  and it is clear that  is a strong peak function in  at . Therefore, . Conversely, if  is a strong peak function at , then choose . Therefore,  is a strong peak function at . Hence we have . In addition, if  is norming for , then it is also norming for  since  in  has the same norm as  for every  and .
The following lemma will be useful to get main results. In proofs of the main results, the denseness of the strong peak functions in an -valued function algebra  is an important part and equivalent to the fact that the set of strong peak points is norming for . That means that the fact that every element in  can be approximated by the sequence of strong peak functions is equivalent to the fact that the norm of every element in  can be approximated on the set of strong peak points for . The approximation by strong peak functions will prove to be useful to deal with the geometric properties of function algebras especially those related to generalized numerical indices of Banach spaces.
Lemma 1 (see [5]).  Let  be a function algebra on  and fix . Then, given  and for every open subset  containing , there exists a strong peak function  such that , , and for all , 
2. Main Results
The proof of [3, Theorem 2.1] shows that  if  is a uniform algebra. Since a function algebra is isometric to a uniform algebra by the Gelfand transform, we have the following.
Proposition 2.  Let  be a function algebra on a Hausdorff space . Then it is isometric to a uniform algebra on a compact Hausdorff space and .
Proof.  Let  be a function algebra and  be the set of all nonzero algebra homomorphisms from  to . The maximal ideal space  is a compact Hausdorff space with the Gelfand topology. The Gelfand transform  of  is defined by  for . For , let  be the dirac delta function by  for . Fix a nonzero  and let ; then  for all  and Since the Gelfand transform  is a homomorphism,  is isometrically isomorphic to the image , where  is the image of the Gelfand transform. Then  is a closed subalgebra of  and it is separating the points of . Thus, it is a uniform algebra on the compact Hausdorff space .
For the second part, the proof used in [3, Theorem 2.1] to show  can be applied to show that  for uniform algebras .
Proposition 2 gives a positive answer to the third question raised by Acosta and Kim [11].
Theorem 3.  Let  be a Banach space and suppose that  is an -valued function algebra on a Hausdorff space  such that  is a norming subset for . Then we have (i) for every ,(ii) and(iii).
Proof.  We prove  holds. The proofs for the other two cases are exactly the same. It is well-known that  for all complex Banach spaces  [12].
Let . Then  is a function algebra. Let  with  and  be given. Choose  so that . Since  is norming for , find  such that . Since  is continuous, there is  such that  for every  with .
Let  and  be an open subset of  containing . Then by Lemma 1, there is a strong peak function  such that  and  for every , and for every .
Define  by  for all . It is easy to check that  is well-defined and  for all . Then, let , Then we have the following. Choose  such that  and find a complex number  with  and a proper  satisfying . Then the function  is an element of . By the maximum modulus theorem, there exists  with  such that  takes its maximum modulus on . Hence, Let , choose  with , and define the function  by for . Then , and hence . Let  for . Then . Then Since , there is  so that Note that  because . Hence we have Since  is arbitrary, . This holds for all  with . Therefore, we get .
A version of the Bishop-Phelps-Bollobás type theorem for holomorphic functions has been shown [5, 13]. In the following theorem, we present a similar result. However the main focus is the denseness of the set of all strong peak functions, which is different from that of the results in [5].
Theorem 4.  Let  be a Banach space and  an -valued function algebra on a Hausdorff space . Then, given , whenever a norm-one element  in  and a point  in  satisfy , there is a norm-one strong peak function  at  such that .
Proof.  Suppose that  satisfies the prescribed conditions. Then is an open set containing . There exists . Using Lemma 1, take a strong peak function  such that , , and for all . Set It is easy to check that  and . Moreover, from the inequality we have that  for all  if we consider two cases  and . Hence, we get  and complete the proof since we know  is a strongly norm attaining function from the fact that  is a strong peak function.
From Theorem 4, we have the following consequence.
Corollary 5.  Let  be a Banach space and  be an -valued function algebra on a Hausdorff space . Then the set  is norming if and only if the set of strong peak functions in  is dense.
Proof.  The necessity is proved by Theorem 4. For the converse, assume that the set of strongly norm attaining functions in  is dense in . Given , there is a sequence  of strong peak functions in  such that . For each , let  be the strong peak point corresponding to . Then Thus, This means that . This shows that  is a norming subset of .
Theorem 6.  Let  be a Banach space and  be an -valued function algebra on a Hausdorff space  such that  is a norming subset for . Fix  and define the map  by  for  and . Suppose that  is an element of  for every  and for every . Then we have .
Proof.  By Theorem 3, we have only to show that . Consider the set Let  be the natural projection. Then since  is norming for , Corollary 5 shows that  is dense in . Then, it is shown [14] that for every , we have Given  with , we have . Indeed,  is a map from  to . Since  is uniformly continuous on , given , there is  such that if  and , then . If  and , then  for all . Hence . This shows that  is uniformly continuous on . Now it is enough to show that  is -holomorphic on  [15]. Fix  and , and let  be an open subset in the complex plane. Let  for . Then  is a -valued continuous function on . For each ,  is holomorphic. Fix  and choose  such that . The Cauchy integral formula shows that, for each , As a result, we have since the continuity of  implies the Bochner integrability of the integral. This means that  is holomorphic on  and  is holomorphic on  [15]. We also have  since there is a strong peak function  at  such that  and  is in  for each . It is clear that . For every , there is  such that Therefore, we get .
The same proof shows the following.
Theorem 7.  Let  be a Banach space and  be an -valued function algebra on a Hausdorff space  such that  is a norming subset for . Fix  and define the map  by  for  and . Suppose that  is an element of  for every  in  and for every ). Then we have .
Proof.  The main difficulty in the proof of Theorem 7 is to check that  is in . Let  be the corresponding continuous -linear map defining . Let  by  for  and . Then it is easy to check that  is a continuous -linear map and  for . The other part of the proof is the same as the proof of Theorem 6.
Let  be Banach spaces and let  be either  or . Notice that  are -valued function algebras over . If a Banach space  is finite dimensional,  is the set of all complex extreme points of  as observed in [16, 17]. A strongly exposed point of  is a strong peak point for , so if a strongly exposed point of  is dense in , then  and it is norming for . It is also proved in [17] that if  is locally -uniformly convex space and it is an order continuous sequence space, then  is norming. The typical example of uniformly complex convex sequence space is . For the definitions related to various complex convexities and more examples, we refer to [9, 18–21].
Let  be a closed convex and bounded set in a Banach space . The set  has the Radon-Nikodým property if, for every probability space  and every -valued countably additive measure  on  such that  for every  with , there is a Bochner measurable  so that 
The space  is said to have the Radon-Nikodým property if its unit ball  has the Radon-Nikodým property [22]. For the basic properties and useful information on the Radon-Nikodým property, see also [22–25]. It has been shown [9] that if  has the Radon-Nikodým property, then  is norming for .
Corollary 8.  Suppose that  satisfies one of the following conditions: (i)  has the Radon-Nikodým property; (ii)  is locally uniformly convex space; (iii)   is a locally -uniformly convex order continuous sequence space. Then we have (i) for every ,(ii).
Proof.  If  satisfies one of the three conditions,  and it is norming for . Therefore, Theorem 3 implies that , . For the case (ii), fix  and define the map  by  for  and . Then . Consequently, Theorem 6 shows that and the proof of (ii) is complete. The remaining proof (i) can be finished in the same way by Theorem 7.
By Theorem 3, we get the following.
Corollary 9.  Let  be a Hausdorff topological space and suppose that  is norming for . If  is a Banach space with , we have  for all .
As we show in the next proposition, closed bounded convex sets with the Radon-Nikodým property satisfy the condition of Corollary 9.
Proposition 10.  Suppose that  is a nonempty closed bounded convex subset of a Banach space and  has the Radon-Nikodým property. Then  is norming for  and the set of strong peak functions of  is dense.
Proof.  It is enough to show that the set of strong peak functions of  is dense by Corollary 5. Given  and , the Stegall perturbed optimization theorem [25] shows that there is  such that the function  strongly attains its norm at  and . Choose a complex number  such that Then it is easy to check that  is a strong peak function at  and . This shows the denseness of the set of strong peak functions on .
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