Research Article

On Fekete–Szegö Problems for Certain Subclasses of Analytic Functions Defined by Differential Operator Involving q-Ruscheweyh Operator

Abdullah Alsoboh and Maslina Darus

Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Malaysia

Correspondence should be addressed to Maslina Darus; maslina@ukm.edu.my

Received 5 July 2019; Accepted 28 August 2019; Published 8 January 2020

Academic Editor: Mitsuru Sugimoto

Copyright © 2020 Abdullah Alsoboh and Maslina Darus. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we define a new derivative operator involving q-Ruscheweyh differential operator using convolution. Using this new operator, we introduce two new classes of analytic functions and obtain the Fekete–Szegö inequalities.

1. Introduction

The applications of q-calculus are important and pivotal as they contributed worthy of noticed expansion in geometric function theory. In 1908, Jackson, was the first mathematician to develop the application of q-calculus in a systematic way [1, 2]. Then, Aral and Gupta [3] proposed q-analogue of Baskakov and Durrmeyer operator depending on q-calculus; Mohammed and Darus [4] defined a new operator involving the q-hypergeometric function. Some other applications of q-calculus are studied by the authors [5, 6] and Elhaddad et al. [7]. Recently, many mathematicians have worked intensively in this field (see [8–12]) and obtained various results.

Let \mathcal{A} be the class of functions $f(z)$ of the form

$$f(z) = z + \sum_{i=2}^{\infty} a_i z^i, \quad (z \in \mathbb{E}),$$

(1)

which are analytic in $\mathbb{E} = \{ z : z \in \mathbb{C}, |z| < 1 \}$ and we denote by \mathcal{S} the subclass of \mathcal{A} that are consisted of one-to-one (univalent) functions in \mathbb{E}.

The convolution of functions f as in (1.1) and $\Gamma(z) = z + \sum_{i=2}^{\infty} \gamma_i z^i$ will be:

$$(f * \Gamma)(z) = (\Gamma * f)(z) = z + \sum_{i=2}^{\infty} a_i \gamma_i z^i.$$

(2)

Let $f(z)$ and $r(z)$ are analytic functions in \mathbb{E}, then we say that f is subordinate to r denoted by $f(z) \prec r(z)$ in \mathbb{E}, if there exists a Schwarz function $\xi(z)$ which is analytic in \mathbb{E} with $\xi(0) = 0$ and $|\xi(z)| < 1 (z \in \mathbb{E})$ such that $f(z) = r(\xi(z))z \in \mathbb{E}$.

Now, we give some notations and definitions of the principal terms of q-calculus by assuming $0 < q < 1$, as follows:

(1) The q-number $[i]_q$ is defined by:

$$[i]_q = \begin{cases} \frac{1-q^i}{1-q} & (i \in \mathbb{C} \setminus \mathbb{N}), \\ 1 + q + q^2 + \ldots + q^{i-1} & (i \in \mathbb{N}). \end{cases}$$

(3)

(2) The q-factorial $[i]_q!$ is defined by:

$$[i]_q! = \begin{cases} [i]_q [i-1]_q \cdots [2]_q [1]_q & i = 2, 3, 4, \ldots, \\ 1 & i = 1. \end{cases}$$

(4)

(3) The q-derivative of a function f is defined by:

$$\partial_q f(z) = \begin{cases} \frac{f(z) - f(z/q)}{z^{1-q} - z} & z \in \mathbb{C}^*, \\ f'(0), & z = 0. \end{cases}$$

(5)

where $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ will be used throughout the article. As f given by (1), then

$$\partial_q f(z) = 1 + \sum_{i=2}^{\infty} [i]_q a_i z^{i-1}.$$

(6)
The authors in [6] introduced a q-differential operator $\mathcal{D}^m_{q,\alpha,\lambda,\mu} f(z)$ by:
\[
\mathcal{D}^m_{q,\alpha,\lambda,\mu} f(z) = z + \sum_{i=0}^{\infty} \binom{k-\lambda}{\alpha}(\delta - \mu)((i-\lambda)q-1 + 1)^m a_i z^i,
\]
where $(\delta, \kappa, \alpha, \mu \geq 0), \kappa > \lambda, \delta > \mu, m \in \mathbb{N}_q$.

In 2014, Aldweby and Darus in [9] introduced q-Ruscheweyh operator $\mathcal{R}_q^0 f(z)$ by:
\[
\mathcal{R}_q^0 f(z) = z + \sum_{i=0}^{\infty} \Omega_{\kappa,\lambda,\mu}(i\lambda q) a_i z^i,
\]
where
\[
\Omega_{\kappa,\lambda,\mu}(i\lambda q) = (k-\lambda)(\delta - \mu)((i-\lambda)q-1 + 1)^m [\delta - 1 + i\lambda q]^i [\delta - 1 + i\lambda q]! [\delta - 1 + i\lambda q]!
\]
Remarks.
(i) When $\delta = 0, \kappa = 1, \lambda = 0, \delta = 1, \mu = 0$, we get q-Szlagean differential operator introduced in [13].
(ii) When $\delta = 0, \kappa = 1, \lambda = 0, \delta = 1, \mu = 0, \text{and} \ q \rightarrow 1^-$, we get q-Szlagean differential operator introduced in [14].
(iii) When $\delta = 0, \beta = 1, \kappa = 0, \delta = 1, \mu = 0, \text{and} \ q \rightarrow 1$, then we get Al-Osbohi differential operator introduced in [15].
(iv) When $\delta = 0$ and $q \rightarrow 1^-$, we get Ramadan and Darus operator introduced in [16].
(v) When $\delta = 0$, we get Alsboh and Darus operator introduced in [6].
(vi) When $m = 0$, then we get q-Ruscheweyh operator introduced in [9].
(vii) When $m = 0$ and $q \rightarrow 1$, then we have Ruscheweyh operator introduced in [17].
(viii) When $m = 0, \delta = 1, \mu = 0, \lambda = 0, \text{and} \ q \rightarrow 1$, we get $D_q^0 f(z)$ [18].

Many subclases of analytic functions have been introduced by many different authors, for example, Ma and Minda [19], Ravichandran et al. [20], Seoudy and Aouf [12] and others. These works have inspired our introduction of the new subclasses $\mathcal{S}^{m,\alpha}_q(\Phi)$ and $\mathcal{C}^{m,\alpha}_q(\Phi)$ of \mathcal{A}, involving the differential operator $\mathcal{D}^{m,\alpha}_q,\kappa,\lambda,\mu,\lambda,\mu$ and the principle of subordination:

Definition 1. Let \mathcal{P} be the subclass of functions Φ which are analytic and univalent in \mathbb{E} and for which $\Phi(\mathbb{E})$ is convex with $\Phi(0) = 1$ and $\Re(\Phi(z)) < 0$ for $z \in \mathbb{E}$. A function $f \in \mathcal{A}$ is said to be in the class $f \in \mathcal{S}^{m,\alpha}_q(\Phi)$ if it satisfies the subordination condition:
\[
1 + \frac{1}{\Phi} \left(\frac{z \frac{d}{z} \mathcal{D}^{m,\alpha}_q f(z)}{\mathcal{D}^{m,\alpha}_q f(z) - 1} \right) < \Phi(z), \quad (\Re \in \mathbb{C}; \Phi \in \mathcal{P}).
\]

Definition 2. A function $f \in \mathcal{A}$ is said to be in the class $f \in \mathcal{C}^{m,\alpha}_q(\Phi)$ if it satisfies the subordination condition:
\[
1 + \frac{1}{\Phi} \left(\frac{\frac{d}{z} \mathcal{D}^{m,\alpha}_q f(z)}{\frac{d}{z} \mathcal{D}^{m,\alpha}_q f(z) - 1} \right) < \Phi(z), \quad (\Re \in \mathbb{C}; \Phi \in \mathcal{P}).
\]

2. Main Results

In this section, we obtain the Fekete–Szegö inequalities for the subclasses $\mathcal{S}^{m,\alpha}_q(\Phi)$ and $\mathcal{C}^{m,\alpha}_q(\Phi)$, by assuming $(\delta, \kappa, \lambda, \mu \geq 0), \kappa > \lambda, \delta > \mu, m \in \mathbb{N}_q, q \in \mathbb{C}$ and $\Phi \in \mathcal{P}$. In order to prove our results, we use the following lemmas of Ma and Minda [19].

Lemma 3. If $\mathcal{P}(z) = 1 + c_1 z + c_2 z^2 + c_3 z^3 + \ldots$ is a function with positive real part in the open unit disk \mathbb{E} and $\sigma \in \mathbb{C}$, then
\[
|c_2 - \sigma c_1^2| \leq 2 \max\{1; |2\sigma - 1|\}.
\]

Lemma 4. If $\mathcal{P}(z) = 1 + c_1 z + c_2 z^2 + c_3 z^3 + \ldots$ is a function with positive real part in \mathbb{E} and $\sigma \in \mathbb{C}$, then
\[
|c_2 - \sigma c_1^2| \leq \max\{|-\sigma + 2, \sigma \leq 0, 0 \leq \sigma \leq 1, 4\sigma - 2, \sigma \geq 1|.
\]

To get our results, we use the similar methods studied by Alsoboh and Darus [5], Elhaddad and Darus [11], and Seoudy and Aouf [12].

Theorem 5. Let $\phi(z) = 1 + B_1 z + B_2 z^2 + B_3 z^3 + \ldots$ with $(B_1 \neq 0)$, and f given by (1) belongs to $\mathcal{S}^{m,\alpha}_q(\Phi)$, then
\[
|a_3 - \sigma a_1^2| \leq \frac{\sigma B_1}{2(3q-1)\Omega^{m,\alpha}_q(3q-1)}
\]

\[
\max\left\{1, \frac{|B_2 + \sigma B_1|}{B_1} \left(1 - \left|\frac{3q-1}{12q-1}\Omega^{m,\alpha}_q(12q-1)^2 \sigma\right|\right)^2\right\}.
\]
Proof. Let \(f \in C_{\Phi}^m(\Phi) \), then there is a Schwartz function \(\xi \) which is analytic in \(\mathbb{E} \) with \(\xi(0) = 0 \), and \(|\xi(z)| < 1 \) in \(\mathbb{E} \), such that

\[
\frac{z \partial_z D_{q}^m f(z)}{D_{q}^m f(z)} = \Phi(\xi(z)).
\]

(16)

Now, we define the function \(\mathcal{P}(z) \) with \(\text{Re}(P(z)) > 0 \) and \(P(0) = 1 \) by:

\[
\mathcal{P}(z) = \frac{1 + \xi(z)}{1 - \xi(z)} = 1 + p_1 z + p_2 z^2 + p_3 z^3 + \ldots
\]

(17)

Since \(\xi(z) \) is a Schwartz function, therefore,

\[
\Phi(\xi(z)) = \Phi\left(\frac{\mathcal{P}(z) - 1}{\mathcal{P}(z) + 1} \right) = 1 + \frac{1}{2} B_1 p_1 z
\]

\[+ \frac{1}{2} \left(B_2 \left(p_2 - \frac{p_1^2}{2} \right) + B_1 \frac{p_1^2}{2} \right) z^2 + \ldots.
\]

(18)

Now, substitute (18) in (16), we get

\[
1 + \frac{1}{\mathcal{P}(z)} \left(\frac{z \partial_z D_{q}^m f(z)}{D_{q}^m f(z)} - 1 \right) = 1 + \frac{1}{2} B_1 p_1 z
\]

\[+ \frac{1}{2} B_2 \left(p_2 - \frac{p_1^2}{2} \right) z^2 + \ldots.
\]

(19)

From Equation (19), we get

\[
a_2 = \frac{B_1 p_1 \Phi}{2 |\mathcal{P}(z) - 1| \Omega_{\kappa,\lambda,\delta,\mu}^m(\mathcal{P}(z))}.
\]

(20)

and

\[
a_3 = \frac{\Phi B_1}{2 |\mathcal{P}(z) - 1| \Omega_{\kappa,\lambda,\delta,\mu}^m(\mathcal{P}(z))} \left(p_2 - \frac{1}{2} \left(1 - \frac{B_1}{B_2} \frac{p_1^2}{2} \right) p_1^2 \right).
\]

(21)

Therefore,

\[
a_3 - a_2^2 = \frac{\Phi B_1}{2 |\mathcal{P}(z) - 1| \Omega_{\kappa,\lambda,\delta,\mu}^m(\mathcal{P}(z))} \left(p_2 - \nu p_1^2 \right),
\]

(22)

where

\[
\nu = \frac{1}{2} \left[1 - \frac{B_2}{B_1} \frac{p_1^2}{2} - \nu p_1 \left(1 - \frac{\left(|\mathcal{P}(z)| - 1 \right) \Omega_{\kappa,\lambda,\delta,\mu}^m(\mathcal{P}(z)) }{\left(|\mathcal{P}(z)| - 1 \right) \Omega_{\kappa,\lambda,\delta,\mu}^m(\mathcal{P}(z))} \right) \right],
\]

(23)

by applying Lemma 3, we get our result. This completes the proof. \(\square \)

Next, we prove the following theorem for the subclass \(C_{\Phi}^m(\Phi) \).

Theorem 6. Let \(\Phi(z) = 1 + B_1 z + B_2 z^2 + B_3 z^3 + \ldots \) with \((B_1 \neq 0) \), and \(f \) given by (1) belongs to \(C_{\Phi}^m(\Phi) \), then

\[
|a_3 - a_2^2| \leq \frac{\Phi B_1}{2 |\mathcal{P}(z) - 1| \Omega_{\kappa,\lambda,\delta,\mu}^m(\mathcal{P}(z))} \left[1 + \frac{B_1}{B_2} \frac{p_1^2}{2} - \frac{\Phi B_1}{2 |\mathcal{P}(z) - 1| \Omega_{\kappa,\lambda,\delta,\mu}^m(\mathcal{P}(z))} \left(p_2 - \nu p_1^2 \right) \right].
\]

(31)

The result is sharp.
Corollary 8. Let \(\phi(z) = 1 + B_1 z + B_2 z^2 + B_3 z^3 + \ldots \) with \(B_1 \neq 0 \), and \(f \) given by (1) belong to \(\ell_{q\phi}(\phi) \), then

\[
|a_3 - a_{\sigma a_2^2}| \leq \frac{|B_1|}{[3, q]_1} \frac{|B_2|}{[3, q]_1 - 1} \left(1 + \left(\frac{[3, q]_1 - 1}{[2, q]_1} \right)^\sigma \right)
\]

(32)

The result is sharp.

For \(m = 0, \theta = 0 \) and taking \(q \to 1^- \) in Theorem 5, we obtain the following corollary:

\[
|a_3 - a_{\sigma a_2^2}| \leq \left(\frac{\Theta_{\sigma}^m}{\Omega_{\sigma}^m([2, q]_1)} \right)^\sigma \left(\left(\frac{1}{[3, q]_1 - 1} \right)^\sigma \left([2, q]_1 - 1 \right)^\sigma \right)
\]

where

\[
X_1 = \left(\frac{\Theta_{\sigma}^m}{\Omega_{\sigma}^m([2, q]_1)} \right)^\sigma \left(\left(\frac{1}{[3, q]_1 - 1} \right)^\sigma \left([2, q]_1 - 1 \right)^\sigma \right)
\]

(35)

\[
X_2 = \left(\frac{\Theta_{\sigma}^m}{\Omega_{\sigma}^m([2, q]_1)} \right)^\sigma \left(\left(\frac{1}{[3, q]_1 - 1} \right)^\sigma \left([2, q]_1 - 1 \right)^\sigma \right)
\]

(36)

Proof. Applying Lemma 4 to the Equations (22) and (23), we have three cases:

Case (1): If \(\sigma \leq X_1 \)

\[
|a_3 - a_{\sigma a_2^2}| \leq \frac{\Theta_{\sigma}^m}{\Omega_{\sigma}^m([2, q]_1)} \left(\left(\frac{1}{[3, q]_1 - 1} \right)^\sigma \left([2, q]_1 - 1 \right)^\sigma \right)
\]

(37)

Therefore,

\[
|a_3 - a_{\sigma a_2^2}| \leq \frac{\Theta_{\sigma}^m}{\Omega_{\sigma}^m([2, q]_1)} \left(\left(\frac{1}{[3, q]_1 - 1} \right)^\sigma \left([2, q]_1 - 1 \right)^\sigma \right)
\]

(38)

Corollary 9 (see [20]). Let \(\phi(z) = 1 + B_1 z + B_2 z^2 + B_3 z^3 + \ldots \) with \(B_1 \neq 0 \), and \(f \) given by (1) belong to \(\ell_{q\phi}(\phi) \), then

\[
|a_3 - a_{\sigma a_2^2}| \leq \frac{|B_1|}{[3, q]_1} \left(1 + \left(\frac{[3, q]_1 - 1}{[2, q]_1} \right)^\sigma \right)
\]

(33)

The result is sharp.

Next, by using Lemma 4, we obtain the following theorems:

Theorem 10. Let \(\phi(z) = 1 + B_1 z + B_2 z^2 + B_3 z^3 + \ldots \) with \(B_1 > 0, B_2 \geq 0 \) and \(f \) given by (1) belong to \(\ell_{q\phi}(\phi) \), then

\[
|a_3 - a_{\sigma a_2^2}| \leq \frac{|B_1|}{[3, q]_1} \left(1 + \left(\frac{[3, q]_1 - 1}{[2, q]_1} \right)^\sigma \right)
\]

(39)

Case (2): If \(X_1 \leq \sigma \leq X_2 \)

\[
|a_3 - a_{\sigma a_2^2}| \leq \frac{\Theta_{\sigma}^m}{\Omega_{\sigma}^m([2, q]_1)} \left(\left(\frac{1}{[3, q]_1 - 1} \right)^\sigma \left([2, q]_1 - 1 \right)^\sigma \right)
\]

(40)

Case (3): If \(\sigma \geq X_2 \)

\[
|a_3 - a_{\sigma a_2^2}| \leq \frac{\Theta_{\sigma}^m}{\Omega_{\sigma}^m([2, q]_1)} \left(\left(\frac{1}{[3, q]_1 - 1} \right)^\sigma \left([2, q]_1 - 1 \right)^\sigma \right)
\]

(41)

This completes our proof.

\[\square \]

Theorem 11. Let \(\phi(z) = 1 + B_1 z + B_2 z^2 + B_3 z^3 + \ldots \) with \(B_1 > 0, B_2 \geq 0 \) and \(f \) given by (1) belong to \(\ell_{q\phi}(\phi) \), then

\[
|a_3 - a_{\sigma a_2^2}| \leq \frac{|B_1|}{[3, q]_1} \left(1 + \left(\frac{[3, q]_1 - 1}{[2, q]_1} \right)^\sigma \right)
\]

(42)

This completes our proof.
where
\[
\psi_1 = \frac{(2|\eta|)^2((2|\eta| - 1)(\Omega_{\alpha, \lambda, \omega}^\mu(2|\eta|))^2)(qB_1^2 + (B_2 - B_1)(2|\eta| - 1))}{[3|\eta|(3|\eta| - 1)(\Omega_{\alpha, \lambda, \omega}^\mu(3|\eta|))}.
\]
(43)
\[
\psi_2 = \frac{(2|\eta|)^2((2|\eta| - 1)(\Omega_{\alpha, \lambda, \omega}^\mu(2|\eta|))^2)(qB_1^2 + (B_2 + B_1)(2|\eta| - 1))}{[3|\eta|(3|\eta| - 1)(\Omega_{\alpha, \lambda, \omega}^\mu(3|\eta|))}.
\]
(44)

Proof. Applying Lemma 4 to the Equations (29) and (30), then we have

Case (1): If \(\sigma \leq \psi_1 \)
\[
|a_1 - \sigma a_2|^2 \leq \frac{qB_1^2}{[3|\eta|(3|\eta| - 1)(\Omega_{\alpha, \lambda, \omega}^\mu(3|\eta|))}[2 - 4v],
\]
(45)
\[
\leq \frac{qB_1^2}{[3|\eta|(3|\eta| - 1)(\Omega_{\alpha, \lambda, \omega}^\mu(3|\eta|))}\left\{ \frac{B_2}{B_1} + \frac{B_1 \sigma}{[2|\eta| - 1] \left(1 - \left[\frac{3|\eta|(3|\eta| - 1)(\Omega_{\alpha, \lambda, \omega}^\mu(3|\eta|))}{(2|\eta|)^2(2|\eta| - 1)(\Omega_{\alpha, \lambda, \omega}^\mu(2|\eta|))^2} \right) \sigma \right) \right\},
\]
(46)

Case (2): If \(\psi_1 \leq \sigma \leq \psi_2 \)
\[
|a_1 - \sigma a_2|^2 \leq \frac{qB_1^2}{[3|\eta|(3|\eta| - 1)(\Omega_{\alpha, \lambda, \omega}^\mu(3|\eta|))}.
\]
(47)

Case (3): If \(\sigma \geq \psi_2 \)
\[
|a_1 - \sigma a_2|^2 \leq \frac{qB_1^2}{[2(2|\eta| - 1)(\Omega_{\alpha, \lambda, \omega}^\mu(2|\eta|))}(4v - 2),
\]
(48)
\[
|a_1 - \sigma a_2|^2 \leq \frac{qB_1^2}{[3|\eta|(3|\eta| - 1)(\Omega_{\alpha, \lambda, \omega}^\mu(3|\eta|))}\left\{ \frac{B_2}{B_1} + \frac{B_1 \sigma}{[2|\eta| - 1] \left(1 - \left[\frac{3|\eta|(3|\eta| - 1)(\Omega_{\alpha, \lambda, \omega}^\mu(3|\eta|))}{(2|\eta|)^2(2|\eta| - 1)(\Omega_{\alpha, \lambda, \omega}^\mu(2|\eta|))^2} \right) \sigma \right) \right\},
\]
(49)
\[
\leq \frac{qB_1^2}{[2|\eta| - 1] \left([3|\eta|(3|\eta| - 1)(\Omega_{\alpha, \lambda, \omega}^\mu(3|\eta|))\left(\sigma(3|\eta| - 1) + \frac{[2|\eta| - 1]}{[3|\eta|(3|\eta| - 1)(\Omega_{\alpha, \lambda, \omega}^\mu(3|\eta|))} \right) \right) - \frac{qB_1^2}{[3|\eta|(3|\eta| - 1)(\Omega_{\alpha, \lambda, \omega}^\mu(3|\eta|))}.
\]
(50)

This completes the proof.

When \(m = 0, \theta = 0 \) in Theorems 5 and 6, we obtain the Fekete–Szegö inequalities for the subclasses \(\mathcal{L}_{\alpha}(\phi) \) and \(\mathcal{C}_{\alpha}(\phi) \), respectively [12].

Corollary 12. Let \(\phi(z) = 1 + B_1 z + B_2 z^2 + B_3 z^3 + \ldots \) with \(B_1 > 0, B_2 \geq 0 \) and \(f \) given by (1) belong to \(\mathcal{L}_{\alpha}(\phi) \), with \(q > 0 \) then
\[
|a_3 - \sigma a_2|^2 \leq \frac{\phi_{\alpha}^\theta_{\alpha} + \phi_{\alpha}^\theta_{\alpha} \left(\frac{1}{1 - \left(\frac{3|\eta| - 1}{3|\eta|} \right)^2} \right) - \frac{\phi_{\alpha}^\theta_{\alpha}}{[3|\eta|(3|\eta| - 1)(\Omega_{\alpha, \lambda, \omega}^\mu(3|\eta|))} \left(\frac{2|\eta| - 1}{[3|\eta|(3|\eta| - 1)(\Omega_{\alpha, \lambda, \omega}^\mu(3|\eta|))} \right) \right)}{[3|\eta|(3|\eta| - 1)(\Omega_{\alpha, \lambda, \omega}^\mu(3|\eta|))}.
\]
(51)

The result is sharp.

Corollary 13. Let \(\phi(z) = 1 + B_1 z + B_2 z^2 + B_3 z^3 + \ldots \) with \(B_1 > 0, B_2 \geq 0 \) and \(f \) given by (1) belong to \(\mathcal{C}_{\alpha}(\phi) \), with \(q > 0 \) then
\[
|a_3 - \sigma a_2|^2 \leq \frac{\phi_{\alpha}^\theta_{\alpha} + \phi_{\alpha}^\theta_{\alpha} \left(\frac{1}{1 - \left(\frac{3|\eta| - 1}{3|\eta|} \right)^2} - \frac{\phi_{\alpha}^\theta_{\alpha}}{[3|\eta|(3|\eta| - 1)(\Omega_{\alpha, \lambda, \omega}^\mu(3|\eta|))} \right)}{[3|\eta|(3|\eta| - 1)(\Omega_{\alpha, \lambda, \omega}^\mu(3|\eta|))}.
\]
(52)

The result is sharp.

3. Conclusion

Fekete–Szegö problems have always been the main interests of many researchers in geometric function theory. Many studies related to Fekete-Szego revolved around classes of analytic normalised univalent functions. In this particular work, the Fekete–Szegö inequality is obtained for functions in more general classes denoted by \(\mathcal{L}^m_{\alpha}(\phi) \) and \(\mathcal{C}^m_{\alpha}(\phi) \), respectively, using a new differential operator associated with \(q \)-calculus.
Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Funding

The work here is supported by UKM grant: GUP-2019-032.

Acknowledgments

We would like to thank the referee for the suggestions given to improve the content of the article.

References
