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We investigate a class of functionals on Möbius gyrovector spaces, which consists of a counterpart to bounded linear functionals on
Hilbert spaces.

1. Introduction

Ungar initiated a study on gyrogroups and gyrovector spaces.
Gyrovector spaces are generalized vector spaces, with which
they share important analogies, just as gyrogroups are analo-
gous to groups. The first known gyrogroup was the ball of
Euclidean space ℝ3 endowed with Einstein’s velocity addi-
tion associated with the special theory of relativity (cf. [1]).
Another example of a gyrogroup is the open unit disc in
the complex plain endowed with the Möbius addition. Ungar
extended these gyroadditions to the ball of an arbitrary
real inner product space, introduced a common gyroscalar
multiplication, and observed that the ball endowed with
gyrooperations are gyrovector spaces (cf. [2, 3]). Although
gyrooperations are generally not commutative, associative,
or distributive, they are enjoying algebraic rules such as left
and right gyroassociative, gyrocommutative, scalar distribu-
tive, and scalar associative laws, so there exist rich symmetri-
cal structures which we should clarify precisely.

Abe and Hatori [4] introduced the notion of generalized
gyrovector spaces (GGVs), which is a generalization of the
notion of real inner product gyrovector spaces by Ungar.
Hatori [5] showed several substructures of positive invertible
elements of a unital C∗-algebra are actually GGVs. Abe [6]
introduced the notion of normed gyrolinear spaces, which
is a further generalization of the notion of GGVs. Although
they are complicated objects from the viewpoint of the pres-
ent article and we do not deal with them here, they will pro-
vide advanced research subjects.

In this article, we concentrate on the Möbius gyrovector
spaces, because they are most fundamental among real inner
product gyrovector spaces. There are notions of the Einstein
gyrovector spaces and the PV gyrovector spaces by Ungar,
and they are isomorphic to the Möbius gyrovector spaces,
so most results on each space can be directly translated to
other two spaces. In the Möbius gyrovector spaces, one can
consider counterparts to various notions of Hilbert spaces
such as the orthogonal decomposition and the closest point
property with respect to any closed linear subspace, orthog-
onal expansion with respect to any orthonormal basis, and
the Cauchy-Bunyakovsky-Schwarz inequality (cf. [1–3, 5,
7–14]).

We study some aspects of the Möbius gyrovector spaces
from some viewpoints of basic theory of functional analysis.
The celebrated Riesz-Fréchet theorem is one of the most
fundamental theorems in both theory and application of
functional analysis. It states that every bounded linear func-
tional on a Hilbert space can be represented as a map taking
the value of the inner product of each variable vector and a
fixed vector. This fact makes duality in Hilbert spaces much
closer to finite-dimensional duality, and for that reason, it
is a particularly useful tool. We investigate a certain class
of continuous functionals on the Möbius gyrovector spaces
corresponding to linear functionals induced by the inner
product and reveal analogies that it shares with the Riesz rep-
resentation theorem.

The paper is organized as follows. Section 2 is the prelim-
inaries. In Section 3, we show a triviality of continuous
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gyrolinear functionals on the Möbius gyrovector spaces. In
Section 4, we investigate the relationship between the Möbius
operations and the linear functionals induced by the inner
product and consider a representation theorem of Riesz type.
In Section 5, we present a class of continuous functionals that
are induced by square summable sequences of real numbers.
It can be regarded as a counterpart to continuous linear func-
tionals on real Hilbert spaces, and we might call it quasi gyro-
linear functionals.

2. Preliminaries

Let us briefly recall the definition of the Möbius gyrovector
spaces. For precise definitions, basic results of gyrocommuta-
tive gyrogroups and gyrovector spaces, see monograph [9] or
[10] by Ungar. For elementary facts on inner product spaces,
for instance, one can refer to [8].

Let V = ðV , +, ∙Þ be a real inner product space with a
binary operation + and a positive definite inner product ∙.
Let V s be an open ball

V s = a ∈ V : ak k < sf g, ð1Þ

for any fixed s > 0, where kak = ða · aÞ1/2.

Definition 1 ([10], Definition 3.40, Definition 6.83). The M€o
bius addition ⊕ M and the M€obius scalar multiplication
⊗ M are given by the equations

a ⊕ Mb =
1 + 2/s2
� �

a · b + 1/s2
� �

bk k2� �
a + 1 − 1/s2

� �
ak k2� �

b
1 + 2/s2ð Þa · b + 1/s4ð Þ ak k2 bk k2 ,

r ⊗ Ma = s tanh r tanh−1 ak k
s

� � a
ak k if a ≠ 0ð Þ, r ⊗ M0 = 0,

ð2Þ

for any a, b ∈ V s, r ∈ℝ. The addition ⊕ M and the scalar mul-
tiplication ⊗ M for real numbers are defined by the equations

a ⊕ Mb =
a + b

1 + 1/s2ð Þab ,

r ⊗ Ma = s tanh r tanh−1 a
s

� �
,

ð3Þ

for any a, b ∈ ð−s, sÞ, r ∈ℝ.

We simply denote ⊕ M , ⊗ M by ⊕ s, ⊗ s, respectively. If
several kinds of operations appear in a formula simulta-
neously, we always give priority by the following order:
(i) ordinary scalar multiplication, (ii) gyroscalar multiplica-
tion ⊗ s, and (iii) gyroaddition ⊕ s, that is,

r1 ⊗ sw1a1 ⊕ sr2 ⊗ sw2a2 = r1 ⊗ s w1a1ð Þf g ⊕ s r2 ⊗ s w2a2ð Þf g,
ð4Þ

and the parentheses are omitted in such cases.
In the limit of large s, s⟶∞, the ball V s expands to the

whole space V . The next proposition suggests that each result

in linear analysis can be recaptured from the counterpart in
gyrolinear analysis.

Proposition 2 ([10], after Remark 3.41, [3], p.1054). The M€o
bius addition (resp., Möbius scalar multiplication) reduces to
the ordinary addition (resp., scalar multiplication) as s⟶
∞, that is,

a ⊕ sb⟶ a + b s⟶∞ð Þ,
r ⊗ sa⟶ ra s⟶∞ð Þ,

ð5Þ

for any a, b ∈ V and r ∈ℝ.

Definition 3 ([10], Definition 2.7, (2.1), (6.286), (6.293)). The
inverse element of a with respect to ⊕ s obviously coincides
with −a. We use the notation

a⊝sb = a ⊕ s −bð Þ ð6Þ

as in group theory. Moreover, the Möbius gyrodistance func-
tion d and Poincaré distance function h are defined by the
equations

d a, bð Þ = b⊝sak k,

h a, bð Þ = tanh−1 d a, bð Þ
s

:
ð7Þ

Ungar showed that h satisfies the triangle inequality
([10], (6.294)).

The following identities are easy consequence of the def-
inition. One can refer to [11], Lemma 12, Lemma 14 (i).

Lemma 4. Let s > 0. The following formulae hold:

(i) ka ⊕ sbk2 = ðkak2 + 2a · b + kbk2Þ/ð1 + ð2/s2Þa · b +
ð1/s4Þkak2kbk2Þ

(ii) ða/sÞ ⊕ 1ðb/sÞ = a ⊕ sb/s
(iii) r ⊗ 1ða/sÞ = r ⊗ sa/s

for any a, b ∈ V s and r ∈ℝ.

Note that the Möbius operations generally are not com-
mutative, associative, or distributive. Furthermore, the ordi-
nary scalar multiplication does not distribute the Möbius
addition.

However, the restricted Möbius operations to the interval
ð−s, sÞ together with the ordinary addition and multiplication
have a familiar nature.
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Lemma 5. The following identities hold:

a ⊕ sb = b ⊕ sa,
a ⊕ s b ⊕ scð Þ = a ⊕ sbð Þ ⊕ sc,

0 ⊕ sa = a ⊕ s0 = a,  
−að Þ ⊕ sa = a ⊕ s −að Þ = 0,
1 ⊗ sa = a,

r1r2ð Þ ⊗ sa = r1 ⊗ s r2 ⊗ sað Þ,
r1 + r2ð Þ ⊗ sa = r1 ⊗ sa ⊕ sr2 ⊗ sa,
r ⊗ s a ⊕ sbð Þ = r ⊗ sa ⊕ sr ⊗ sb,

ð8Þ

for any a, b, c ∈ ð−s, sÞ, r1, r2, r ∈ℝ.

It is known that the inequality ka − bk ≤ 2ka ⊖ sbk holds
for any s > 0 and any a, b ∈ V s (for instance, see [11], Lemma
14(iii)). We have some reverse inequalities as follows.

Lemma 6.

(i) If a, b ∈ V and kak, kbk ≤ 1/
ffiffiffi
2

p
, then the inequality

a ⊖ 1bk k ≤ 2 a − bk k ð9Þ

holds.

(ii) Let a, b ∈ V . If we take s > 0 sufficiently large, then the
inequality

a ⊖ sbk k ≤ 2 a − bk k ð10Þ
holds.

Proof.

(i) If kak, kbk ≤ 1/
ffiffiffi
2

p
, by the classical Schwarz inequal-

ity, we have

1 − 2a · b + ak k2 bk k2 ≥ 1 − 2 ak k bk k
+ ak k2 bk k2 = 1 − ak k bk kð Þ2 ≥ 1

4 ,
ð11Þ

which yields

a ⊖ 1bk k2 = ak k2 − 2a · b + bk k2
1 − 2a · b + ak k2 bk k2 ≤ 4 a − bk k2:

ð12Þ

(ii) For s >
ffiffiffi
2

p
max fkak, kbkg, it is easy to see

a
s
⊖ 1

b
s

				
				 ≤ 2 a

s
−
b
s

				
				, ð13Þ

by (i) just established above, which implies ka ⊖ sbk
≤ 2ka − bk. This completes the proof.

Definition 7 ([11], Definition 32). (i) Let fajgj be a sequence
in V s. We say that a series

a1 ⊕ sa2ð Þ ⊕ sa3ð Þ ⊕ s ⋯ ⊕ saj
� �

⊕ s ⋯ ð14Þ

converges if there exists an element x ∈ V s such that hðx,
x jÞ⟶ 0ðj⟶∞Þ, where the sequence fx jgj is defined

recursively by x1 = a1 and x j = x j−1 ⊕ saj. In this case, we
say the series converges to x and denote

x = a1 ⊕ sa2ð Þ ⊕ sa3ð Þ ⊕ s ⋯ ⊕ saj
� �

⊕ s⋯: ð15Þ

In addition, if the sequence fajgj is orthogonal, then we

shortly denote

x =〠
∞

j=1

⊕s

aj: ð16Þ

Note that parentheses are not necessary in the formula
above by [11], Lemma 31.

(ii) Let fajgj be a sequence in ℝ with ∣aj ∣ <s for all j. We

say that a series

〠
∞

j=1

⊕s

aj = a1 ⊕ sa2 ⊕ s ⋯ ⊕ saj ⊕ s ⋯ ð17Þ

converges if there exists x ∈ℝ with ∣x ∣ <s such that xj ⟶ x,
where the sequence fxjgj is defined recursively by x1 = a1 and

xj = xj−1 ⊕ saj. In this case, we say the series converges to x
and denote

x =〠
∞

j=1

⊕s

aj: ð18Þ

Recently, the following Schwarz type inequality related to
the Möbius operations in real inner product spaces was
obtained, which is an extension of a similar type inequality
obtained in a preceding paper [13]. See also [12] for a discrete
Cauchy type inequality restricted to real numbers.

Theorem 8 ([14], Theorem 3.8). Let V be a real inner product
space. For any a, b ∈ V , s >max fkak, kbkg and c ∈ V with
kck ≤ 1, the following inequality holds:

a · c ⊖ sb · cj j ≤ ck k ⊗ s a ⊖ sbk k ð19Þ

or

h a · c, b · cð Þ ≤ ck kh a, bð Þ, ð20Þ
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that is,

a · c − b · c
1 − 1/s2ð Þ a · cð Þ b · cð Þ











≤ s tanh ck k tanh−1 1

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ak k2 − 2a · b + bk k2

1 − 2/s2ð Þa · b + 1/s4ð Þ ak k2 bk k2
s !( )

:

ð21Þ

The equality holds if and only if one of the following con-
ditions is satisfied:

(i) a = b
(ii) c = 0

(iii) kck = 1 and a = λc, b = μc for some real numbers λ, μ

Remark 9. Note that a · c ⊖ sb · c ≠ ða ⊖ sbÞ · c in general.
Moreover, the following inequality does not hold:

a · c ⊖ sb · cj j ≤ a ⊖ sbð Þ · cj j: ð22Þ

Indeed, take V =ℝ2, s = 1 and

a =
1
2
0

0
@

1
A,

b =

1
2
ffiffiffi
5

p

1ffiffiffi
5

p

0
BBB@

1
CCCA,

c =
0
1

 !
:

ð23Þ

Then, it is immediate to check

a · c ⊖ sb · cj j = 1ffiffiffi
5

p > 12
17

ffiffiffi
5

p
− 8

= a ⊖ sbð Þ · cj j: ð24Þ

3. Continuous Gyrolinear Functionals

In this section, we denote ⊕ 1, ⊗ 1 by ⊕ , ⊗ for simplicity,
respectively, and we show a triviality of continuous gyro-
linear functionals on the Möbius gyrovector spaces. It is an
application of the orthogonal gyroexpansion with respect to
an orthonormal basis in a Hilbert space, which was estab-
lished in [11]. At first, we consider an elementary system of
equations with the Möbius operations restricted to real
numbers.

Lemma 10. Assume that a1, a2 ∈ ð−1, 1Þ, r1, r2, t1, t2 ∈ℝ and

r1 ⊗ a1 ⊕ r2 ⊗ a2 = t1 ⊗ a1 ⊕ t2 ⊗ a2,
r1 ⊗ a1 ⊕ −r2 ⊗ a2 = t1 ⊗ a1 ⊕ −t2 ⊗ a2:

(
ð25Þ

Then, at least one of the following (i)~(iv) holds.

(i) r1 = t1 and r2 = t2

(ii) r1 = t1 and a2 = 0

(iii) r2 = t2 and a1 = 0

(iv) a1 = a2 = 0

Proof. Note that the M€obius addition ⊕ is commutative and
associative on the open interval ð−1, 1Þ. Thus, we have

r1 ⊗ a1 ⊕ r1 ⊗ a1 = r1 ⊗ a1 ⊕ r2 ⊗ a2ð Þ ⊕ r1 ⊗ a1 ⊕ −r2 ⊗ a2ð Þ
= t1 ⊗ a1 ⊕ t2 ⊗ a2ð Þ ⊕ t1 ⊗ a1 ⊕ −t2 ⊗ a2ð Þ
= t1 ⊗ a1 ⊕ t1 ⊗ a1,

ð26Þ

which implies that

2 ⊗ r1 ⊗ a1ð Þ = 2 ⊗ t1 ⊗ a1ð Þ,
tanh 2r1 tanh−1a1

� �
= tanh 2t1 tanh−1a1

� �
, ð27Þ

r1 = t1 ð28Þ

or

a1 = 0: ð29Þ

Moreover, together with the fact that −ðb1 ⊕ b2Þ = −b1 ⊕
−b2, we also obtain

r2 ⊗ a2 ⊕ r2 ⊗ a2 = r1 ⊗ a1 ⊕ r2 ⊗ a2ð Þ ⊕ − r1 ⊗ a1 ⊕ −r2 ⊗ a2ð Þf g
= t1 ⊗ a1 ⊕ t2 ⊗ a2ð Þ ⊕ − t1 ⊗ a1 ⊕ −t2 ⊗ a2ð Þf g
= t2 ⊗ a2 ⊕ t2 ⊗ a2,

ð30Þ

and hence, r2 = t2 or a2 = 0. Obviously, it yields the conclu-
sion of the lemma. This completes the proof.

Theorem 11. Let V be a separable real Hilbert space with
dim V ≥ 2. Consider the Poincaré metric h on the ball V1
and the interval ð−1, 1Þ, respectively. If a continuous map
f : V1 ⟶ ð−1, 1Þ satisfies

f x ⊕ yð Þ = f xð Þ ⊕ f yð Þ, ð31Þ

for any x, y ∈ V1, then f ðxÞ = 0 for all x ∈ V1.
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Proof. At first, it follows from a standard argument using
condition (31) and the continuity of f that

f r ⊗ xð Þ = r ⊗ f xð Þ, ð32Þ

for any x ∈ V1, r ∈ℝ.
We may assume V is countably infinite dimensional.

Take any complete orthonormal sequense fejg∞j=1 of V . Put

aj = f
e j
2

� �
j = 1, 2ð Þ: ð33Þ

We use conditions (31) and (32), by the following two
ways (I) and (II)

Ið Þ x = y = e1
2 ⊕

e2
2 ,

IIð Þ x = y = e1
2 ⊕ −

e2
2

� �
:

ð34Þ

In the case (I), it is easy to see that

x = y = e1
2 ⊕

e2
2 = 10e1 + 6e2

17 ,

x · y = 8
17 ,

xk k = yk k =
ffiffiffiffiffi
8
17

r
,

1 + 2x · y + xk k2 yk k2 = 54
172 ,

x ⊕ y = 4
5 e1 +

12
25 e2:

ð35Þ

We can express x ⊕ y ∈ V1 as a gyrolinear combination of
e1/2, e2/2 to obtain

e1
2 ⊕

e2
2

� �
⊕

e1
2 ⊕

e2
2

� �
= r1 ⊗

e1
2 ⊕ r2 ⊗

e2
2 ð36Þ

for a unique pair of real numbers r1, r2. Put x1 = ð4/5Þe1,
x2 = ð12/25Þe2. Applying [7], Theorem 4.2, we can rewrite

4
5 e1 +

12
25 e2 = λ1x1 ⊕ λ2x2, ð37Þ

where λ j are given by the formulae

λ1 =
4/5ð Þ2 + 12/25ð Þ2 + 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4/5ð Þ2 + 12/25ð Þ2 + 1

� �2 − 4 4/5ð Þ2
q

2 4/5ð Þ2

= 1169 − 39
ffiffiffiffiffiffiffi
241

p

23 · 53 · 54 ,

λ2 =
4/5ð Þ2 + 12/25ð Þ2 − 1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4/5ð Þ2 + 12/25ð Þ2 + 1

� �2 − 4 4/5ð Þ2
q
2 12/25ð Þ2

= −81 + 39
ffiffiffiffiffiffiffi
241

p

23 · 3 · 52 · 2512 :

ð38Þ

Therefore, we have

4
5 e1 +

12
25 e2 = λ1x1 ⊕ λ2x2

= 1169 − 39
ffiffiffiffiffiffiffi
241

p

23 · 53 e1 ⊕
−81 + 39

ffiffiffiffiffiffiffi
241

p

23 · 3 · 52 e2

= r1 ⊗
e1
2 ⊕ r2 ⊗

e2
2 ,

ð39Þ

where rj are given by the formulae

r1 =
tanh−1 1169 − 39

ffiffiffiffiffiffiffi
241

p� �
/ 23 · 53
� �� �

tanh−1 1/2ð Þ
ð40Þ

r2 =
tanh−1 −81 + 39

ffiffiffiffiffiffiffi
241

p� �
/ 23 · 3 · 52
� �� �

tanh−1 1/2ð Þ
: ð41Þ

On the other hand, it is easy to check

tanh 2 tanh−1 12

� �
= 2 ⊗ 1

2 = 2 · 1/2ð Þ
1 + 1/2ð Þ2 = 4

5 , ð42Þ

which implies that rj ≠ 2.
Since f satisfies formulae (31) and (32), it follows from

taking the value of f in (36) that

2 ⊗ a1 ⊕ 2 ⊗ a2 = a1 ⊕ a2ð Þ ⊕ a1 ⊕ a2ð Þ
= f

e1
2
� �

⊕ f
e2
2
� �n o

⊕ f
e1
2
� �

⊕ f
e2
2
� �n o

= f
e1
2 ⊕

e2
2

� �
⊕

e1
2 ⊕

e2
2

� �� �
= f r1 ⊗

e1
2 ⊕ r2 ⊗

e2
2

� �
= r1 ⊗ a1 ⊕ r2 ⊗ a2:

ð43Þ

In the case (II), a similar calculation shows that

x = y = e1
2 ⊕ −

e2
2

� �
= 10e1 − 6e2

17 ,

x ⊕ y = 4
5 e1 −

12
25 e2,

e1
2 ⊕ −

e2
2

� �
⊕

e1
2 ⊕ −

e2
2

� �
= r1 ⊗

e1
2 ⊕ −r2 ⊗

e2
2 ,

ð44Þ

where r1 and r2 are identically given by the formulae (40) and
(41), respectively, and we obtain
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2 ⊗ a1 ⊕ −2 ⊗ a2 = a1 ⊕ −a2ð Þ ⊕ a1 ⊕ −a2ð Þ
= f

e1
2
� �

⊕ −1ð Þ ⊗ f
e2
2
� �n o

⊕ f
e1
2
� �

⊕ −1ð Þ ⊗ f
e2
2
� �n o

= f
e1
2 ⊕ −

e2
2

� �
⊕

e1
2 ⊕ −

e2
2

� �� �
= f r1 ⊗

e1
2 ⊕ −r2 ⊗

e2
2

� �
= r1 ⊗ a1 ⊕ −r2 ⊗ a2:

ð45Þ

Therefore, if f satisfies formulae (31) and (32), then we
must have the system of equations

r1 ⊗ a1 ⊕ r2 ⊗ a2 = 2 ⊗ a1 ⊕ 2 ⊗ a2,
r1 ⊗ a1 ⊕ −r2 ⊗ a2 = 2 ⊗ a1 ⊕ −2 ⊗ a2:

(
ð46Þ

From the fact that r1 ≠ 2, r2 ≠ 2 and Lemma 10, we have
a1 = a2 = 0. Since the argument above is valid for any pair
of distinct members ej1 , ej2 , we have f ðe j/2Þ = 0 for all j.

It follows from [11], Theorem 35, that an arbitrary ele-
ment x in V1 has an orthogonal gyroexpansion as

x =〠
∞

j=1

⊕

rj ⊗
ej
2 : ð47Þ

Thus, we obtain

f r1 ⊗
e1
2 ⊕⋯⊕ rj ⊗

ej
2

� �
= r1 ⊗ f

e1
2
� �

⊕⋯⊕ r j ⊗ f
ej
2

� �
= 0,

ð48Þ

for j = 1, 2,⋯, which implies that f ðxÞ = 0 for all x ∈ V1 by
the continuity of f . This completes the proof.

The case of 1-dimensional real inner product space is
exceptional.

Theorem 12. Let V be a real inner product space with dim
V = 1 and let e be an element in V with kek = 1.

For an arbitrary real number c, the formula

f teð Þ = c ⊗ t, ð49Þ

for −1 < t < 1 defines a map f : V1 ⟶ ð−1, 1Þ which satisfies
(31) and (32) for any x, y ∈ V1, r ∈ℝ.

Conversely, if a map f : V1 ⟶ ð−1, 1Þ satisfies (31) and
(32) for any x, y ∈ V1, r ∈ℝ, then c = tanh−1 f ðweÞ/tanh−1w
does not depend on 0 <w < 1 and f is given by formula (49)
for −1 < t < 1.

Proof. Let c be an arbitrary real number. Suppose that the
map f : V1 ⟶ ð−1, 1Þ is defined by the formula (49). A

straightforward calculation shows that f satisfies (31) and
(32) for any x, y ∈ V1, r ∈ℝ.

Conversely, suppose that a map f : V1 ⟶ ð−1, 1Þ sat-
isfies (31) and (32) for any x, y ∈ V1, r ∈ℝ. Let 0 <w < 1 be
a fixed number. Any element teð−1 < t < 1Þ in V1 can be
expressed as

te = r ⊗we = tanh r tanh−1 wek k� � we
wek k

= tanh r tanh−1w
� �

e
ð50Þ

by a unique real number r = tanh−1t/tanh−1w. Then, we
have

f teð Þ = f r ⊗weð Þ = r ⊗ f weð Þ = tanh r tanh−1 f weð Þ� �
= tanh tanh−1t

tanh−1w
tanh−1 f weð Þ

 !

= tanh tanh−1 f weð Þ
tanh−1w

tanh−1t
 !

= c ⊗ t,

ð51Þ

for any −1 < t < 1. The argument above includes that the
value of c does not depend on w. This completes the proof.

4. Mappings That Take Values of Inner Product

In this section, we investigate the relationship between the
Möbius operations and the linear functional which takes
the value of the inner product of each vector and a fixed
vector. Then, a representation theorem of Riesz type is
considered.

We need a well-known notion of continuity of mappings
between metric spaces and a notation for asymptotic behav-
ior of functions in elementary calculus.

Definition 13. Let ðX1, d1Þ and ðX2, d2Þ be two metric spaces.
A map f : X1 ⟶ X2 is said to be Lipschitz continuous if

sup
x,y∈X1,x≠y

d2 f xð Þ, f yð Þð Þ
d1 x, yð Þ <∞ ð52Þ

holds. Then, the left-hand side of (52) is called the Lipschitz
constant of f and denoted by Lð f Þ.

Definition 14. Let gðsÞ be a real valued function of a real
variable s. For any real constant α, gðsÞ = oðsαÞðs⟶∞Þ
means that gðsÞ/sα ⟶ 0 as s⟶∞. In particular, gðsÞ =
oð1Þðs⟶∞Þ means that gðsÞ⟶ 0 as s⟶∞.

Theorem 15. Let V be a real inner product space, c ∈ V
with kck ≤ 1, and consider the functional f defined by the
formula

f xð Þ = x · c, ð53Þ

for any x ∈ V . Then,
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(i) The restriction of f to the Möbius gyrovector space
V1 is Lipschitz continuous with the Lipschitz con-
stant kck, if we consider the Poincaré metric on both
the ball V1 and the interval ð−1, 1Þ

(ii) For any ε > 0, the functional f satisfies the following
conditions:

−f x + yð Þ ⊕ s f x ⊕ syð Þ = o s−2+ε
� �

s⟶∞ð Þ,
− f xð Þ + f yð Þf g ⊕ s f xð Þ ⊕ s f yð Þf g = o s−2+ε

� �
s⟶∞ð Þ,

−f rxð Þ ⊕ s f r ⊗ sxð Þ = o s−2+ε
� �

s⟶∞ð Þ,
−rf xð Þ ⊕ sr ⊗ s f xð Þ = o s−2+ε

� �
s⟶∞ð Þ,

ð54Þ

for any x, y ∈ V and any r ∈ℝ.

Proof. (i) For a while, let us denote the restriction of f to V1
by f simply. The Lipschitz continuity of f is an immediate
consequence of the Schwarz type inequality related to the
Mobius operations. Actually, it follows from Theorem 8 that

x · c ⊖ 1y · cj j ≤ ck k ⊗ 1 x ⊖ 1yk k ð55Þ

or

h f xð Þ, f yð Þð Þ ≤ ck kh x, yð Þ ð56Þ

for any x, y ∈ V1, which shows

L fð Þ = sup
x,y∈V1,x≠y

h f xð Þ, f yð Þð Þ
h x, yð Þ ≤ ck k: ð57Þ

On the other hand, put c = Lð f Þ. Then, for any x, y ∈ V1,
we have

tanh−1 f xð Þ ⊖ 1 f yð Þj j = h f xð Þ, f yð Þð Þ ≤ ch x, yð Þ
= c tanh−1 x ⊖ 1yk k: ð58Þ

By taking x = c/2s and y = 0, we have

ck k2
2s = f

c
2s
� �


 


 = f xð Þ ⊖ 1 f 0ð Þj j ≤ tanh c tanh−1 x ⊖ 10k k� �

= tanh c tanh−1 c
2s
			 			� �

, ð59Þ

which yields

ck k2
2 ≤ s tanh c tanh−1 c/2k k

s

� �
⟶ c

ck k
2 s⟶∞ð Þ: ð60Þ

Thus, we can obtain kck ≤ c:
(ii) For any x, y ∈ V and sufficiently large real number s, it

is immediate to see that

and it is also straightforward to calculate the numerator of
this formula as

− x · c + 2
s2

x · cð Þ x · yð Þ + 1
s4

xk k2 yk k2x · c + y · c
�

+ 2
s2

y · cð Þ x · yð Þ + 1
s4

xk k2 yk k2y · c
�

+ x · c + 2
s2

x · yð Þ x · cð Þ + 1
s2

yk k2x · c + y · c − 1
s2

xk k2y · c
� �

= 1
s2

−2 y · cð Þ x · yð Þ + yk k2x · c − xk k2y · c
 �
+ 1
s4

− xk k2 yk k2x · c − xk k2 yk k2y · c
 �
,

ð62Þ

which yields the first formula of (ii). Next,

− f xð Þ + f yð Þf g ⊕ s f xð Þ ⊕ s f yð Þf g
= − x · c + y · cf g ⊕ s

x · c + y · c
1 + 1/s2ð Þ x · cð Þ y · cð Þ

= − x · c + y · cf g 1 + 1/s2
� �

x · cð Þ y · cð Þ
 �
+ x · c + y · c

� �
1 + o 1ð Þf g

= − 1/s2
� �

x · c + y · cð Þ x · cð Þ y · cð Þ
1 + o 1ð Þf g ,

ð63Þ

which yields the second formula of (ii). For any ε > 0, real
numbers r and x, it is elementary to check

s tanh r tanh−1 x
s

� �
= rx + r 1 − r2

� �
x3

3s2 + o s−4+ε
� �

s⟶∞ð Þ:
ð64Þ

−f x + yð Þ ⊕ s f x ⊕ syð Þ = − x · c + y · cf g ⊕ s
1 + 2/s2
� �

x · y + 1/s2
� �

yk k2� �
x · c + 1 − 1/s2

� �
xk k2� �

y · c
1 + 2/s2ð Þx · y + 1/s4ð Þ xk k2 yk k2

= − x · c + y · cf g 1 + 2/s2
� �

x · y + 1/s4
� �

xk k2 yk k2
 ��
+ 1 + 2/s2

� �
x · y + 1/s2

� �
yk k2� �

x · c + 1 − 1/s2
� �

xk k2� �
y · c
�

1 + o 1ð Þf g ,

ð61Þ
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We can obtain

−f rxð Þ ⊕ s f r ⊗ sxð Þ = −rx · c + s tanh r tanh−1 xk k/sð Þ� �
x/ xk kð Þ · c
 �

1 + o 1ð Þf g :

ð65Þ

By formula (64), the numerator of this formula can be
calculated as

−r x · cð Þ + r xk k + 1
3s2 r 1 − r2

� �
xk k3 + o s−4+ε

� �� � x
xk k · c

= 1
3s2 r 1 − r2

� �
x · cð Þ xk k2 + o s−4+ε

� �
, ð66Þ

which shows the third formula of (ii). We also obtain

−rf xð Þ ⊕ sr ⊗ s f xð Þ = −rx · c + s tanh r tanh−1 x · cð Þ/sð Þ� �
 �
1 + o 1ð Þf g :

ð67Þ

The numerator of this formula can be calculated as

−r x · cð Þ + r x · cð Þ + 1
3s2 r 1 − r2

� �
x · cð Þ3 + o s−4+ε

� �� �

= 1
3s2 r 1 − r2

� �
x · cð Þ3 + o s−4+ε

� �
, ð68Þ

which shows the fourth formula of (ii). This completes the
proof.

In the rest of this section, we consider a representation
theorem of Riesz type. Theorem 11 shows that, in a certain
sense, the gyroadditivity (31) is too much strong for contin-
uous functionals. Therefore, it is natural to introduce a suit-
able notion for functionals on the M€obius gyrovector spaces
which is corresponding to the linearity of functionals on
inner product spaces.

For any general (not necessarily linear) mapping f from
the Möbius gyrovector space V1 to the interval ð−1, 1Þ, we
associate a family f f sg of mappings defined as follows.

Definition 16. Let V be a real inner product space. For any
mapping f : V1 ⟶ ð−1, 1Þ and any positive real number s,
we define a map f s : V s ⟶ ð−s, sÞ by

f s xð Þ = sf
x
s

� �
, ð69Þ

for any element x ∈ V s.

It seems that Theorem 15 provides sufficiently reasonable
motivation for making the following definitions.

Definition 17. (i) Let c ∈ V and kck ≤ 1. A mapping f : V1
⟶ ð−1, 1Þ is said to be quasi gyrolinear with respect to c

if the family f f sg defined by formula (69) satisfies the follow-
ing conditions:

f s x ⊕ syð Þ⟶ x + yð Þ · c s⟶∞ð Þ, ð70Þ

f s xð Þ ⊕ s f s yð Þ⟶ x · c + y · c s⟶∞ð Þ, ð71Þ

f s r ⊗ sxð Þ⟶ rxð Þ · c s⟶∞ð Þ, ð72Þ

r ⊗ s f s xð Þ⟶ r x · cð Þ s⟶∞ð Þ, ð73Þ
for any element x, y ∈ V and any real number r ∈ℝ.

(ii) A mapping f : V1 ⟶ ð−1, 1Þ is said to be asymptot-
ically gyrolinear if the family f f sg defined by formula (69)
satisfies the following conditions:

− f s xð Þ ⊕ s f s yð Þf g ⊕ s f s x ⊕ syð Þ⟶ 0 s⟶∞ð Þ, ð74Þ

− r ⊗ s f s xð Þf g ⊕ s f s r ⊗ sxð Þ⟶ 0 s⟶∞ð Þ, ð75Þ
for any element x, y ∈ V and any real number r ∈ℝ.

Remark 18. Let c ∈ V and kck ≤ 1. (i) Every quasi gyrolinear
map from V1 to ð−1, 1Þ with respect to c is asymptotically
gyrolinear. It is easy to check by using Lemma 5.

(ii) The restriction of the mapping defined by formula
(53) to the Möbius gyrovector space V1 is quasi gyrolinear
by Theorem 15(ii).

The following lemma can be verified immediately by the
definition of the Möbius addition ⊕ s, so we omit the proof.

Lemma 19. Suppose that uðsÞ, vðsÞ are elements in V s defined
for sufficiently large real number s such that uðsÞ, vðsÞ con-
verge to constant vectors a, b as s⟶∞, respectively. Then,
uðsÞ ⊕ svðsÞ⟶ a + b as s⟶∞.

Although we already know that r ⊗ sa⟶ ra as s⟶∞
for any constants r, a ∈ℝ, we need a lemma for the case
where a is replaced by a function gðsÞ which converges to a
constant as s⟶∞.

Lemma 20. There exists a function CðrÞ which depends on r
and the formula

r ⊗ 1x − rxj j ≤ C rð Þ xj j3 −
1
2
≤ x ≤

1
2

� �
: ð76Þ

holds.

Proof. For a while, assume r > 0. Put f ðxÞ = r ⊗ 1x = tanh
ðr tanh−1xÞ. For any x ∈ ð−1, 1Þ, it follows from Maclaurin’s
theorem that there exists a number 0 < θ < 1 satisfying the
equation

f xð Þ = f 0ð Þ + f ′ 0ð Þx + f ″ θxð Þ
2! x2: ð77Þ
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It is elementary to see

f ′ xð Þ = 1 − tanh r tanh−1x
� �� �2n o r

1 − x2
f ′ 0ð Þ = r,

f ″ xð Þ = 1 − tanh r tanh−1x
� �� �2n o 2r

1 − x2ð Þ2
−r tanh r tanh−1x

� �� �
+ x

� �
,

ð78Þ

so that we obtain

r ⊗ 1x − rxj j = f ″ θxð Þ
2! x2












 = 1 − tanh r tanh−1θx

� �� �2n o





� r

1 − θxð Þ2� �2 −r tanh r tanh−1θx
� �� �

+ θx
� �




 xj j2:

ð79Þ

Now we restrict jxj ≤ 1/2. If 0 < r < 1, then we have
jr ⊗ 1θxj = r ⊗ 1jθxj < jθxj < jxj, which yields

r ⊗ 1x − rxj j ≤ 16
9 r r + 1ð Þ xj j3: ð80Þ

If r > 1, then we have jr ⊗ 1θxj = r ⊗ 1jθxj < rjθxj < rjxj,
which yields

r ⊗ 1x − rxj j ≤ 16
9 r r2 + 1
� �

xj j3: ð81Þ

For r < 0, since we have the relation jr ⊗ 1x − rxj =
jð−rÞ ⊗ 1x − ð−rÞxj, a similar argument shows the conclu-
sion. This completes the proof.

Lemma 21. Let r, a ∈ℝ. Suppose that gðsÞ is a real valued
function defined for sufficiently large real number s which
satisfies the condition gðsÞ⟶ a as s⟶∞. Then, r ⊗ sgðsÞ
⟶ ra as s⟶∞.

Proof. For any x ∈ℝ, if we take s ≥ 2jxj, then obviously −1/2
≤ x/s ≤ 1/2. It follows from Lemma 20 that

r ⊗ 1
x
s
− r

x
s




 


 ≤ C rð Þ x
s




 


3,
r ⊗ sx − rxj j ≤ C rð Þ xj j3

s2
:

ð82Þ

Therefore, for sufficiently large s > 0, we obtain

r ⊗ sg sð Þ − rg sð Þj j ≤ C rð Þ g sð Þj j3
s2

, ð83Þ

and hence,

r ⊗ sg sð Þ − raj j ≤ r ⊗ sg sð Þ − rg sð Þj j + rg sð Þ − raj j

≤ C rð Þ g sð Þj j3
s2

+ rj j g sð Þ − aj j⟶ 0
ð84Þ

as s⟶∞. This completes the proof.

The following result can be considered as a representa-
tion theorem of Riesz type in the Möbius gyrovector space.

Theorem 22. Let V be a real Hilbert space. Suppose that
f : V1 ⟶ ð−1, 1Þ is asymptotically gyrolinear and Lipschitz
continuous with Lð f Þ ≤ 1 considering the Poincaré metrics
on both the Möbius gyrovector space V1 and the interval
ð−1, 1Þ. Additionally, assume that f satisfies the following
condition:

For any element x ∈ V , lim
s⟶∞

f s xð Þ exists as a real number:

ð85Þ

Then, there exists a unique element c ∈ V satisfying
kck ≤ Lð f Þ and f is quasi gyrolinear with respect to c.

Proof. Put c = Lð f Þ. Note that it implies

f xð Þ ⊖ 1 f yð Þj j ≤ c ⊗ 1 x ⊖ 1yk k, ð86Þ

for any x, y ∈ V1. For any x, y ∈ V and any sufficiently large
s > 0, we have

f s xð Þ ⊖ s f s yð Þj j
s

= f s xð Þ
s

⊖ 1
f s yð Þ
s










 = f

x
s

� �
⊖ 1 f

y
s

� �


 



≤ c ⊗ 1

x
s
⊖ 1

y
s

			 			 = c ⊗ 1
x ⊖ syk k
s

= c ⊗ s x ⊖ syk k
s

,

ð87Þ

which yields

f s xð Þ ⊖ s f s yð Þj j ≤ c ⊗ s x ⊖ syk k: ð88Þ

Now, it follows from Lemma 6(ii) that

x ⊕ syð Þ ⊖ s x + yð Þk k ≤ 2 x ⊕ syð Þ − x + yð Þk k⟶ 0 s⟶∞ð Þ,
r ⊗ sxð Þ ⊖ s rxð Þk k ≤ 2 r ⊗ sxð Þ − rxð Þk k⟶ 0 s⟶∞ð Þ:

ð89Þ

Therefore, by inequality (88) and Lemma 21, we can
obtain

f s x ⊕ syð Þ ⊖ s f s x + yð Þj j
≤ c ⊗ s x ⊕ syð Þ ⊖ s x + yð Þk k⟶ 0 s⟶∞ð Þ, ð90Þ

f s r ⊗ sxð Þ ⊖ s f s rxð Þj j
≤ c ⊗ s r ⊗ sxð Þ ⊖ s rxð Þk k⟶ 0 s⟶∞ð Þ, ð91Þ
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for any x, y ∈ V and r ∈ℝ. Define a functional F : V ⟶ℝ by
the formula

F xð Þ = lim
s→∞

f s xð Þ, ð92Þ

for any x ∈ V .
By Lemma 19, formulae (74) and (90), for any ε > 0, there

exists a real number s0 > 0 such that, if s ≥ s0 then

− F xð Þ + F yð Þf g + f s xð Þ ⊕ s f s yð Þf gj j < ε,
− f s xð Þ ⊕ s f s yð Þf g ⊕ s f s x ⊕ syð Þj j < ε,

f s x ⊕ syð Þ ⊖ s f s x + yð Þj j < ε,
f s x + yð Þ − F x + yð Þj j < ε:

ð93Þ

We can estimate

− F xð Þ + F yð Þf g + F x + yð Þj j ≤ − F xð Þ + F yð Þf gj
+ f s xð Þ ⊕ s f s yð Þf gj + − f s xð Þ ⊕ s f s yð Þf g + f s x ⊕ syð Þj j
+ −f s x ⊕ syð Þ + f s x + yð Þj j + −f s x + yð Þ + F x + yð Þj j
≤ − F xð Þ + F yð Þf g + f s xð Þ ⊕ s f s yð Þf gj j
+ 2 − f s xð Þ ⊕ s f s yð Þf g ⊕ s f s x ⊕ syð Þj j
+ 2 f s x ⊕ syð Þ ⊖ s f s x + yð Þj j + ∣ − f s x + yð Þ
+ F x + yð Þ∣ < 6ε, ð94Þ

for any s ≥ s0, which implies Fðx + yÞ = FðxÞ + FðyÞ.
Similarly, by Lemma 21, formulae (75), (91), and (88), we

can obtain the formulae

F rxð Þ = rF xð Þ,
F xð Þ − F yð Þj j ≤ c x − yk k,

ð95Þ

for any x, y ∈ V and r ∈ℝ. Thus, F : V ⟶ℝ is a bounded
linear functional which is defined on the whole space V and
kFk ≤ c. It follows from the classical Riesz theorem that there
exists a unique element c ∈ V satisfying FðxÞ = x · c for any
x ∈ V and kck = kFk. Moreover, it is easy to verify formulae
(70)–(73) by using formula (90), formula (91), Lemma 19,
and Lemma 20. Thus, f is quasi gyrolinear with respect to
c. This completes the proof.

Remark 23. Instead of condition (85), if we assume that there
exists a positive homogeneous map ~f : V ⟶ℝ which is
an extension of f , then there exists a unique element c ∈ V
satisfying

~f xð Þ = x · c, ð96Þ

for any x ∈ V .

5. Continuous Quasi Gyrolinear Functionals

In this section, we present a class of continuous functionals
onMöbius gyrovector spaces, which consists of a counterpart
to continuous linear functionals on real Hilbert spaces.

Lemma 24. Let fcjg∞j=1 and fajg∞j=1 be square summable

sequences of real numbers. Note that

we do not assume〠
∞

j=1
c2j ≤ 1 or 〠

∞

j=1
a2j ≤ 1: ð97Þ

Suppose that s0 is a positive real number and ujðsÞ is a real
valued function defined for s ≥ s0 and j = 1, 2,⋯, which sat-
isfies the following conditions:

−s < uj sð Þ < s, for s ≥ s0 and j = 1, 2,⋯,
uj sð Þ⟶ aj, as s⟶∞ for any j = 1, 2,⋯,

〠
∞

j=1

⊕s2

uj sð Þ2 ≤ K , for s ≥ s0,
ð98Þ

where K is a constant which does not depend on s. Then, the
series ∑∞

j=1
⊕s cj ⊗ sujðsÞ converges for any s ≥ s0, and

〠
∞

j=1

⊕s

cj ⊗ suj sð Þ⟶ 〠
∞

j=1
cjaj ð99Þ

as s⟶∞.

Proof. For any s ≥ s0, any natural number n and p, we can
apply the gyrotriangle inequality and a Cauchy type inequal-
ity ([12], Remark 2.6) to obtain

−〠
n

j=1

⊕s

cj ⊗ suj sð Þ ⊕ s〠
n+p

j=1

⊕s

cj ⊗ suj sð Þ












 = 〠
n+p

j=n+1

⊕s

cj ⊗ suj sð Þ













≤ 〠

n+p

j=n+1

⊕s

cj ⊗ suj sð Þ


 

 = 〠

n+p

j=n+1

⊕s

cj


 

 ⊗ s uj sð Þ



 

� �

≤ 〠
∞

j=n+1
c2j

 !1/2

⊗ s 〠
∞

j=n+1

⊕s2

uj sð Þ2
 !1/2

,

ð100Þ

which yields that the sequence f∑n
j=1

⊕s cj ⊗ sujðsÞg∞n=1 is a

Cauchy sequence in the interval ðð−s, sÞ, hÞ (cf. [11], Lemma
20(ii)), and hence, it converges.

From the proof of Lemma 20, if 0 < r < 1, then the
inequality

r ⊗ 1x − rxj j ≤ 4r xj j3 −
1
2 ≤ x ≤

1
2

� �
ð101Þ

holds. By putting s1 = 2K1/2 + 1, a similar argument to the
proof of Lemma 21 shows that

r ⊗ sK
1/2 − rK1/2

 

 ≤ 4r K

3/2

s2
,

0 ≤ r ⊗ sK
1/2 ≤ rK1/2 + 4rK3/2,

ð102Þ
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for any s ≥ s1. Therefore, for any positive number ε, there
exists a natural number j0 such that

〠
∞

j=j0+1
cjaj


 

 < ε,

sup
s≥s1

〠
∞

j=j0+1
c2j

 !1/2

⊗ sK
1/2

" #
< ε:

ð103Þ

Moreover, we can take a positive number s2 such that

〠
j0

j=1
cjaj −〠

j0

j=1

⊕s

cj ⊗ suj sð Þ














 < ε, ð104Þ

for any s > s2. Then, by [11], Lemma 14(iii), and [12], Remark
2.6, we can obtain

〠
∞

j=1
cjaj −〠

∞

j=1

⊕s

cj ⊗ suj sð Þ












 ≤ 〠
∞

j=1
cjaj − 〠

j0

j=1
cjaj














+ 〠
j0

j=1
cjaj −〠

j0

j=1

⊕s

cj ⊗ suj sð Þ















+ 〠

j0

j=1

⊕s

cj ⊗ suj sð Þ −〠
∞

j=1

⊕s

cj ⊗ suj sð Þ














 ≤ 〠
∞

j=j0+1
cjaj


 



+ 〠
j0

j=1
cjaj −〠

j0

j=1

⊕s

cj ⊗ suj sð Þ















+ 2 −〠

j0

j=1

⊕s

cj ⊗ suj sð Þ ⊕ s〠
∞

j=1

⊕s

cj ⊗ suj sð Þ














 < 2ε

+ 2 〠
∞

j=j0+1

⊕s

cj ⊗ suj sð Þ












 ≤ 2ε

+ 2 〠
∞

j=j0+1
c2j

 !1/2

⊗ s 〠
∞

j=j0+1

⊕s2

uj sð Þ2
 !1/2" #

< 4ε

ð105Þ

for sufficiently large s. This completes the proof.

Theorem 25. Let fejg∞j=1 be a complete orthonormal sequence

in a real Hilbert space V and let x be an arbitrary element in
V1. We can apply the orthogonal gyroexpansion ([11], Theo-
rem 35) to get a unique sequence ðr1, r2,⋯Þ of real numbers
such that

x =〠
∞

j=1

⊕1

r j ⊗ 1

ej
2
: ð106Þ

Then, the following inequality holds:

〠
∞

j=1
r2j

 !1/2

≤
tanh−1 xk k
tanh−1 1/2ð Þ

: ð107Þ

Proof. Note that

xk k2 =〠
∞

j=1

⊕1

rj ⊗ 1
1
2

� �2
ð108Þ

by [11], Theorem 36(iii). Let fcjg∞j=1 be an arbitrary square

summable sequence of real numbers. Then, for any natural
number n, by identities of Lemma 5 and a Cauchy type
inequality ([12], Theorem 2.5), we obtain the following
estimation:

〠
n

j=1
cjr j


 

 !

⊗ 1
1
2 =〠

n

j=1

⊕1

cjr j


 

 ⊗ 1

1
2

� �
=〠

n

j=1

⊕1

cj


 

 ⊗ 1 rj ⊗ 1

1
2












� �

≤ 〠
n

j=1
c2j

 !1/2

⊗ 1 〠
n

j=1

⊕1

r j ⊗ 1
1
2

� �2
 !1/2

:

ð109Þ

Thus, we obtain

〠
∞

j=1
cjr j


 

 !

⊗ 1
1
2 ≤ ck k ⊗ 1 xk k ð110Þ

or

〠
∞

j=1
cjr j


 

 ≤ ck k tanh−1 xk k

tanh−1 1/2ð Þ , ð111Þ

where c is a unique element in V defined by the formula
c =∑∞

j=1cjej. Because fcjg is an arbitrary square summable
sequence, we can conclude inequality (107). This com-
pletes the proof.

We show that, if a sequence fxkgk in a Möbius gyrovector
space converges to an element x, then the jth gyrocoefficient
of xk converges to that of x.

Lemma 26. Let fe jg∞j=1 be a complete orthonormal sequence in

a real Hilbert space V . Suppose that fxkgk is a sequence and x
is an element in V1 such that hðxk, xÞ⟶ 0 as k⟶∞. Let

xk =〠
∞

j=1

⊕1

rk,j ⊗ 1

ej
2
,

x =〠
∞

j=1

⊕1

r j ⊗ 1

e j
2

ð112Þ
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be the orthogonal gyroexpansions. Then,

rk,j ⟶ rj k⟶∞ð Þ, ð113Þ

for any j = 1, 2,⋯.

Proof. Note that kxk − xk⟶ 0 as k⟶∞ (cf. [11], Lemma
14(iii), Lemma 20). A similar argument on formula (118) in
the proof of [11], Theorem 35, shows that

rk,1 =
tanh−1λ 1ð Þ

k,1 xk · e1ð Þ
tanh−1 1/2ð Þ ,

r1 =
tanh−1λ 1ð Þ

1 x · e1ð Þ
tanh−1 1/2ð Þ ,

ð114Þ

where

λ
1ð Þ
k,1 =

xkk k2 + 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xkk k2 + 1

� �2 − 4 xk · e1ð Þ2
q

2 xk · e1ð Þ2 ,

λ
1ð Þ
1 =

xk k2 + 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xk k2 + 1

� �2 − 4 x · e1ð Þ2
q

2 x · e1ð Þ2 ,

ð115Þ

which obviously yields rk,1 ⟶ r1 as k⟶∞. Applying a
similar argument to

−rk,1 ⊗ 1
e1
2 ⊕ 1xk =〠

∞

j=2

⊕1

rk,j ⊗ 1
ej
2 ,

−r1 ⊗ 1
e1
2 ⊕ 1x =〠

∞

j=2

⊕1

rj ⊗ 1
e j
2 ,

ð116Þ

we obtain rk,2 ⟶ r2 as k⟶∞, and so on. This completes
the proof.

We present a class of continuous functionals on the
Möbius gyrovector spaces, which seems to be a counterpart
of bounded linear functionals on real Hilbert spaces.

Theorem 27. Let V be a real Hilbert space, let fejg∞j=1 be a

complete orthonormal sequence in V and let fcjg∞j=1 be a

square summable sequence of real numbers. Consider the
Poincaré metrics on both the Möbius gyrovector space V1
and the interval ð−1, 1Þ. Then, we can define a map f : V1
⟶ ð−1, 1Þ by the equation

f xð Þ = 〠
∞

j=1
cjr j

 !
⊗ 1

1
2
, ð117Þ

for any x ∈ V1 whose orthogonal gyroexpansion is given by for-
mula (106). Moreover, f is continuous and quasi gyrolinear
with respect to c =∑∞

j=1cje j.

Proof. Since the sequence frjgj is square summable by Theo-

rem 25, the ordinary infinite series ∑∞
j=1cjr j converges abso-

lutely; hence, the map f is well defined. Suppose that fxkgk
is a sequence and x is an element in V1 such that hðxk, xÞ
⟶ 0 as k⟶∞. Let

xk =〠
∞

j=1

⊕1

rk,j ⊗ 1
ej
2 ,

x =〠
∞

j=1

⊕1

r j ⊗ 1
e j
2

ð118Þ

be the orthogonal gyroexpansions. By Theorem 25,

〠
∞

j=1
r2k,j

 !1/2

≤
tanh−1 xkk k
tanh−1 1/2ð Þ , ð119Þ

which is bounded with respect to k, because kxkk⟶ kxk < 1.
Therefore, for any positive number ε, there exists a natural
number j0 such that

〠
∞

j=j0+1
∣cjrk,j∣ ≤ 〠

∞

j=j0+1
c2j

 !1/2

〠
∞

j=j0+1
r2k,j

 !1/2

< ε ð120Þ

for all k, and∑∞
j=j0+1jcjr jj < ε. By Lemma 26, we can take suffi-

ciently large k0 such that, if k ≥ k0, then

〠
j0

j=1
cjrk,j − 〠

j0

j=1
cjr j












 < ε: ð121Þ

Thus, if k ≥ k0, then we have

〠
∞

j=1
rk,jcj − 〠

∞

j=1
r jcj












 ≤ 〠

j0

j=1
rk,jcj − 〠

j0

j=1
rjcj














+ 〠
∞

j=j0+1
rk,jcj












 + 〠

∞

j=j0+1
r jcj












 < 3ε,

ð122Þ

which implies that hð f ðxkÞ, f ðxÞÞ⟶ 0. This copmpletes the
proof of the continuity of the functional f .

Take arbitrary elements x, y ∈ V , and put xj = x · ej, yj =
y · ej for j = 1, 2,⋯. Then, it follows from the definition of
⊕ 1 that

s
x
s
⊕ 1

y
s

� �
· ej

=
1 + 2/s2
� �

x · y + 1/s2
� �

yk k2� �
xj + 1 − 1/s2

� �
xk k2� �

yj
1 + 2/s2ð Þx · y + 1/s4ð Þ xk k2 yk k2

⟶ xj + yj

ð123Þ
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as s⟶∞. For sufficiently large s > 0, applying the orthog-
onal gyroexpansion, there exists a unique sequence ðr1ðsÞ,
r2ðsÞ,⋯Þ of real numbers such that

x
s
⊕ 1

y
s
=〠

∞

j=1

⊕1

rj sð Þ ⊗ 1
e j
2 =〠

∞

j=1

⊕1

t j sð Þej, ð124Þ

where we put t jðsÞ = tanh ðr jðsÞ tanh−1ð1/2ÞÞ. Then, we
have

x ⊕ sy
s

			 			2 = x
s
⊕ 1

y
s

			 			2 = 〠
∞

j=1

⊕1

t j sð Þej
					

					
2

=〠
∞

j=1

⊕1

t j sð Þ2: ð125Þ

It follows from x ⊕ sy⟶ x + y that kx ⊕ sy/sk⟶ 0
and hence t jðsÞ⟶ 0 as s⟶∞. Put z1ðsÞ =∑∞

j=2
⊕1 t jðsÞej.

Note that kz1ðsÞk ≤ kx ⊕ sy/sk⟶ 0 as s⟶∞.

x
s
⊕ 1

y
s

� �
· e1 = t1 sð Þe1 ⊕ 1z1 sð Þf g · e1

= 1 + z1 sð Þk k2� �
t1 sð Þe1 + 1 − t1 sð Þ2� �

z1 sð Þ
1 + t1 sð Þ2 z1 sð Þk k2 · e1

= 1 + z1 sð Þk k2� �
t1 sð Þ

1 + t1 sð Þ2 z1 sð Þk k2

x ⊕ syð Þ · e1 =
1 + z1 sð Þk k2� �

st1 sð Þ
1 + t1 sð Þ2 z1 sð Þk k2 :

ð126Þ

By letting s⟶∞ in the formula above, we have st1ðsÞ
⟶ ðx + yÞ · e1 = x1 + y1.

Assume that we have shown st jðsÞ⟶ xj + yjðj = 1,⋯,nÞ.

− st1 sð Þe1 ⊕ s ⋯ ⊕ sstn sð Þenð Þ ⊕ s x ⊕ syð Þf g · en+1
= 1 + zn+1 sð Þk k2� �

stn+1 sð Þ
1 + tn+1 sð Þ2 zn+1 sð Þk k2 , ð127Þ

where we put zn+1ðsÞ =∑∞
j=n+2

⊕1 t jðsÞe j. From the assumption
of induction and Lemma 19, it follows that

stn+1 sð Þ⟶ − x1 + y1ð Þe1+⋯+ xn + ynð Þenð Þ + x + yð Þf g · en+1
= xn+1 + yn+1:

ð128Þ

Now, it is straightforward to see

f s x ⊕ syð Þ = sf
x ⊕ sy
s

� �
= sf

x
s
⊕ 1

y
s

� �

= s 〠
∞

j=1
cjr j sð Þ

 !
⊗ 1

1
2

( )
= 〠

∞

j=1
cjr j sð Þ

 !
⊗ s

s
2

=〠
∞

j=1

⊗s

cjr j sð Þ ⊗ s
s
2

� �
=〠

∞

j=1

⊗s

cj ⊗ sst j sð Þ
� �

:

ð129Þ

By multiplying s2 to both sides of formula (125), we have

〠
∞

j=1

⊕s2

st j sð Þ
� �2 = x ⊕ syk k2, ð130Þ

which is bounded with respect to s, because kx ⊕ syk
⟶ kx + yk as s⟶∞. Thus, we can apply Lemma 24
by putting aj = xj + yj, ujðsÞ = st jðsÞ to obtain

f s x ⊕ syð Þ⟶ x + yð Þ · c ð131Þ

as s⟶∞, where c is a unique element in V defined by
the formula c =∑∞

j=1cjej. By taking y = 0 in the formula
just established, it is obvious that f sðxÞ⟶ x · c, so we
have

f s xð Þ ⊕ s f s yð Þ⟶ x · c + y · c,
r ⊗ s f s xð Þ⟶ r x · cð Þ

ð132Þ

as s⟶∞. Finally, it is easy to see

s r ⊗ 1
x
s

� �
· e j = s tanh r tanh−1 xk k

s

� �
xj
xk k ⟶ rxj: ð133Þ

We can also express as

r ⊗ 1
x
s
=〠

∞

j=1

⊕1

r j sð Þ ⊗ 1
ej
2 =〠

∞

j=1

⊕1

t j sð Þej: ð134Þ

Then, a similar argument for the addition shows that
st jðsÞ⟶ rxj, and hence, we can apply Lemma 24 to
obtain

f s r ⊗ sxð Þ =〠
∞

j=1

⊕s

cj ⊗ sst j sð Þ
� �

⟶ 〠
∞

j=1
cjrxj = rxð Þ ⋅ c ð135Þ

as s⟶∞.
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