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In this paper, the functional Quermassintegral of log-concave functions inℝn is discussed. We obtain the integral expression of the
ith functional mixed Quermassintegral, which is similar to the integral expression of the ith mixed Quermassintegral of convex
bodies.

1. Introduction

Let Kn be the set of convex bodies (compact convex subsets
with nonempty interiors) in ℝn, the fundamental Brunn-
Minkowski inequality for convex bodies states that for K , L
∈Kn, the volume of the bodies and of their Minkowski
sum K + L = fx + y : x ∈ K , y ∈ Lg is given by

V K + Lð Þ1/n ≥V Kð Þ1/n +V Lð Þ1/n, ð1Þ

with equality if and only if K and L are homothetic; namely,
they agree up to a translation and a dilation. Another geo-
metric quantity related to the convex bodies K and L is the
mixed volume. The most important result concerning the
mixed volume is Minkwoski’s first inequality:

V1 K , Lð Þ≔ 1
n
lim
t→0+

V K + tLð Þ − V Kð Þ
t

≥V Kð Þ n−1ð Þ/nV Lð Þ1/n,
ð2Þ

for K , L ∈Kn. In particular, when choosing L to be a unit
ball, up to a factor, V1ðK , LÞ is exactly the perimeter of K ,
and inequality (2) turns out to be the isoperimetric inequality
in the class of convex bodies. The mixed volume V1ðK , LÞ
admits a simple integral representation (see [1, 2]):

V1 K , Lð Þ = 1
n

ð
Sn−1

hLdSK , ð3Þ

where hL is the support function of L and SK is the area mea-
sure of K .

The Quermassintegrals WiðKÞði = 0, 1,⋯,nÞ of K , which
are defined by letting W0ðKÞ =VnðKÞ, the volume of K ;
WnðKÞ = ωn, the volume of the unit ball Bn

2 in ℝn and for
general i = 1, 2,⋯, n − 1,

Wn−i Kð Þ = ωn

ωi

ð
G i,n

voli Kjξi
� �

dμ ξið Þ, ð4Þ

where G i,n is the Grassmannian manifold of i-dimensional
linear subspaces of ℝn, dμðξiÞ is the normalized Haar mea-
sure onG i,n, Kjξi denotes the orthogonal projection of K onto
the i-dimensional subspaces ξi, and voli is the i-dimensional
volume on space ξi.

In the 1930s, Aleksandrov and Fenchel and Jessen (see [3,
4]) proved that for a convex body K in ℝn, there exists a reg-
ular Borel measure Sn−1−iðKÞ (i = 0, 1,⋯, n − 1) on Sn−1, the
unit sphere in ℝn, for K , L ∈Kn, the following representa-
tion holds

Wi K , Lð Þ = 1
n − i

lim
t→0+

Wi K + tLð Þ −Wi Kð Þ
ε

= 1
n

ð
Sn−1

hL uð ÞdSn−1−i K , uð Þ:
ð5Þ
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The quantity WiðK , LÞ is called the ith mixed Quermas-
sintegral of K and L.

In the 1960s, the Minkowski addition was extended to the
Lpðp ≥ 1Þ Minkowski sum hpK+pt·L = hpK + thpL: The extension

of the mixed Quermassintegral to the Lp mixed Quermassin-
tegral due to Lutwak [1], the Lp mixed Quermassintegral
inequalities, and the Lp Minkowski problem are established.
(See [2, 5–13] for more about the Lp Minkowski theory.)
The Lp mixed Quermassintegrals are defined by

Wp,i K , Lð Þ≔ p
n − i

lim
t→0+

Wi K+pt · L
� �

−Wi Lð Þ
t

, ð6Þ

for i = 0, 1,⋯, n − 1. In particular, for p = 1 in (6), it is
WiðK , LÞ, and Wp,0ðK , LÞ is denoted by VpðK , LÞ, which is
called the Lp mixed volume of K and L. Similarly, the Lp

mixed Quermassintegral has the following integral represen-
tation (see [1]):

Wp,i K , Lð Þ = 1
n

ð
Sn−1

hpL uð ÞdSp,i K , uð Þ: ð7Þ

The measure Sp,iðK , ·Þ is absolutely continuous with
respect to SiðK , ·Þ and has Radon-Nikodym derivative
dSp,iðK , ·Þ/dSiðK , ·Þ = hKð·Þ1−p: In particular, p = 1 in (7)
yields the representation (5).

Most recently, the interest in the log-concave functions
has been considerably increasing, motivated by the analogy
properties between the log-concave functions and the vol-
ume convex bodies in Kn. The classical Prékopa-Leindler
inequality (see [14–18]) firstly shows the connections of the
volume of convex bodies and log-concave functions. The
Blaschke-Santaló inequality for even log-concave functions
is established in [19, 20] by Ball (for the general case, see
[21–24]). The mean width for log-concave function is intro-
duced by Klartag and Milman and Rotem [25–27]. The affine
isoperimetric inequality for log-concave functions is proved
by Avidan et al. [28]. The John ellipsoid for log-concave
functions has been establish by Alonso-Gutiérrez et al. [29];
the LYZ ellipsoid for log-concave functions is established
by Fang and Zhou [30]. (See [31–37] for more about the per-
tinent results.)

Let f = e−u, g = e−v be log-concave functions, α, β > 0, the
“sum” and “scalar multiplication” of log-concave functions
are defined as

α · f ⊕ β · g≔ e−w, w∗ = αu∗ + βv∗, ð8Þ

where w∗ denotes as usual the Fenchel conjugate of the
convex function ω. The total mass integral Jð f Þ of f is
defined by Jð f Þ = Ð

ℝn f ðxÞdx: In paper [38] of Colesanti and
Fragalà, the quantity δJð f , gÞ, which is called as the first var-
iation of J at f along g, δJð f , gÞ = lim

t→0+
ðJð f ⊕ t · gÞ − Jð f ÞÞ/t,

is discussed. It has been shown that δJð f , gÞ is finite and has
the following integral expression:

δJ f , gð Þ =
ð
ℝn
v∗dμ fð Þ, ð9Þ

where μð f Þ is the measure of f on ℝn.
Inspired by the paper [38] of Colesanti and Fragalà, in

this paper, we define the ith functional Quermassintegrals
Wið f Þ as the i-dimensional average total mass of f :

Wi fð Þ≔ ωn

ωn−i

ð
Gn−i,n

Jn−i fð Þdμ ξn−ið Þ, i = 0, 1,⋯, n − 1,

ð10Þ

where Jið f Þ denotes the i-dimensional total mass of f
defined in Section 4, G i,n is the Grassmannian manifold of
ℝn, and dμðξn−iÞ is the normalized measure on G i,n. More-
over, we define the first variation ofWi at f along g, which is

Wi f , gð Þ = lim
t→0+

Wi f ⊕ t · gð Þ −Wi fð Þ
t

: ð11Þ

It is a natural extension of the Quermassintegral of con-
vex bodies in ℝn; we call it the ith functional mixed Quer-
massintegral. In fact, if one takes f = χK , and
dom ð f Þ = K ∈ℝn, then Wið f Þ turns out to be WiðKÞ, and
WiðχK , χLÞ equals toWiðK , LÞ. The main result in this paper
is to show that the ith functional mixed Quermassintegral has
the following integral expressions.

Theorem 1. Let f , g ∈A ′, be integrable functions, μið f Þ be
the i-dimensional measure of f , andWið f , gÞ be the ith func-
tional mixed Quermassintegral of f and g. Then,

Wi f , gð Þ = 1
n − i

ð
ℝn
hgjξn−i

dμn−i fð Þ, i = 0, 1,⋯, n − 1,

ð12Þ

where hgj∈n−i
is the support function of gj∈n−i .

The paper is organized as follows: In Section 2, we intro-
duce some notations about the log-concave functions. In Sec-
tion 3, the projection of a log-concave function onto subspace
is discussed. In Section 4, we focus on how we can represent
the ith functional mixed Quermassintegral Wið f , gÞ similar
as WiðK , LÞ. Owing to the Blaschke-Petkantschin formula
and the similar definition of the support function of f , we
obtain the integral representation of the ith functional mixed
Quermassintegral Wið f , gÞ.

2. Preliminaries

Let u : Ω→ ð−∞,+∞� be a convex function; that is,
uðð1 − tÞx + tyÞ ≤ ð1 − tÞuðxÞ + tuðyÞ for t ∈ ð0, 1Þ, where
Ω = fx ∈ℝn : uðxÞ ∈ℝg is the domain of u. By the convexity
of u,Ω is a convex set inℝn. We say that u is proper ifΩ ≠∅,
and u is of classC2

+ if it is twice differentiable on int ðΩÞ, with
a positive definite Hessian matrix. In the following, we define
the subclass of u:
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L = u : Ω→ −∞,+∞ð �: u is convex, low semicontinuous, lim
∥x∥→+∞

u xð Þ = +∞
� �

:

ð13Þ

Recall that the Fenchel conjugate of u is the convex func-
tion defined by

u∗ yð Þ = sup
x∈ℝn

x, yh i − u xð Þf g: ð14Þ

It is obvious that uðxÞ + u∗ðyÞ ≥ hx, yi for all x, y ∈Ω, and
there is an equality if and only if x ∈Ω and y is in the subdif-
ferential of u at x, which means

u∗ ∇u xð Þð Þ + u xð Þ = x,∇u xð Þh i: ð15Þ

Moreover, if u is a lower semicontinuous convex func-
tion, then also u∗ is a lower semicontinuous convex function,
and u∗∗ = u.

The infimal convolution of u and v fromΩ to ð−∞, +∞�
is defined by

u□v xð Þ = inf
y∈Ω

u x − yð Þ + v yð Þf g: ð16Þ

The right scalar multiplication by a nonnegative real
number α is

uαð Þ xð Þ≔
αu

x
α

� �
, if α > 0,

I 0f g, if α = 0:

8<
: ð17Þ

The following proposition below gathers some elemen-
tary properties of the Fenchel conjugate and the infimal con-
volution of u and v, which can be found in [38, 39].

Proposition 2. Let u, v : Ω→ ð−∞,+∞� be convex functions.
Then,

u□vð Þ∗ = u∗ + v∗ ð18Þ

(1) ðuαÞ∗ = αu∗, α > 0

(2) dom ðu□vÞ = dom ðuÞ + dom ðvÞ
(3) it holds u∗ð0Þ = −inf ðuÞ; in particular, if u is proper,

then u∗ðyÞ > −∞; inf ðuÞ > −∞ implies u∗ is proper

The following proposition about the Fenchel and Legen-
dre conjugates is obtained in [39].

Proposition 3 (see [39]). Let u : Ω→ ð−∞,+∞� be a closed
convex function, and set C ≔ int ðΩÞ, C∗ ≔ int ðdom ðu∗ÞÞ.
Then, ðC , uÞ is a convex function of Legendre type if and only
if C∗, u∗ is. In this case, ðC∗, u∗Þ is the Legendre conjugate of
ðC , uÞ (and conversely). Moreover, ∇u≔C →C∗ is a contin-
uous bijection, and the inverse map of ∇u is precisely ∇u∗.

A function f : ℝn → ð−∞,+∞� is called log-concave if for
all x, y ∈ℝn and 0 < t < 1, we have f ðð1 − tÞx + tyÞ ≥ f 1−tðxÞ
f tðyÞ: If f is a strictly positive log-concave function on ℝn,
then there exists a convex function u : Ω→ ð−∞,+∞� such
that f = e−u. The log-concave function is closely related to the
convex geometry of ℝn. An example of a log-concave function
is the characteristic function χK of a convex body K in ℝn,
which is defined by

χK xð Þ = e−IK xð Þ =
1, if x ∈ K ,
0, if x ∉ K ,

(
ð19Þ

where IK is a lower semicontinuous convex function, and the
indicator function of K is

IK xð Þ =
0, if x ∈ K ,
∞, if x ∉ K:

(
ð20Þ

In the later sections, we also use f to denote f being
extended to ℝn:

�f =
f , x ∈Ω,

0, x ∈
Rn

Ω
:

8<
: ð21Þ

Let A = f f : ℝn → ð0,+∞�: f = e−u, u ∈Lg be the sub-
class of f in ℝn. The addition and multiplication by nonnega-
tive scalars in A are defined by the following (see [38]).

Definition 4. Let f = e−u, g = e−v ∈A , and α, β ≥ 0. The sum
and multiplication of f and g are defined as

α · f ⊕ β · g = e− uαð Þ□ vβð Þ½ �: ð22Þ

That means,

α · f ⊕ β · gð Þ xð Þ = sup
y∈ℝn

f
x − y
α

� �α
g

y
β

� 	β

: ð23Þ

In particular, when α = 0 and β > 0, we have ðα · f ⊕
β · gÞðxÞ = gðx/βÞβ; when α > 0 and β = 0, then ðα · f ⊕ β ·
gÞðxÞ = f ðx/αÞα; finally, when α = β = 0, we have ðα · f ⊕ β ·
gÞ = If0g.

The following lemma is obtained in [38].

Lemma 5 (see [38]). Let u ∈L , then there exist constants a
and b, with a > 0, such that, for x ∈Ω,

u xð Þ ≥ a∥x∥+b: ð24Þ

Moreover, u∗ is proper and satisfies u∗ðyÞ > −∞, ∀y ∈Ω.
Lemma 5 grants that L is closed under the operations of

infimal convolution and right scalar multiplication defined
in (16) and (17) which are closed.
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Proposition 6 (see [38]). Let u and v belong both to the same
class L , and α, β ≥ 0. Then, uα□vβ belongs to the same class
as u and v.

Let f ∈A , according to papers of [26, 40], the support
function of f = e−u is defined as

hf xð Þ = −log f xð Þð Þ∗ = u∗ xð Þ, ð25Þ

where u∗ is the Legendre transform of u. The definition of hf is
a proper generalization of the support function hK . In fact, one
can easily check hχK = hK . Obviously, the support function hf
share the most of the important properties of support functions
hK . Specifically, it is easy to check that the function h : A →L

has the following properties [27]:

(1) h is a bijective map from A →L

(2) h is order preserving: f ≤ g if and only if hf ≤ hg

(3) h is additive: for every f , g ∈A , we have hf⊕g = hf +
hg

The following proposition shows that hf is GLðnÞ
covariant.

Proposition 7 (see [30]). Let f ∈A , A ∈ GLðnÞ and x ∈ℝn.
Then,

hf ∘A xð Þ = hf A−tx
� �

: ð26Þ

Let u, v ∈L , denote by ut = u□vtðt > 0Þ, and f t = e−ut .
The following lemmas describe the monotonicity and con-
vergence of ut and f t , respectively.

Lemma 8 (see [38]). Let f = e−u, g = g−v ∈A . For t > 0, set
ut = u□ðvtÞ and f t = e−ut . Assume that vð0Þ = 0, then for every
fixed x ∈ℝn, utðxÞ and f tðxÞ are, respectively, pointwise
decreasing and increasing with respect to t; in particular, it
holds

u1 xð Þ ≤ ut xð Þ ≤ u xð Þ, f xð Þ ≤ f t xð Þ ≤ f1 xð Þ ∀x ∈ℝn,∀t ∈ 0, 1½ �:
ð27Þ

Lemma 9 (see [38]). Let u and v belong both to the same class
L and, for any t > 0, set ut ≔ u□ðvtÞ. Assume that vð0Þ = 0,
then

(1) ∀x ∈Ω, lim
t→0+

utðxÞ = uðxÞ

(2) ∀E ⊂ ⊂Ω, lim
t→0+

∇utðxÞ = ∇u uniformly on E

Lemma 10 (see [38]). Let u and v belong both to the same
class L and for any t > 0, let ut ≔ u□ðvtÞ. Then, ∀x ∈ int
ðΩtÞ, and ∀t > 0,

d
dt

ut xð Þð Þ = −ψ ∇ut xð Þð Þ, ð28Þ

where ψ≔ v∗.

3. Projection of Functions onto Linear Subspace

Let G i,nð0 ≤ i ≤ nÞ be the Grassmannian manifold of i
-dimensional linear subspace of ℝn. The elements of G i,n will
usually be denoted by ξi, and ξ⊥i stands for the orthogonal
complement of ξi which is a ðn − iÞ-dimensional subspace
of ℝn. Let ξi ∈ G i,n and f : ℝn →ℝ. The projection of f onto
ξi is defined by (see [25, 41])

f ξi
xð Þ≔max f yð Þ: y ∈ x + ξi

⊥
 �
, ∀x ∈Ω

�� ��
ξi
, ð29Þ

where ξ⊥i is the orthogonal complement of ξi inℝ
n andΩjξi is

the projection of Ω onto ξi. By the definition of the log-
concave function f = e−u, for every x ∈Ωjξi , one can rewrite
(29) as

f jξi xð Þ = exp max −u yð Þ: y ∈ x + ξ⊥i

 �
 �

= e−ujξi xð Þ: ð30Þ

Regarding the “sum” and “multiplication” of f , we say
that the projection keeps the structure onℝn. In other words,
we have the following proposition.

Proposition 11. Let f , g ∈A , ξi ∈ G i,n, and α, β > 0. Then,

α · f ⊕ β · gð Þjξi = α · f ξi
⊕ β · g

�� ��
ξi
: ð31Þ

Proof. Let f , g ∈A , let x1, x2, x ∈ ξi such that x = αx1 + βx2,
then we have

α · f ⊕ β · gð Þjξi xð Þ ≥ α · f ⊕ β · gð Þ αx1 + βx2 + ξ⊥i
� �

≥ f x1 + ξ⊥i
� �α

g x2 + ξ⊥i
� �β

:
ð32Þ

Taking the supremum of the second right-hand inequal-
ity over all ξ⊥i , we obtain ðα · f ⊕ β · gÞjξi ≥ α · f jξi ⊕ β · gj

ξi
:

On the other hand, for x ∈ ξi, x1, x2 ∈ ξi such that x1 + x2 =
x, then

α · f ∣ ξi ⊕ β · gξi
� �

xð Þ = sup
x1+x2=x

max f α
x1
α

+ ξ⊥i

� �n o
max

�

� gβ
x2
β

+ ξ⊥i

� 	� ��

≥ sup
x1+x2=x

max f α
x1
α

+ ξ⊥i

� �
gβ x2

β
+ ξ⊥i

� 	� 	� �

=max sup
x1+x2=x

f α
x1
α

+ ξ⊥i

� �
gβ x2

β
+ ξ⊥i

� 	� 	( )

= α · f ⊕ β · gð Þjξi xð Þ:
ð33Þ
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Since f , g ≥ 0, the inequality max f f · gg ≤max f f g ·
max fgg holds. So, we complete the proof.

Proposition 12. Let ξi ∈ G i,n, f and g are functions on ℝn,
such that f ðxÞ ≤ gðxÞ holds. Then,

f ξi
≤ g

�� ��
ξi

ð34Þ

holds for any x ∈ ξi.

Proof. For y ∈ x + ξ⊥i , since f ðyÞ ≤ gðyÞ, then f ðyÞ ≤max
fgðyÞ: y ∈ x + ξ⊥i g. So, max f f ðyÞ: y ∈ x + L⊥i g ≤max fgðyÞ
: y ∈ x + ξ⊥i g. By the definition of the projection, we com-
plete the proof.

For the convergence of f , we have the following.

Proposition 13. Let f f ig be functions such that lim
n→∞

f n = f0,

ξi ∈ G i,n, then lim
n→∞

ð f nξiÞ = f0j
ξi
.

Proof. Since lim
n→∞

f n = f0, it means that ∀ε > 0, there exist N0,

∀n >N0, such that f0 − ε ≤ f n ≤ f0 + ε. By the monotonicity
of the projection, we have f0jξi − ε ≤ f njξi ≤ f0jξi + ε. Hence,

each f f njξig has a convergent subsequence; we denote it also
by f f njξig, converging to some f ′0jξi . Then, for x ∈ ξi, we
have

f0jξi xð Þ − ε ≤ f ′0
��
ξi
xð Þ = lim

n→∞
f njξi

� �
xð Þ ≤ f0jξi xð Þ + ε: ð35Þ

By the arbitrary of ε, we have f ′0jξi = f0jξi , so we complete

the proof.
Combining with Proposition 13 and Lemma 9, it is easy

to obtain the following proposition.

Proposition 14. Let u and v belong both to the same class L
and Ω ∈ℝn be the domain of u, for any t > 0, set ut = u□ðvtÞ.
Assume that vð0Þ = 0 and ξi ∈ G i,n, then

(1) ∀x ∈Ωjξi , limt→0+
utjξiðxÞ = uj

ξi
ðxÞ

∀x ∈ int Ωjξi
� �

, lim
t→0+

∇ut ξi
= ∇u

�� ��
ξi

ð36Þ

Now, let us introduce some facts about the functions ut
= u□ðvtÞ with respect to the parameter t.

Lemma 15. Let ξi ∈ G i,n, u and v belong both to the same class
L , ut ≔ u□ðvtÞ and Ωt be the domain of ut ( t > 0). Then, for
x ∈Ωtjξi ,

d
dt

utjξi
� �

xð Þ = −ψ ∇ ut jξi
� �

xð Þ
� �

, ð37Þ

where ψ≔ v∗jξi .

Proof. Set Dt ≔Ωtjξi ⊂ ξi, for fixed x ∈ int ðDtÞ, the map t
→ ∇ðut jξiÞðxÞ is differentiable on ð0, +∞Þ. Indeed, by the
definition of Fenchel conjugate and the definition of projec-
tion u, it is easy to see that ðuξiÞ

∗ = u∗j
ξi
and ðu□utÞjξi = u

jξi□utjξi hold. Proposition 6 and the property of the projec-

tion grant the differentiability. Set φ≔ u∗jξi and ψ≔ v∗jξi ,
and φt = φ + tψ, then φt belongs to the class C2

+ on ξi. Then,
∇2φt = ∇2φ + t∇2ψ is nonsingular on ξi. So, the equation

∇φ yð Þ + t∇ψ yð Þ − x = 0 ð38Þ

locally defines a map y = yðx, tÞwhich is of classC1. By Prop-
osition 3, we have ∇ðutjξiÞ is the inverse map of ∇φt , that is,
∇φtð∇ðutjξiðxÞÞ = x, which means that for every x ∈ int ðDtÞ
and every t > 0, t→ ∇ðutjξiÞ is differentiable. Using equation
(15) again, we have

utjξi xð Þ = x,∇ utjξi
� �

xð Þ
D E

− φt ∇ ut jξi
� �

xð Þ
� �

, ∀x ∈ int Dtð Þ:
ð39Þ

Moreover, note that φt = φ + tψ, we have

ut ξi
xð Þ = x,∇ utξi

� �
xð Þ

D E
− φ ∇ utξi

� �
xð Þ

� �
− tψ ∇ utξi

� �
xð Þ

� ����
= ut

���
ξi

∇ utjξi
� �

xð Þ
� �

− tψ ∇ utjξi
� �

xð Þ
� �

:
ð40Þ

Differential the above formal we obtain, d/dtðutjξiÞðxÞ
= −ψð∇ðutjξiÞðxÞÞ: Then, we complete the proof of the result.

4. Functional Quermassintegrals of Log-
Concave Function

A function f ∈A is nondegenerate and integrable if and only
if lim

∥x∥→+∞
uðxÞ/∥x∥ = +∞: Let L ′ = fu ∈L : u ∈C2

+ðℝnÞ,
lim

∥x∥→+∞
uðxÞ/∥x∥ = +∞g, and A ′ = f f : ℝn → ð0,+∞�: f =

e−u, u ∈L ′g: Now, we define the ith total mass of f .

Definition 16. Let f ∈A ′, ξi ∈ G i,nði = 1, 2,⋯,n − 1Þ, and
x ∈Ωjξi . The ith total mass of f is defined as

Ji fð Þ≔
ð
ξi

f

�����
ξi

xð Þdx, ð41Þ

where f jξi is the projection of f onto ξi defined by (29) and dx
is the i-dimensional volume element in ξi.
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Remark 17.

(1) The definition of Jið f Þ follows the i-dimensional vol-
ume of the projection a convex body. If i = 0, we
defined J0ð f Þ≔ ωn, the volume of the unit ball in
ℝn, for the completeness

(2) When taking f = χK , the characteristic function of a
convex body K , one has Jið f Þ =ViðKÞ, the i-dimen-
sional volume in ξi

Definition 18. Let f ∈A ′. Set ξi ∈ G i,n be a linear subspace
and for x ∈Ωjξi , the ith functional Quermassintegrals of f
(or the i-dimensional mean projection mass of f ) are defined
as

Wn−i fð Þ≔ ωn

ωi

ð
G i,n

J i fð Þdμ ξið Þ, i = 1, 2,⋯, n, ð42Þ

where Jið f Þ is the ith total mass of f defined by (41) and dμ
ðξiÞ is the normalized Haar measure on G i,n.

Remark 19.

(1) The definition ofWið f Þ follows the definition of the i
th Quermassintegrals WiðKÞ, that is, the ith mean
total mass of f on G i,n. Also, in a recent paper [42],
the authors give the same definition by defining the
Quermassintegral of the support set for the quasicon-
cave functions

(2) When i equals to n in (42), we have W0ð f Þ =
Ð
ℝn

f ðxÞdx = Jð f Þ, the total mass function of f defined
by Colesanti and Fragalá [38]. Then, we can say
that our definition of Wið f Þ is a natural extension
of the total mass function of Jð f Þ

(3) From the definition of the QuermassintegralsWið f Þ,
the following properties are obtained (see also [42]):

Positivity::0 ≤Wi fð Þ ≤ +∞ ð43Þ

(i) Monotonicity: Wið f Þ ≤WiðgÞ, if f ≤ g

(ii) Generally speaking, Wið f Þ has no homogeneity
under dilations. That is, Wiðλ · f Þ = λn−iWið f λÞ,
where λ · f ðxÞ = λf ðx/λÞ, λ > 0

Definition 20. Let f , g ∈A ′, ⊕ , and · denote the operations of
“sum” and “multiplication” in A ′. Wið f Þ and WiðgÞ are,
respectively, the ith Quermassintegrals of f and g. Whenever
the following limit exists,

Wi f , gð Þ = 1
n − ið Þ limt→0+

Wi f ⊕ t · gð Þ −Wi fð Þ
t

, ð44Þ

we denote it byWið f , gÞ and call it as the first variation ofWi
at f along g, or the ith functional mixed Quermassintegrals of
f and g.

Remark 21. Let f = χK and g = χL, with K , L ∈Kn. In this
case Wið f ⊕ t · gÞ =WiðK + tLÞ, then Wið f , gÞ =WiðK , LÞ.
In general, Wið f , gÞ has no analog properties of WiðK , LÞ;
for example, Wið f , gÞ is not always nonnegative and finite.

The following is devoted to proving that Wið f , gÞ exists
under the fairly weak hypothesis. First, we prove that the first
i-dimensional total mass of f is translation invariant.

Lemma 22. Let ξi ∈ G i,n, f = e−u, g = e−v ∈A ′. Let
c = inf ujξi ≕ uð0Þ, d = inf vjξi ≔ vð0Þ, and set ~uiðxÞ = ujξiðxÞ
− c, ~viðxÞ = vjξiðxÞ − d, ~φiðyÞ = ð~uiÞ∗ðyÞ, ~ψiðyÞ = ð~viÞ∗ðyÞ, ~f i
= e−~ui , ~gi = e−~vi , and ~f tji = ~f ⊕ t · ~g. Then, if lim

t→0+
ððJið~f tÞ − Ji

ð~f ÞÞ/tÞ = Ð
ξi
~ψidμið~f Þ holds, then we have lim

t→0+
ððJið f tÞ − Jið f

ÞÞ/tÞ = Ð
ξi
ψidμið f Þ:

Proof. By the construction, we have ~uið0Þ = 0, ~við0Þ = 0, and
~vi ≥ 0, ~φi ≥ 0, ~ψi ≥ 0. Further, ~ψiðyÞ = ψiðyÞ + d, and ~f i = ec f i.
So,

lim
t→0+

J i ~f t
� �

− Ji ~f
� �

t
=
ð
ξi

~ψidμi
~f

� �
= ec

ð
ξi

ψidμi fð Þ + dec
ð
ξi

dμi fð Þ:

ð45Þ

On the other hand, since f i ⊕ t · gi = e−ðc+dtÞð~f i ⊕ t · ~giÞ,
we have, Jið f ⊕ t · gÞ = e−ðc+dtÞ Jið~f i ⊕ t · ~giÞ: By derivation of
both sides of the above formula, we obtain

lim
t→0+

J i f ⊕ t · gð Þ − Ji fð Þ
t

= −de−c lim
t→0+

J i ~f i ⊕ t~gi
� �

dx + e−c lim
t→0+

�
J i ~f t
� �

− J i ~f
� �

t

2
4

3
5 = −de−c Ji ~f i

� �

+
ð
ξi

ψidμi fð Þ + d
ð
ξi

dμi fð Þ

=
ð
ξi

ψidμi fð Þ:

ð46Þ

So, we complete the proof.

Theorem 23. Let f , g ∈A ′, with −∞≤ inf ðlog gÞ ≤ +∞ and
Wið f Þ > 0. Then,Wjð f , gÞ is differentiable at f along g, and it
holds

Wj f , gð Þ ∈ −k,+∞½ �, ð47Þ

where k =max fd, 0gWið f Þ.
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Proof. Let ξi ∈ G i,n, since ujξi≔− log ð f ξiÞ = −ðlog f Þj
ξi
and v

jξi≔− log ðgξiÞ = −ðlog f Þj
ξi
: By the definition of f t and Prop-

osition 11, we obtain f tjξi = ð f ⊕ t · gÞj
ξi
= f jξi ⊕ t · gj

ξi
:

Notice that vjξið0Þ = vð0Þ, set d ≔ vð0Þ, ~vjξiðxÞ≔ vj
ξi
ðxÞ − d,

~gjξiðxÞ≔ e−~vjξi ðxÞ, and ~f tjξi ≔ f jξi ⊕ t · ~gj
ξi
: Up to a translation

of coordinates, we may assume inf ðvÞ = vð0Þ: Lemma 8 says
that for every x ∈ ξi,

f jξi ≤ ~f t ξi
≤ ~f 1

��� ���
ξi
, ∀x ∈ℝn,∀t ∈ 0, 1½ �: ð48Þ

Then, there exists ~f jξiðxÞ≔ lim
t→0+

~f tj
ξi

ðxÞ. Moreover, it

holds ~f jξiðxÞ ≥ f j
ξi
ðxÞ and ~f tjξi is pointwise decreasing as t

→ 0+. Lemma 5 and Proposition 6 show that f jξi ⊕ t · ~gj
ξi

∈A ′, ∀t ∈ ½0, 1�: Then, Jið f Þ ≤ Jið~f tÞ ≤ Jið~f 1Þ, −∞≤ Jið f Þ
, Jið~f 1Þ<∞. Hence, by monotonicity and convergence, we
have limt→0+Wið~f tÞ =Wið~f Þ: In fact, by definition, we

have ~f tjξiðxÞ = e
−inf fujξi ðx−yÞ+tvjξi ðy/tÞg,

−inf u ξi
x − yð Þ + tv

�� ��
ξi

y
t

� �n o
≤ − inf u ξi

x − yð Þ − t inf v
�� ��

ξi

y
t

� �
:

ð49Þ

Note that −∞≤ inf ðvjξiÞ ≤ +∞, then −inf u
jξiðx − yÞ − t inf vj

ξi
ðy/tÞ is a continuous function of variable

t, then

~f
���
ξi
xð Þ≔ lim

t→0+
~f t ξi

xð Þ = f
�� ��

ξi
xð Þ: ð50Þ

Moreover, Wið~f tÞ is a continuous function of ðt ∈ ½0, 1�Þ;
then, lim

t→0+
Wið~f tÞ =Wið f Þ: Since f tjξi = e−dt~f j

ξi
ðxÞ, we have

Wi f tð Þ −Wi fð Þ
t

=Wi fð Þ e
−dt − 1
t

+ e−dt
Wi

~f t
� �

−Wi fð Þ
t

:

ð51Þ

Notice that, ~f t jξi ≥ f j
ξi
, we have the following two cases,

that is, ∃t0 > 0 : Wið~f t0Þ =Wið f Þ or Wið~f tÞ =Wið f Þ, ∀t > 0:
For the first case, since Wið~f tÞ is a monotone increasing

function of t, it must hold Wið~f tÞ =Wið f Þ for every t ∈ ½0,
t0�. Hence, we have lim

t→0+
ðWið f tÞ −Wið f ÞÞ/t = −dWið f Þ; the

statement of the theorem holds true.
In the latter case, since ~f t jξi is an increasing nonnegative

function, it means that log ðWið~f tÞÞ is an increasing concave
function of t. Then, ∃ðlog ðWið~f tÞÞ − log ðWið f ÞÞÞ/t ∈ ½0,+
∞�: On the other hand, since

log′ Wi
~f t

� �� ����
t=0

= lim
t→0+

log Wi
~f t

� �� �
− log Wi fð Þð Þ

Wi
~f t

� �
−Wi fð Þ

= 1
Wi fð Þ :

ð52Þ

Then,

lim
t→0+

Wi
~f t

� �
−Wi fð Þ

log Wi
~f t

� �� �
− log Wi fð Þð Þ

=Wi fð Þ > 0: ð53Þ

From above, we infer that ∃limt→0+ðWið~f tÞ −Wið f ÞÞ/t
∈ ½0,+∞�: Combining the above formulas, we obtain

lim
t→0+

Wi f tð Þ −Wi fð Þ
t

∈ −max d, 0f gWi fð Þ,+∞½ �: ð54Þ

So, we complete the proof.

In view of the example of the mixed Quermassintegral, it
is natural to ask whether, in general,Wið f , gÞ has some kind
of integral representation.

Definition 24. Let ξi ∈ G i,n and f = e−u ∈A ′. Consider the
gradient map ∇u : ℝn →ℝn, the Borel measure μið f Þ on ξi
is defined by

μi fð Þ≔
∇ujξi

� �
#

∥x∥n−i
f jξi

� �
: ð55Þ

Recall that the following Blaschke-Petkantschin formula
is useful.

Proposition 25 (see [43]). Let ξi ∈ G i,nði = 1, 2,⋯,nÞ be linear
subspace of ℝn and f be a nonnegative bounded Borel func-
tion on ℝn, then

ð
ℝn
f xð Þdx = ωn

ωi

ð
G i,n

ð
ξi

f xð Þ∥x∥n−idxdμ ξið Þ: ð56Þ

Now, we give a proof of Theorem 1.

Proof of Theorem 1. By the definition of the ith Quermassin-
tegral of f , we have

Wi f tð Þ −Wi fð Þ
t

= ωn

ωn−i

ð
Gn−i,n

Jn−i f tð Þ − Jn−i fð Þ
t

dμ ξn−ið Þ:

ð57Þ

Let t > 0 be fixed, take C⊂⊂Ωjξn−i , and by reduction
0 ∈ int ðΩÞjξn−i , we have C⊂⊂Ωjξn−i , by Lemma 15, we obtain

7Journal of Function Spaces



lim
h→0

Jn−i f t+hð Þ xð Þ − Jn−i f t xð Þð Þ
h

=
ð
ξn−i

ψ ∇ut ∣ ξn−i xð Þ� �
f t

�����
ξn−i

xð Þdx,

ð58Þ

where ψ = hgjξn−i
= vj∗

ξn−i
. Then, we have

lim
h→0

Wi f t+hð Þ −Wi f tð Þ
h

= ωn

ωn−i

ð
Gn−i,n

ð
ξn−i

ψ ∇ut ∣ ξn−i xð Þ� �
f t
��
ξn−i

xð Þ
∥x∥n−i

� ∥x∥n−idxdμ ξn−ið Þ,

=
ð
ℝn

ψ ∇ut ∣ ξn−i xð Þ� �
f t
��
ξn−i

xð Þ
∥x∥n−i

dx

=
ð
ℝn
ψdμn−i f tð Þ:

ð59Þ

So, we have Wið f t+hÞ −Wið f tÞ =
Ð t
0f
Ð
ℝnψdμn−ið f sÞgds:

The continuity of ψ implies lim
s→0+

Ð
ℝnψdμn−ið f sÞds =

Ð
ℝnψd

μn−ið f Þds: Therefore,

lim
t→0+

Wi f tð Þ −Wi fð Þ
t

= d
dt

Wi f tð Þ t=0+ = lim
s→0+

d
dt

Wi f tð Þ
����

����
t=s

= lim
s→0+

d
dt

ðt
0

ð
ℝn
ψdμn−i f sð Þ

� �
ds

=
ð
ℝn
ψdμn−i fð Þ:

ð60Þ

Since ψ = hgjξ , we have

Wi f , gð Þ = 1
n − i

lim
t→0+

Wi f tð Þ −Wi fð Þ
t

= 1
n − i

ð
ℝn
hgjξn−i

dμn−i fð Þ:

ð61Þ

So, we complete the proof.

Remark 26. From the integral representation (12), the ith
functional mixed Quermassintegral is linear in its second
argument, with the sum in A ′, for f , g, h ∈A ′, then we have
Wið f , g ⊕ hÞ =Wið f , gÞ +Wið f , hÞ:
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