Research Article

Pseudodifferential Operators on Weighted Hardy Spaces

Yu-long Deng1,2 and Shun-chao Long1,3

1School of Mathematics and Computational Science, Xiangtan University, Xiangtan 411105, China
2Institute of Computational Mathematics, School of Science, Hunan University of Science and Engineering, Yongzhou 425199, China

Correspondence should be addressed to Yu-long Deng; yuldeng@163.com and Shun-chao Long; sclong@xtu.edu.cn

Received 25 December 2019; Accepted 8 January 2020; Published 11 March 2020

Academic Editor: Eva A. Gallardo Gutiérrez

Copyright © 2020 Yu-long Deng and Shun-chao Long. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We study two sufficient conditions for the boundedness of a class of pseudodifferential operators T with symbols in the H"olmander class $S^{m}_{p,\delta}(\mathbb{R}^n)$ on weighted Hardy spaces $H^1_\omega(\mathbb{R}^n)$, where ω belongs to Muckenhoupt class A_∞. The first one is an estimate from $H^1_\omega(\mathbb{R}^n)$ into $L^1(\mathbb{R}^n)$. We get a better range of admissible p and m. The second one is a weighted version bounded for the operators T on $H^1_\omega(\mathbb{R}^n)$, and it is an addition to the literature.

1. Introduction

The purpose of this paper is to study some sufficient conditions for the boundedness of pseudodifferential operators T on weighted Hardy space $H^1_\omega(\mathbb{R}^n)$, where the operators T have symbols in the H"olmander class $S^{m}_{p,\delta}(\mathbb{R}^n)$. As in [1], for $m \in \mathbb{R}$ and $\rho, \delta \in [0, 1]$, a symbol $a(x, \xi) \in S^{m}_{p,\delta}(\mathbb{R}^n)$ is a smooth function defined on $\mathbb{R}^n \times \mathbb{R}^n$ such that

$$|\partial_x^\alpha \partial_{\xi}^\beta a(x, \xi)| \leq C_{\alpha,\beta} (1 + |\xi|)^{m-p|\beta|+\delta|\alpha|}$$

holds for all multi-indices $\alpha, \beta \in \mathbb{N}^n$, where $C_{\alpha,\beta}$ is independent of x and ξ. We now assume that the symbol $a(x, \xi)$ is smooth in both the spatial variable x and the frequency variable ξ.

Given $f \in C_0^\infty(\mathbb{R}^n)$, the pseudodifferential operator $T \in \mathcal{L}_{p,\delta}$ associated with the symbol $a(x, \xi) \in S^{m}_{p,\delta}(\mathbb{R}^n)$ is given by

$$Tf(x) = \int_{\mathbb{R}^n} a(x, \xi) e^{2\pi i x \cdot \xi} \tilde{f}(\xi) d\xi,$$

where \tilde{f} denotes the Fourier transform of f. Moreover, we can express T by a kernel $K(x, y)$ as (see, e.g., [2])

$$Tf(x) = \int K(x, y) f(y) dy.$$

Pseudodifferential operators play an important role in the theory of partial differential equations. It is well known that the Hardy spaces $H^p(\mathbb{R}^n)$ coincide with the Lebesgue spaces $L^p(\mathbb{R}^n)$ when $p > 1$. The L^p and weighted L^p boundedness of the operator $T \in \mathcal{L}_{p,\delta}$ have been extensively studied. We refer to [1, 2, 3, 4] for the L^p bounds and [5, 6, 7, 8] for the weighted L^p bounds.

For $p \in (0, 1]$, there is an estimate from $L^1(\mathbb{R}^n)$ into weak $L^1(\mathbb{R}^n)$ for the pseudodifferential operator $T \in \mathcal{L}_{p,\delta}$ (cf. [5]). As known, the Hardy space $H^p(\mathbb{R}^n)$ is an advantageous substitute for $L^p(\mathbb{R}^n)$. The behavior of the pseudodifferential operator T on $H^p(\mathbb{R}^n)$ has attracted a lot of interest. For example, Alvarez and Hounie [5] have found that the pseudodifferential operator T with symbol in $S^{m}_{p,\delta}(\mathbb{R}^n)$ is bounded from $H^1(\mathbb{R}^n)$ into $L^1(\mathbb{R}^n)$, where $0 < \rho \leq 1$, $0 \leq \delta < 1$ and $m \leq -(n(1-\rho))/2$. Hounie and Kapp [9] have shown that the operator T with $0 \leq \delta \leq \rho < 1$ and $m = -(n(1-\rho))/2$ is bounded from the local Hardy space $h^1(\mathbb{R}^n)$ into $L^1(\mathbb{R}^n)$. Yabuta [10] has proved the operator T involving a modulus of continuity $\omega(t)$ is bounded from $H^1(\mathbb{R}^n)$ into $L^1(\mathbb{R}^n)$.

The bounds of the pseudodifferential operator T from the weighted Hardy space $H^1_\omega(\mathbb{R}^n)$ into the weighted Lebesgue space $L^1_\omega(\mathbb{R}^n)$ have also been studied. Yabuta [11] has shown that the operator T is bounded from $H^1_\omega(\mathbb{R}^n)$ into $L^1_\omega(\mathbb{R}^n)$, where $T \in \mathcal{L}_{p,\delta}$ and $\omega \in A_1$. In view of this, it is natural to look for a wide range of operator T in $\mathcal{L}_{p,\delta}$ to study the bounds on the weighted Hardy space $H^1_\omega(\mathbb{R}^n)$.
In this paper, we establish two estimates for the pseudodifferential operator T with symbols in $S^m_{ρ,δ}(R^n)$. The first one is an estimate from $H^1_w(R^n)$ into $L^1_w(R^n)$. We extend the result in Yabuta [11] to $ω ∈ A_p$ with $1 ≤ p < 1 + (ε/n)$ and the operator T with $0 < ρ ≤ 1$, $0 ≤ δ < 1$, and $−(n+1) < m ≤ −(n+1)(1−p)$. Our first main result is stated as follows.

Theorem 1. Let $ε = \min[1, (1 + m + n/p)]$, $p ∈ [1, 1 + (ε/n)]$, $ω ∈ A_p$, and $T ∈ S^m_{ρ,δ}(R^n)$ with $0 < ρ ≤ 1$, $0 ≤ δ < 1$. If $−(n+1) < m ≤ −(n+1)(1−p)$, then T is bounded from $H^1_w(R^n)$ into $L^1_w(R^n)$, i.e., there exists a constant $C > 0$ such that

$$\|TF\|_{L^1_w(R^n)} ≤ C\|f\|_{H^1_w(R^n)}. \quad (4)$$

The second one is an estimate on weighted Hardy spaces $H^1_w(R^n)$ for the pseudodifferential operator T. It is well known that under certain conditions on $m, ρ, δ$, the operator T is bounded on $h^1(R^n)$ (cf. [9, 12]). Alvarez and Hounie [5] have found that the pseudodifferential operator T is bounded on $H^1(R^n)$, where $T ∈ S^m_{ρ,δ}(R^n)$ with $0 < ρ ≤ 1$, $0 ≤ δ < 1$, and $m ≤ −\frac{λ}{2}$. If $−(n+1) < m ≤ −(n+1)(1−p)$, then T is bounded from $H^1_w(R^n)$ into $L^1_w(R^n)$. We now state our second main result.

Theorem 2. Let $μ = ((1 + m + n)/m) − n$, $p ∈ [1, 1 + m/n]$), $ω ∈ A_p$, and $T ∈ S^m_{ρ,δ}(R^n)$ with $0 < ρ ≤ 1$, $0 ≤ δ < 1$. Assume $pn − (n+1) < m ≤ −(n+1)(1−p)$ and $T^*1 = 0$. Then, T is bounded on $H^1_w(R^n)$, i.e., there exists a constant $C > 0$ such that

$$\|TF\|_{H^1_w(R^n)} ≤ C\|f\|_{H^1_w(R^n)}. \quad (5)$$

The remainder of this paper is organized as follows. In Section 2, we present some definitions and well-known results we use later. The aim of Section 3 is to set up the estimate from $H^1_w(R^n)$ into $L^1_w(R^n)$ for pseudodifferential operators T in $S^m_{ρ,δ}(R^n)$. We develop a method to handle $\|T(a)\|_{L^1_w(R^n)}$ (see Proposition 1). The aim of Section 4 is to establish the estimate on weighted Hardy spaces $H^1_w(R^n)$ for pseudodifferential operators T in $S^m_{ρ,δ}(R^n)$.

Most of the notations we use are standard. C denotes a constant that may change from line to line and we write $a ≤ b$ as shorthand for $a ≤Cb$. If $a ≤ b$ and $b ≤ a$, we mean $a = b$. For a measurable set A, $|A|$ denotes the Lebesgue measure of A and $χ_A$ the characteristic function. B will always denote a ball, and $tB(t > 0)$ denotes the ball B dilated by t.

2. Notations and Auxiliary Lemma

In this section, we first present an auxiliary lemma about the pseudodifferential operator T associated with the characteristic function of A and $χ_A$ the characteristic function. B will always denote a ball, and $tB(t > 0)$ denotes the ball B dilated by t.
Let \(\omega \in A_p \) and \(p \geq 1 \). Then, there exists a constant \(C > 0 \) such that
\[
C \left(\frac{|E|}{|B|} \right)^p \leq \frac{\omega(E)}{\omega(B)}
\]
for all balls \(B \) and measurable subsets \(E \subset B \).

Given a weight function \(\omega \) on \(\mathbb{R}^n \), we denote by \(L^p_\omega(\mathbb{R}^n) \) the weighted Lebesgue space of all functions \(f \) satisfying
\[
\|f\|_{L^p_\omega(\mathbb{R}^n)} = \left(\int_{\mathbb{R}^n} |f(x)|^p \omega(x)dx \right)^{1/p} < \infty.
\]
When \(p = \infty \), \(L^\infty_\omega(\mathbb{R}^n) \) is \(L^\infty(\mathbb{R}^n) \). Analogous to the classical Hardy space, the weighted Hardy space \(H^1_\omega(\mathbb{R}^n) \) can be defined in terms of maximal functions.

Definition 1. Let \(\omega \in A_\infty \). The weighted Hardy space \(H^1_\omega(\mathbb{R}^n) \) is defined by
\[
H^1_\omega(\mathbb{R}^n) = \left\{ f \in \mathcal{S}'(\mathbb{R}^n) : \phi^*(f)(x) = \sup_{r > 0} \phi_r * f(x) \in L^1_\omega(\mathbb{R}^n) \right\},
\]
where \(\phi \in \mathcal{S}(\mathbb{R}^n) \) is a fixed function with \(\int \phi dx \neq 0 \) and \(\phi_r(y) = (1/r^n)\phi(y/t) \) for any \(t > 0 \). Moreover, we define
\[
\|f\|_{H^1_\omega(\mathbb{R}^n)} = \|\phi^*(f)\|_{L^1_\omega(\mathbb{R}^n)}.
\]

Remark 5. Definition 1 is independent of the choice of \(\phi \) (see [14]).

Definition 2. Let \(\omega \) be a weight with the critical index \(q_\omega \). An \((1,\infty)\)-atom with respect to \(\omega \) is a function \(a \) satisfying
\[
supp(a) \subset B \quad \|a\|_{L^\infty} \leq \omega(B)^{-1},
\]
and \(\int a(x)x^\alpha dx = 0 \) for every multi-index \(\alpha \) with \(|\alpha| \leq |q_\omega - 1| \).

The Hardy space \(H^1_\omega(\mathbb{R}^n) \) is a linear space spanned by all \((1,\infty)\)-atoms with respect to \(\omega \). Namely, \(f \in H^1_\omega(\mathbb{R}^n) \) if and only if \(f \) can be written as (see [13])
\[
f = \sum_{j=1}^\infty a_j \lambda_j,
\]
in the sense of \(\mathcal{S}' \), where each \(a_j \) is an \((1,\infty)\)-atom with respect to \(\omega \) and \(\lambda_j \) satisfies
\[
\sum_j |\lambda_j| < \infty.
\]

Moreover, \(\|f\|_{H^1_\omega(\mathbb{R}^n)} = \inf \{ \sum_{j=1}^\infty |\lambda_j| : f = \sum_{j=1}^\infty a_j \lambda_j \} \).

Definition 3. Let \(T \) be a pseudodifferential operator in \(\mathcal{L}^m_{\rho,\delta} \). We say \(T^*1 = 0 \) if \(\| \int_{\mathbb{R}^n} T(a(x))^* dx \| = 0 \) for all \(a \in L^\infty(\mathbb{R}^n) \) with compact support and \(\int_{\mathbb{R}^n} a(x) dx = 0 \).

3. The Proof of Theorem 1

In this section, we prove that the pseudodifferential operators \(T \) in \(\mathcal{L}^m_{\rho,\delta} \) are bounded from \(H^1_\omega(\mathbb{R}^n) \) into \(L^1_\omega(\mathbb{R}^n) \).

Proposition 1. Let \(\omega \in A_p \), \(p \in [1, \infty) \) and \(\varepsilon = \min \{1, (1 + m + n/p)\} \). Assume pseudodifferential operator \(T \in \mathcal{L}^m_{\rho,\delta} \) with \(0 < \rho \leq 1 \), \(0 < \delta < 1 \), and \(-(n+1) < m \leq -(n+1)(1-\rho) \). Then, there exists a constant \(C > 0 \) such that
\[
\|Ta\|_{L^1_\omega(2^{k+1}B,2^kB)} \leq C 2^{-k(\varepsilon+n(1-\rho))},
\]
holds for all \((1,\infty)\)-atoms \(a \) with respect to \(\omega \), where \(\text{supp}(a) \subset B = B(x_0,r) \).

Proof. Inspired by the proof of Lemma 3.2 in [15], we consider two cases about the radius \(r \).

Case 1. When \(r \geq 1 \). For every \(x \in 2^{k+1}B \setminus 2^kB \) and \(y \in B(x_0,r) \), we have
\[
|x-y| \geq |x-x_0| - |y-x_0| \geq 2^k r - r \geq 1.
\]

Hence, by (8) and properties of \((1,\infty)\)-atoms with respect to \(\omega \), we have
\[
|Ta(x)| = \left| \int_{\mathbb{R}^n} K(x,y) a(y) dy \right| \leq \int_{B} |K(x,y) - K(x,x_0)| |a(y)| dy
\]
\[
\leq C \int_{B} \frac{1}{|x-y|^\rho + 1} |a(y)| dy \leq C \frac{1}{|x-x_0|^\rho + 1} \int_{B} |a(y)| dy
\]
\[
\leq C 2^{-k} \frac{|B|}{2^kB} \omega(B)^{-1},
\]
for all \(x \in 2^{k+1}B \setminus 2^kB \). Thus, \(\|Ta\|_{L^1_\omega(2^{k+1}B,2^kB)} \leq C 2^{-k} \frac{|B|}{2^kB} \omega(B)^{-1} \leq C 2^{-k(\varepsilon+n(1-\rho))} \).

Case 2. When \(0 < r < 1 \). For every \(x \in (2^{k+1}B) \setminus 2kB \) and \(y \in B(x_0,r) \), by moments condition, we have
\[
|Ta(x)| = \left| \int_{\mathbb{R}^n} K(x,y) a(y) dy \right| \leq \int_{B} |K(x,y) - K(x,x_0)| |a(y)| dy.
\]

By the mean value theorem, \(1 + m + n > 0 \), and (7), we have
\[
|Ta(x)| \leq C \int_{B} \frac{|y-x_0|}{|x-x_0|^{1+m+n/p}} |a(y)| \leq C \frac{r}{(2^k)^{1+m+n/p}} \frac{|B|}{\omega(B)},
\]
where we take \(M = 1 \) and use the fact that \(|x - \xi| \sim |x - x_0| \) if \(\xi \in B(x_0,r) \). Let us now consider two subcases.

Subcase 1. If \((2^k-1)r \geq 1\), then, for any \(y \in B(x_0,r) \) and \(x \in 2^{k+1}B \setminus 2^kB \),
\[
|x-y| \geq |x-x_0| - |y-x_0| \geq (2^k - 1)r \geq 1.
\]

Similar to the case \(r \geq 1 \), we get
\[|Ta(x)| \leq C \frac{|B|}{|2^k B|} \frac{r}{(2^k r)^{1+m+n+p}} \omega(B)^{-1}. \]

(24)

Since \(0 < r < 1\) and \(2^k r > 1\), we have

\[
\frac{r}{(2^k r)^{1+m+n+p}} \leq \begin{cases} \frac{1}{2}, & \frac{1 + m + n}{p} \leq 1; \\
\frac{1}{2^k}, & \frac{1 + m + n}{p} \geq 1.
\end{cases}
\]

(25)

Noting \(\epsilon = \min\{1, (1 + m + n/p)\}\), it is easy to see \(|Ta(x)| \leq C 2^{-k} \frac{|B|}{|2^k B|} \omega(B)^{-1}\). This implies (17).

Subcase 2. If \((2^k - 1)r < 1\). Since \(m \leq -(n + 1)(1 - \rho)\), (22) yields

\[
\|Ta\|_{L^p_\omega(2^{k+1}B, 2^k B)} \leq \frac{C}{(2^k r)|B|^{1+m+n+p}} \omega(2^{k+1}B) \omega(B) \leq C 2^{-k} \frac{1}{(p-1)C}.
\]

(26)

In view of (20) and (26), we finish the proof of Proposition 1.

Proof. The proof of Theorem 1 is motivated by the atomic decomposition for \(H^1_\omega(\mathbb{R}^n)\). Let \(f \in H^1_\omega(\mathbb{R}^n)\). We obtain an atomic decomposition of \(f\) satisfying (15) and (16). So, to prove that the pseudodifferential operators \(T \) are bounded from \(H^1_\omega(\mathbb{R}^n)\) into \(L^1_\omega(\mathbb{R}^n)\), it suffices to show that for each \((1, \infty)\)-atom \(a\) with respect to \(\omega\), we have \(Ta \in L^1_\omega(\mathbb{R}^n)\). Recall that an \((1, \infty)\)-atom \(a\) with respect to \(\omega\) is a function satisfying

\[
\|a\|_{L^\infty} \leq \omega(B)^{-1},
\]

(27)

for some ball \(B = B(x_0, r)\).

Now, let \(a\) be such an atom and write

\[
\int |Ta| \omega = \int_{2B} |Ta| \omega + \int_{(2B)^c} |Ta| \omega = I_1 + I_2.
\]

(28)

It is easy to estimate the term \(I_1\). Using Hölder inequality and \(L^2_\omega\)-boundedness for the pseudodifferential operator \(T\) (see Remark 1), we get

\[
I_1 \leq \left(\int_{2B} |Ta|^2 \omega \right)^{1/2} \left(\int_{2B} \omega \right)^{1/2} \leq C \|Ta\|_{L^2_\omega(2^k B)} \omega(2B)^{1/2} \leq C \|a\|_{L^2_\omega(2^k B)} \omega(B)^{1/2} \leq C,
\]

(29)

where \(C\) is independent of \(a\).

For the term \(I_2\), we have

\[
I_2 = \int_{(2B)^c} |Ta| \omega \leq \int_{(2B)^c} \sum_{k=1}^{\infty} |Ta| \omega = \sum_{k=1}^{\infty} \|Ta\|_{L^1_\omega(2^{k+1}B, 2^k B)}.
\]

(30)

By Proposition 1, we get

\[
I_2 \leq \sum_{k=1}^{\infty} C 2^{-k} |B|^{1+m+n} \omega(B)^{-1} \leq C,
\]

(31)

since \(1 \leq p < 1 + (\epsilon/n)\). Combing (29) and (31), we finish the proof of Theorem 1.

\[
\square
\]

4. The Proof of Theorem 2

In this section, we establish the weighted norm inequality on weighted Hardy spaces \(H^1_\omega(\mathbb{R}^n)\) for pseudodifferential operators \(T\) in \(\mathcal{L}^m_{\rho, \delta}\).

Proof. Without loss of generality, we assume \(1 \leq p < 1 + (\mu/n)\), where \(\mu = (1 + m + n/p) - n\). Fix \(\phi \in \mathcal{S}(\mathbb{R}^n)\) and \(\int_{\mathbb{R}^n} \phi(x) \omega(x) dx \neq 0\). By (15), it is sufficient to show that for each \((1, \infty)\)-atom \(a\) with respect to \(\omega\), \(\| (Ta)^* \|_{L^1_\omega(\mathbb{R}^n)} \leq C\) with \(C\) independent of \(a\). In order to do this, one can suppose \(\text{supp}(a) \subset B = B(x_0, r)\) and write

\[
\| (Ta)^* \|_{L^1_\omega(\mathbb{R}^n)} = \int_{|x-x_0| < 4r} |(Ta)^*(x)| \omega(x) dx + \int_{|x-x_0| \geq 4r} |(Ta)^*(x)| \omega(x) dx
\]

(32)

\[
= I_1 + I_2.
\]

For the term \(I_1\), by Hölder inequality, \(L^2_\omega\)-boundedness of the maximal function \((Ta)^*\), \(L^2_\omega\)-boundedness of the pseudodifferential operator \(T\), and (14), we get

\[
I_1 \leq \left(\int_{|x-x_0| < 4r} |(Ta)^*(x)|^2 \omega(x) dx \right)^{1/2} \left(\int_{|x-x_0| < 4r} \omega(x) dx \right)^{1/2} \leq C \|a\|_{L^2_\omega(2^k B)} \omega(B(x_0, 4r))^{1/2} \leq C,
\]

(33)

where \(C\) is independent of \(a\).

To estimate \(I_2\), we first estimate \((Ta)^*(x)\) for \(|x-x_0| > 4r\). For any \(t > 0\), since \(T^*1 = 0\) (see Definition 3), we have

\[
|Ta * \phi_t(x)| = \left| \int_{\mathbb{R}^n} Ta(y) \frac{1}{t^n} \phi_t \left(\frac{x-y}{t} \right) dy \right| \leq \int_{\mathbb{R}^n} Ta(y) \frac{1}{t^n} \phi \left(\frac{x-y}{t} \right) dy
\]

\[
\leq \frac{1}{t^n} \int_{|y-x| < 2r} |Ta(y)| \omega(y) dy \leq C \|a\|_{L^2_\omega(B(x_0, 2r))} \omega(B(x_0, 2r)) \leq C \|a\|_{L^2_\omega(2^k B)} \omega(B(x_0, 2r)) \leq C,
\]

(34)

For the term \(E_1\), by the mean value theorem and Hölder’s inequality, we have
\[E_1 \leq \frac{1}{m^{r+1}} \|Ta\|_{L^2(\mathbb{R}^n)} \times \left(\int_{|y-x_0| < 2r} \|\nabla \phi \left(\frac{x-x_0 - y(y-x_0)}{t} \right)\|_2^2 \, dy \right)^{1/2} \]
\[\leq C \frac{\rho^{r+1}}{|x-x_0|^{m+1} \omega(B)} \]
(35)

where \(\rho \in (0, 1) \) depends on \(x, y, \) and \(x_0, \) and \(\nabla = ((\partial/\partial x_1), \ldots, (\partial/\partial x_n)) \). Here, we use the inequalities
\[\left| x - x_0 - y(y-x_0) \right| \leq |x-x_0| - |y-y_0| \leq |x-x_0| - |y-y_0| \geq |x-x_0|/2, \]
(36)

and \(|x-x_0 - y(y-x_0)| - |x-x_0| \geq y |y-y_0| \geq |x-x_0| - |y-y_0| \geq |x-x_0|/2, \) and \(L^2 \)-boundedness of the pseudodifferential operator \(T \) (see Lemma 3).

To estimate \(E_2 \) and \(E_3 \), we first estimate \(Ta(y) \) when \(|y-x_0| > 2r \) and consider two cases about \(r \).

Case 3. If \(r > 1 \), then for every \(y \in \mathbb{R}^n \setminus B(x_0, 2r) \) and \(z \in B \), we have \(|y-z| \geq |y-x_0| - |z-x_0| \geq r \). Hence, by (8), we have
\[\|Ta(y)\| = \int_{\mathbb{R}^n} K(y, z) a(z) \, dz \leq \int_B |K(y, z)| |a(z)| \, dz \]
\[\leq C \left(\frac{1}{|y-z|^{m+1}} \|a\|_{L^\infty} \right) \, dz \]
\[\leq C \frac{1}{|y-x_0|^{m+1}} |a|_{L^\infty} \, |B| \]
\[\leq C \frac{\rho^{r+1}}{|y-x_0|^{m+1} \omega(B)} \]
(37)

Case 4. In the case of \(0 < r < 1 \), we have \(\int_{|y-z| < 2} |a(z)| \, dz = 0 \). Thus, for every \(y \in \mathbb{R}^n \setminus B(x_0, 2r) \), from \(1 + m + n > mp > 0 \), (7) yields
\[\|Ta(y)\| = \left[\int_{B} |K(y, z) - K(y, x_0)| |a(z)| \, dz \right] \]
\[\leq \int_B \left| K(y, z) - K(y, x_0) \right| |a(z)| \, dz \]
\[\leq C \left(\frac{1}{|y-x_0|^{1+mp+1}} \|a\|_{L^\infty} \right) \, dz \]
\[\leq C \frac{r}{|y-x_0|^{1+mp+1} \omega(B)} \]
(38)

where we use the fact that \(|y-x| \sim |y-x_0| \) if \(x \in B(x_0, r) \) and \(|y-x_0| > 2r \).

Let us now continue to estimate \(E_2 \). When \(r \geq 1 \), using the mean value theorem and (37), we have
\[E_2 = \frac{1}{m^{r+1}} \int_{2r \leq |y-x_0| \leq |x-x_0|/2} \|Ta(y)\|_{L^2(\mathbb{R}^n)} \times \left(\int_{|y-x_0| < 2r} \|\nabla \phi \left(\frac{x-x_0 - y(y-x_0)}{t} \right)\|_2^2 \, dy \right)^{1/2} \]
\[\leq C \frac{\rho^{r+1}}{|x-x_0|^{m+1} \omega(B)} \int_{2r \leq |y-x_0| \leq |x-x_0|/2} \frac{1}{\omega(B)} \, dy \]
\[\leq C \frac{\rho^{r+1}}{|x-x_0|^{m+1} \omega(B)} \ln \left(\frac{|x-x_0|}{4r} \right) \]
(39)

Here, we use the fact that \(|x-x_0 - y(y-x_0)| \sim |x-x_0| \) under the condition of \(2r \leq |y-x_0| \leq (|x-x_0|/2) \).

Similarly, in the case of \(0 < r < 1 \), by the moments condition for \(a \), the mean value condition, and (38), we get
\[E_2 = \frac{1}{m^{r+1}} \int_{2r \leq |y-x_0| \leq |x-x_0|/2} \left[\int_B (K(y, z) - k(y, x_0)) a(z) \, dz \right] \]
\[\times \left[\int_{|y-x_0| < 2r} \|\nabla \phi \left(\frac{x-x_0 - y(y-x_0)}{t} \right)\|_2^2 \, dy \right] \]
\[\leq C \frac{\rho^{r+1}}{|x-x_0|^{m+1} \omega(B)} \int_{2r \leq |y-x_0| \leq |x-x_0|/2} \frac{1}{\omega(B)} \, dy \]
\[\leq C \frac{r}{|x-x_0|^{1+mp+1} \omega(B)} \ln \left(\frac{|x-x_0|}{4r} \right), \quad \frac{1}{\omega(B)} \leq \frac{1 + m + n}{\rho} = n + 1; \]
\[\leq C \frac{r}{|x-x_0|^{1+mp+1} \omega(B)} \ln \left(\frac{|x-x_0|}{4r} \right), \quad \frac{1 + m + n}{\rho} < n + 1. \]
(40)

For the term \(E_3 \), we have
\[E_3 \leq \frac{1}{m} \int_{|y-x_0| \geq |x-x_0|/2} \|Ta(y)\|_{L^\infty} \left[\|\phi \left(\frac{x-x_0}{t} \right) \| + \|\phi \left(\frac{x-x_0}{t} \right) \| \right] \, dy. \]
(41)

Since \(|y-x_0| \geq (|x-x_0|/2) \), we have \(|x-y| \geq (|x-x_0|/2) \). Thus,
\[\frac{1}{m} \|\phi \left(\frac{x-x_0}{t} \right) \| \leq \frac{C}{|x-x_0|^m} \leq \frac{C}{|x-x_0|^m} \]
(42)

Meanwhile,
\[\frac{1}{m} \|\phi \left(\frac{x-x_0}{t} \right) \| \leq \frac{C}{|x-x_0|^m} \]
(43)

So, in the case of \(r \geq 1 \), by (37), (42), and (43), we have
\[E_3 \leq \mathcal{C} \int_{|y-x_0| \geq (|x-x_0|/2)} \frac{r^{\nu+1}}{|x-x_0|^{\nu+1} \omega(B)} \left| \frac{1}{y-x_0} \right| dy = \mathcal{C} \int_{|y-x_0| \geq (|x-x_0|/2)} \frac{r^{\nu+1}}{|x-x_0|^{\nu+1} \omega(B)} \left| \frac{1}{y-x_0} \right| dy = \mathcal{C} \int_{|y-x_0| \geq (|x-x_0|/2)} \frac{r^{\nu+1}}{|x-x_0|^{\nu+1} \omega(B)} dy = \mathcal{C} \int_{|y-x_0| \geq (|x-x_0|/2)} \frac{r^{\nu+1}}{|x-x_0|^{\nu+1} \omega(B)} dy \]

(44)

In the case of \(0 < r < 1\), by (38), (42), and (43), we have

\[E_3 \leq \mathcal{C} \int_{|y-x_0| \geq (|x-x_0|/2)} \frac{r^{\nu+1}}{|x-x_0|^{\nu+1} \omega(B)} \left| \frac{1}{y-x_0} \right| dy = \mathcal{C} \int_{|y-x_0| \geq (|x-x_0|/2)} \frac{r^{\nu+1}}{|x-x_0|^{\nu+1} \omega(B)} \left| \frac{1}{y-x_0} \right| dy = \mathcal{C} \int_{|y-x_0| \geq (|x-x_0|/2)} \frac{r^{\nu+1}}{|x-x_0|^{\nu+1} \omega(B)} dy = \mathcal{C} \int_{|y-x_0| \geq (|x-x_0|/2)} \frac{r^{\nu+1}}{|x-x_0|^{\nu+1} \omega(B)} \]

(45)

since \(\rho n < 1 + n + m \leq \rho (n + 1)\).

Let \(x \notin B(x_0, 4r)\). In view of (35), (39), (40), (44), and (45), we shall unify these formulas. Firstly, \(\rho n - (n+1) = \rho - (n+1) \leq (\rho - 1)(n+1) \implies \mu \in (0, 1]\). Secondly, \(x \notin B(x_0, 4r)\) implies \((r/|x-x_0|) < 1\). Therefore,

\[\frac{r^{\nu+1}}{|x-x_0|^{\nu+1} \omega(B)} \leq \frac{r^{\nu+1}}{|x-x_0|^{\nu+1} \omega(B)} \]

holds for any \(\mu \in (0, 1]\). Finally, since \(\ln x \leq (1/\alpha) x^\alpha\) holds for \(x \geq 1\) and \(\alpha \in (0, 1]\), we have

\[\frac{r^{\nu+1}}{|x-x_0|^{\nu+1} \omega(B)} \leq C \frac{r^{\nu+1}}{|x-x_0|^{\nu+1} \omega(B)} \left(\frac{|x-x_0|}{r} \right)^{1-\mu} = C \frac{r^{\nu+1}}{|x-x_0|^{\nu+1} \omega(B)} \]

(47)

Using these three facts, we have

\[|(Ta)^\alpha(x)| \leq C \frac{r^{\nu+1}}{|x-x_0|^{\nu+1} \omega(B)} \]

(48)

Note that \(p \leq 1 + (\mu/n)\). Then, in all cases, we have \(n + \mu > np\) and

\[I_2 \leq \mathcal{C} \int_{|x-x_0| > 4r} |x-x_0|^\nu + \mu \omega(x) dx = \mathcal{C} \int_{|x-x_0| > 4r} |x-x_0|^\nu + \mu \omega(x) dx \]

(49)

\[\leq \mathcal{C} \sum_{l=0}^{\infty} \frac{1}{2^{|l(n+\mu) - np|}} \]

\(\leq \mathcal{C}\).

This concludes the proof of Theorem 2.

\[\square \]

Data Availability

The authors confirm that no data were used to support this study. All references used were listed.

Disclosure

This study is a part of research work done by Yu-long Deng, a PhD student, under the supervision of the second author.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This study was partially supported by the School of Mathematics and Computational Science, Xiangtan University, China, and Institute of Computational Mathematics, School of Science, Hunan University of Science and Engineering, China. This study was also supported by the Scientific Research Projects of Hunan Education Department (18C1073). The article processing charge is shared by them.

References

