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This article demonstrates the graphical existence of a single fixed point while imposing the contractive condition of Chatterjea type
F-contraction on F-metric space (briefly as F-MS). We present two examples that verify the validity of the results given in the
paper. The paper further explains the subsistence of the fixed point even if the contractive condition is valid only for a closed
ball inside the space rather than imposing it on the whole F-MS. Moreover, the application of the mentioned results in finding a
single solution of functional equations is described that is widely used in computer programming and optimization.

1. Introduction and Preliminaries

After Banach presented his renowned Banach Contraction
Principle, his idea was generalized by various authors into
many interesting generalizations (see [1–8]). Wardowski [9]
extended his idea to a more generalized form which he
named as F-contraction. An additional strictly increasing
function F with certain other restrictions was used to modify
the Banach theorem. He investigated the fixed point of the
contraction and explained the generality of his theorem with
the help of concrete examples. This idea was furthered by
Klim and Wardowski [10] into set-valued maps using a
dynamic process instead of the ordinary Picard sequence.
Later, Nazam et al. [11] extended Wardowski’s theorem into
the form of Kannan’s theorem and hence proved the theorem
for noncontinuous maps. He also described that a fixed point
for such maps can be iterated even if the contractive inequal-
ity holds true only for a subset closed ball of the MS. The
notion of F-contraction was extended by other authors as
well (see [12–16]).

This article relaxes the map F by eliminating one of its
restrictions, (F3) and hence iterates a fixed point for it. The
investigation is carried out for single as well as set-valued
maps. Our work is new which extends the preexisting theo-
rems of Wardowski and their consequent results. This paper
demonstrates the main idea of this research with the help of
graphs which unifies work from the previous research carried
out on the topic.

Some basic definitions are given below which will be
needed in a sequel.

Definition 1 (see [17]). Assume G is a set of functions g : ð0,
+∞Þ⟶ R satisfying the following conditions:

(F1) g is a nondecreasing function, i.e., 0 < u < v⟹
gðuÞ ≤ gðvÞ,

(F2) for any sequence tn ⊂ ð0,+∞Þ, we have

lim
n→∞

tn = 0⇔ lim
n→∞

g tnð Þ = −∞: ð1Þ
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Definition 2 (see [17]). Assume a nonempty set E and d : E
× E⟶ ½0,∞Þ is a map. Assume that there is some ðg, σÞ
∈ G × ½0,+∞Þ such that

(d1) ða, xÞ ∈ E × E, dða, xÞ = 0⇔ a = x, ða, xÞ ∈ E × E, d
ða, xÞ = dðx, aÞ,

(d2) ða, xÞ ∈ E × E, dða, xÞ = dðx, aÞ,
(d3) for every ða, xÞ ∈ E × E, for each N ′ ∈N ,N ′ ≥ 2, and

for every ðtiÞni=1 ⊂ E with ðt1, tN ′Þ = ða, xÞ, we have ða, xÞ > 0
⟹ gðdða, xÞÞ ≤ gð∑N ′−1

i=1 dðti, ti+1ÞÞ + σ:
Then d is called an F-metric on A, while ðE, dÞ is named

as F-MS.

Example 3 (see [17]). Let E =N and d : E × E⟶ ð0,∞Þ be
defined by

d a, xð Þ =
a − xð Þ2,  if a, xð Þ ∈ 0, 3½ � × 0, 3½ �,
a − xj j,  if a, xð Þ ∉ 0, 3½ � × 0, 3½ �,

(
ð2Þ

for all ða, xÞ ∈ E × E. Then, d is an F-MS.

Example 4 (see [17]). Let E =N and d : E × E⟶ ð0,∞Þ is
defined as

d a, xð Þ =
0, if a = x,

e a−xj j, if a ≠ x,

(
ð3Þ

for all ða, xÞ ∈ E × E. Then, d is an F-metric on E:

Definition 5 (see [17]). Let ðanÞ ∈ E. If

(i) lim
n→∞

dðan, aÞ = 0 for some a ∈ E. Then ðanÞ is

F-convergent to a

(ii) lim
n,m→∞

dðan, amÞ = 0 then the sequence ðanÞ is

F-Cauchy

(iii) For each ðan Þ ⊂ E implies ðanÞ is F-convergent.
Then, the space ðE, dÞ is known as F-complete

Definition 6 (see [17]). Let ðE, dÞ be an F-MS. A subsetO of E
is said to be F-open if, for every a ∈O, there is some r > 0
such that Bða, rÞ ⊂O, where

B a, rð Þ = x ∈ E : d a, xð Þ < rf g: ð4Þ

We say that a subset C of E is F-closed if E \ C is F-open.

Definition 7 (see [17]). Let B be a nonempty subset of E and d
be an F-metric, then, the following statements are equivalent:

(i) B is F-closed

(ii) For any sequence ðanÞ ⊂ B, we have

lim
n→∞

d an, að Þ = 0, a ∈ E⟹ a ∈ B: ð5Þ

Theorem 8 (see [17]). Assume ðE, dÞ is an F-complete F-MS,
and let h : E⟶ E be a given map. Let there is some k ∈ ð0, 1Þ
such that

d h að Þ, h xð Þð Þ ≤ kd a, xð Þ, a, xð Þ ∈ E × E: ð6Þ

Then, h a∗ = a∗ for at most one a∗ ∈ E. Moreover, for any
a0 ∈ E, the sequenceðanÞ ⊂ E defined by an+1 = hðan Þ, n ∈N
is F-convergent to a∗.

Theorem 9 (see [8]). Assume that E is a complete MS with
metric d, and consider h : E⟶ E be a function such that

d h að Þ, h xð Þð Þ ≤ αd a, xð Þ + βd a, h xð Þð Þ + γd a, h xð Þð Þ, ð7Þ

for all a, x ∈ E, where α, β, and  γ are nonnegative numbers
satisfying α + β + γ < 1. Then, h has a unique fixed point.

Lemma 10 (see [18]). Let ðBðWÞ, k·kÞ is a Banach space and
d is a metric defined by

d J , hð Þ = ∣∣J − h∣∣ =max
a∈W

J að Þ − h að Þj j, J , h ∈ B Wð Þ: ð8Þ

Then, ðBðWÞ, k·kÞ is an F-MS.

2. Common Fixed Points Results of Reich Type
F-Contractions

This section of the paper investigates the fixed point of
single-valued F-contractions for two maps and single map
in F-MS.

Theorem 11. Assume F ∈ G , ðX, dÞ is an F-complete F-MS
and S, T : X⟶ X are self-mappings. Assume that for non-
negative functions α and β with max

a,x∈X
fαða, xÞ + 2βða, xÞg < 1,

there is some τ > σ > 0 such that

τ + F d Sa, Txð Þð Þ ≤ F α a, xð Þd a, xð Þ + β a, xð Þ d x, Sað Þ + d a, Txð Þf g½ �,
ð9Þ

with min fdðSa, TxÞ, dða, xÞg > 0, for all ða, xÞ ∈ X × X.
Then, Sy = Ty = y for some y in X.

Proof. Choose an arbitrary point a0 and iterate a sequence
ðanÞ by

Sa2c = a2c+1 andTa2c+1 = a2c+2 ; c = 0, 1, 2,⋯ ð10Þ
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Using (9) and (10), we can write

τ + F d a2c+1, a2c+2ð Þð Þ
= τ + F d Sa2c, Ta2c+1ð Þð Þ
≤ F α a2c, a2c+1ð Þd a2c, a2c+1ð Þ + β a2c, a2c+1ð Þ½

� d a2c+1, Sa2cð Þ + d a2c, Ta2c+1ð Þf g�
= F α a2c, a2c+1ð Þd a2c, a2c+1ð Þ + β a2c, a2c+1ð Þ a2c, a2c+2ð Þ½ �
≤ F α a2c, a2c+1ð Þd a2c, a2c+1ð Þ + β a2c, a2c+1ð Þ½

� a2c, a2c+1ð Þ + a2c+1, a2c+2ð Þf g� + σ:

ð11Þ

Using (F1), we have

d a2c+1, a2c+2ð Þ < α a2c, a2c+1ð Þ + β a2c, a2c+1ð Þ
1 − β a2c, a2c+1ð Þ d a2c, a2c+1ð Þ

= λ1d a2c, a2c+1ð Þ,
say

α a2c, a2c+1ð Þ + β a2c, a2c+1ð Þ
1 − β a2c, a2c+1ð Þ = λ1:

ð12Þ

Similarly,

d a2c+2, a2c+3ð Þ < α a2c+1, a2c+2ð Þ + β a2c+1, a2c+2ð Þ
1 − β a2c+1, a2c+2ð Þ d a2c+1, a2c+2ð Þ

= λ2d a2c+1, a2c+2ð Þ:
ð13Þ

Hence, for λ =max fλ1, λ2,⋯, λlg, we have

d an, an+1ð Þ < λd an−1, anð Þ  for all n ∈N , ð14Þ

which yields

d an, an+1ð Þ < λd an−1, anð Þ < λ2d an−2, an−1ð Þ <⋯
< λnd a0, a1ð Þ, n ∈N:

ð15Þ

Using (15), we can write

〠
m−1

k=n
d ak, ak+1ð Þ < λn 1 + λ + λ2+⋯+λm−n−1� �

d a0, a1ð Þ

≤
λn

1 − λ
d a0, a1ð Þ,m > n:

ð16Þ

Since lim
n→∞

ðλn/1 − λÞdða0, a1Þ = 0, for any δ > 0, ∃ some

n′ ∈N such that

0 <
λn

1 − λ
d a0, a1ð Þ < δ, n ≥ n′: ð17Þ

Further, let ðg, σÞ ∈ G × ½0,∞Þ satisfies (d3) and ϵ > 0 is
fixed. By (F2), there is some δ > 0 such that

0 < t < δ⟹ g tð Þ < g ϵð Þ − σ: ð18Þ

By (17) and (18), we write

g 〠
m−1

k=n
d ak, ak+1ð Þ

 !
≤ g

λn

1 − λ
d a0, a1ð Þ

� �
< g ϵð Þ − σ,m > n ≥ n′:

ð19Þ

Using the above equation and (d3), we have

d an, amð Þ > 0,m > n > n′ ⟹ g d an, amð Þð Þ < g ϵð Þ: ð20Þ

This shows

d an, amð Þ < ϵ,m > n ≥ n′: ð21Þ

Hence, (an) is F-Cauchy in X. Since ðX, dÞ is F-complete,
∃ y ∈ X such that ðanÞ is F-convergent to y, i.e.,

lim
n→∞

d an, yð Þ = 0: ð22Þ

Now, assume that dðSy, yÞ > 0. Then,

τ + F d Sy, a2c+2ð Þð Þ ≤ F
α y, a2c+1ð Þd y, a2c+1ð Þ

+β y, a2c+1ð Þ d a2c+1, Syð Þ + d y, a2c+2ð Þf g

" #
:

ð23Þ

By (F1) and letting c⟶∞, we have

1 − β y, a2c+1ð Þð Þd Sy, yð Þ < 0, ð24Þ

which is a contradiction, as βða, xÞ is nonnegative. Hence,
dðSy, yÞ = 0, i.e., Sy = y.

Following the same steps, we get Ty = y. Hence, Ty =
Sy = y.

Uniqueness: assume another common fixed z of the maps
S and T and y ≠ z:Then

τ + F d y, zð Þð Þ = F d Sy, Tzð Þð Þ

≤ F
α y, zð Þd y, zð Þ

+β y, zð Þ d z, Syð Þ + d y, Tzð Þf g

" #

= F
α y, zð Þd y, zð Þ

+β y, zð Þ d z, yð Þ + d y, zð Þf g

" #
:

ð25Þ

Using (F1), we get (1 − αðy, zÞ − 2βðy, zÞÞ dðy, zÞ < 0,
which is a contradiction. Hence, y = z:

Example 12. Assume that X = Xc ≔ f6c + 2/3, c ∈Ng,

d Xc, Xkð Þ =
0, if Xc = Xk,

e Xc−Xkj j, if Xc ≠ Xk,

(
 F Xcð Þ = ln Xcð Þ,

ð26Þ
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and S, T : X ⟶ X are defined by

TXc =
X1, if c = 1, 2,

Xc−1, if c > 2,

(
ð27Þ

and

SXn =

X1, if c = 1,

X2, if c = 2,

Xc−2, if c > 4:

8>><
>>: ð28Þ

On the other hand, we define α, β : X × X⟶ ½0,∞Þ by

α Xc, Xkð Þ =
0 if Xc = Xk,

e−1/2 if Xc ≠ Xk,

(

β Xc, Xkð Þ = e−2, if Xk = SXc  and Xc = TXk,

0, otherwise:

(

ð29Þ

One can verify that F fulfill conditions (F1) and (F2) and
that d is an F-metric. Assume c ≠ k, then

F d SXc, TXkð Þð Þ = ln e Xc−2−Xk−1j j
� �

= ln e 2 c−kð Þ−2j j
� �

< ln e−1/2:e 2 c−kð Þj j
� �

= F α Xc, Xkð Þd Xc, Xkð Þð Þ

< F
α Xc, Xkð Þd Xc, Xkð Þ

+β Xc, Xkð Þ d Xk, SXcð Þ + d Xc, TXkð Þf g

" #
,

ð30Þ

whenever min fdðSXc, TXkÞ, dðXc, XkÞg > 0. One can verify
that max

Xc ,Xk

fαðXc, XkÞ + 2βðXc, XkÞg < 1. For τ ∈ ðσ, ln ðe−1/2:
ej2ðc−kÞj/ej2ðc−kÞ−2jÞÞ = ðσ, ln ð ffiffi

e3
p ÞÞ, the inequality (9) is true.

Furthermore, X1 is a unique point such that SX1 = TX1 =
X1.

Choosing αða, xÞ = 0 in the previous result, a result of
Chatterjea type F-contraction is obtained.

Corollary 13. Assume F ∈ G ,ðX, dÞ is an F-complete F-MS
and S, T : X⟶ X are self-maps. Assume that for β : X × X
⟶ ½0, 1Þ, there is some τ > σ such that

τ + F d Sa, Txð Þð Þ ≤ F
β a, xð Þ

2
d x, Sað Þ + d a, Txð Þð Þ

	 

, ð31Þ

with min fdðSa, TxÞ, dða, SaÞ, dðx, TxÞg > 0, for all ða, xÞ ∈
X × X. Then, Ty = Sy = y for a unique y in X.

Substituting S with T in Corollary 13, we obtain the fol-
lowing result.

Corollary 14. Assume that ðX, dÞ is an F-complete F-
MS, F ∈ G and T : X ⟶ X is a self-map. Assume that for β
: X × X⟶ ½0, 1Þ, there is some τ > σ such that

τ + F d Ta, Txð Þð Þ ≤ F
β a, xð Þ

2
d a, Txð Þ + d x, Tað Þð Þ

	 

, ð32Þ

with min fdðTa, TxÞ, dða, TaÞ + dðx, TxÞg > 0, for all ða, xÞ
∈ X × X. Then, T has at most one fixed point in X.

3. Investigation of Fixed Points of F
-Contractions on F-Closed Balls

This section of the paper investigates a fixed point of single-
valued F-contractions for two maps and single map imposed
only on a F-closed subset of F-MS.

Definition 15. Assume an F-MS ðX, dÞ which is F-com-
plete, F ∈ G , and S, T : X ⟶ X are self-maps, let α,β be non-
negative functions with max

a,x∈X
fαða, xÞ + 2βða, xÞg < 1: Then,

T is named as Reich type F-contraction on Bða0, rÞ ⊆ X if
there is some τ > σ satisfying

τ + F d Sa, Txð Þð Þ

≤ F
α a, xð Þd a, xð Þ

+β a, xð Þ d x, Sað Þ + d a, Txð Þf g

" #
,∀a, x ∈ B a0, rð Þ:

ð33Þ

Theorem 16. Assume ðg, σÞ ∈ G × ½0,∞Þ, an F-MS ðX, dÞ
which is F-complete and T is a Reich type F-contraction on
Bða0, rÞ. Assume that for a0 ∈ X and r > 0, the conditions
given below are fulfilled:

(a) Bða0, rÞ is F-closed
(b) dða0, a1Þ ≤ ð1 − λÞr, for a1 ∈ X and λ = αða, xÞ + β

ða, xÞ/1 − βða, xÞ
(c) ∃ 0 < ϵ < r such as gðð1 − λk+1ÞrÞ ≤ gðϵÞ − σ, where

k ∈N

Then, Ty∗ = Sy = y for some y in Bða0, rÞ.

Proof. Choose and arbitrary point a0 and iterate a sequence
ðanÞ by

Ta2c = a2c+1and Sa2c+1 = a2c+2 ; c = 0, 1, 2,⋯: ð34Þ

Using mathematical induction, we show that an is in
Bða0, rÞ for all n ∈N . By hypothesis

d a0, a1ð Þ < r: ð35Þ
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Therefore, a1 ∈ Bða0, rÞ. Assume a2,⋯, ak ∈ Bða0, rÞ for
some k ∈N . Now, if a2c+1 ≤ ak, then by (33), we can write

τ + F d a2c, a2c+1ð Þð Þ
= τ + F d Sa2c−1, Ta2cð Þð Þ

≤ F
α a2c−1, a2cð Þd a2c−1, a2cð Þ

+β a2c−1, a2cð Þ d a2c, Sa2c−1ð Þ + d a2c−1, Ta2cð Þf g

" #

= F α a2c−1, a2cð Þd a2c−1, a2cð Þ + β a2c−1, a2cð Þd a2c−1, a2c+1ð Þ½ �

≤ F
α a2c−1, a2cð Þd a2c−1, a2cð Þ

+β a2c−1, a2cð Þ d a2c−1, a2cð Þ + d a2c, a2c+1ð Þf g

" #
+ σ:

ð36Þ

From (F1), we have

d a2c, a2c+1ð Þ < α a2c−1, a2cð Þ + β a2c−1, a2cð Þ
1 − β a2c−1, a2cð Þ d a2c−1, a2cð Þ

= λ1d a2c−1, a2cð Þ:
ð37Þ

On the other hand, if a2c ≤ ak

d a2c−1, a2cð Þ < α a2c−1, a2cð Þ + β a2c−1, a2cð Þ
1 − β a2c−1, a2cð Þ d a2c−2, a2c−1ð Þ

= λ2d a2c−2, a2c−1ð Þ:
ð38Þ

Continuity this way, for λ =max fλ1, λ2,⋯, λlg, we
deduce from inequality (37) and (38) that

d a2c, a2c+1ð Þ < λd a2c−1, a2cð Þ <⋯ < λ2cd a0, a1ð Þ, ð39Þ

d a2c−1, a2cð Þ < λd a2c−2, a2c−1ð Þ <⋯ < λ2c−1d a0, a1ð Þ:
ð40Þ

From (39) and (40), we write

d ak, ak+1ð Þ ≤ λkd a0, a1ð Þ for some  k ∈N: ð41Þ

Now, using (41), we have

g d a0, ak+1ð Þð Þ ≤ g 〠
k+1

i=1
d ai−1, aið Þ

 !
+ σ

= g d a0, a1ð Þ+⋯+d ak, ak+1ð Þð Þ + σ

≤ g 1 + λ + λ2+⋯+λk
� �

d a0, a1ð Þ
h i

+ σ

= g
1 − λk+1

1 − λ
d a0, a1ð Þ

" #
+ σ:

ð42Þ

From (b) and (c), we obtain

g d a0, ak+1ð Þð Þ ≤ g 1 − λk+1
� �

r
� �

+ σ ≤ g ϵð Þ < g rð Þ: ð43Þ

Hence by (F1), we deduce that

ak+1 ∈ B a0, rð Þ: ð44Þ

Therefore, an ∈ Bða0, rÞ for all n ∈N . Now for p ∈N ,we
have by (33)

τ + F d a2p+1, a2p+2
� �� �

= τ + F d Sa2p, Ta2p+1
� �� �

≤ F α a2p, a2p+1
� �

d a2p, a2p+1
� ��

+ β a2p, a2p+1
� �

d a2p+1, Sa2p
� �


+ d a2p, Ta2p+1
� �g�

= F α a2p, a2p+1
� �

d a2p, a2p+1
� ��

+ β a2p, a2p+1
� �

d a2p, a2p+2
� ��

≤ F

"
α a2p, a2p+1
� �

d a2p, a2p+1
� �

+ β a2p, a2p+1
� � d a2p, a2p+1

� �
+d a2p+1, a2p+2
� �

8<
:

9=
;
#
+ σ:

ð45Þ

Using (a) and repeating the steps done in heorem 11,
we get to the conclusion that ðanÞ is F-Cauchy to a point
y in Bða0, rÞ: Proceeding in a similar way as in heorem 11,
we obtain that y = Sy = Ty

Substituting S by T in the previous theorem, the follow-
ing result is obtained.

Corollary 17. Assume ðg, σÞ ∈ G × ½0,∞Þ, ðF, τÞ ∈ G × ð0,
∞Þ, ðX, dÞ is an F-complete F-MS and T : X ⟶ X is a self-
map. Let α, β : X × X ⟶ ½0,∞Þ such that max

a,x∈a
fαða, xÞ + 2

βða, xÞg < 1: Assume that for a0 ∈ X and r > 0, the below con-
ditions are fulfilled:

(a) Bða0, rÞ ⊆ X is F-closed

(b) dða0, a1Þ ≤ ð1 − λÞr, for a1 ∈ X and λ = αða, xÞ + β
ða, xÞ/1 − βða, xÞ

(c) ∃0 < ϵ < r such as gðð1 − λk+1ÞrÞ ≤ gðϵÞ − σ, where
k ∈N

(d) τ + FðdðTa, TxÞÞ ≤ F½αða, xÞdða, xÞ + βða, xÞðdðx, T
aÞ + dða, TxÞÞ�, ∀a, x ∈ Bða0, rÞ

with min fdðTa, TxÞ, dða, xÞg > 0:Then there is a unique
y in Bða0, rÞ such that Ty = y:
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Example 18. Let X = R+
0 and FðaÞ = gðaÞ = ln a. Define T : X

⟶ X by

Ta =
a
3
, if a ∈ 0, 1½ �,

a2, if a ∈ 1,∞ð Þ:

8<
: ð46Þ

See Figure 1. Define d by

d a, xð Þ = a − xð Þ2, if  a, xð Þ ∈ 0, 1½ � × 0, 1½ �,
a − xj j, if  a, xð Þ ∉ 0, 1½ � × 0, 1½ �:

(
ð47Þ

One can verify that F fulfill conditions (F1) and (F2) and
that d is and F-metric.

On the other hand, define α, : X × X⟶ ½0,∞Þ by

α a, xð Þ =
0, if a = x,

e−3/7, if a ≠ x,

(

β a, xð Þ = e−2, if x = Ta αnd a = Tx,

0, otherwise:

( ð48Þ

Fix a0 = r = 1/2, then Bða0, rÞ = ½0, 1�. Clearly, Bða0, rÞ is
F-closed hence is satisfied. Now, since a0 ≠ a1, therefore,
αða, xÞ = e−3/7 and βða, xÞ = 0, which implies that λ = αða, xÞ
and

d a0, a1ð Þ = d a0, Ta0ð Þ = 1
2
−
1
6

� �2
< 1 − e−3/7
� � 1

2
= 1 − λð Þr:

ð49Þ

Therefore, condition (b) is obeyed. Moreover, assume k = 1,
then gðð1 − λk+1ÞrÞ = ln ðð1 − ðe−3/7Þ2Þð1/2ÞÞ = ln ð2/5Þ − ln
ð2/7Þ = gðεÞ − σ is satisfied. i.e., ε = ð2/5Þ ≤ ð1/2Þ = r and σ
= ln ð2/7Þ: In a similar way, for each k ∈N , ∃ some 0 < ϵ <
r and σ satisfying condition (c). Now checking for condition
(d), we have two cases:

Case 19. If ða, xÞ ∈ Bða0, rÞ × Bða0, rÞ, then

F d Ta, Txð Þð Þ = ln
a
3
−
x
3

� �2� �
< ln e−3/7 a − xð Þ2� �

= F α a, xð Þd a, xð Þ + β a, xð Þ d a, Tað Þ + d x, Txð Þf g½ �:
ð50Þ

Figures 2–4 illustrate this inequality, where

τ ∈
2
7
, ln e−3/7 a − xð Þ2� �

− ln
a
3
−
x
3

� �2� �� �

=
2
7
, ln

e−3/7

1/9

� �
=

2
7

�
, ln 9e−3/737
� �

:

ð51Þ

Therefore, for all ða, xÞ ∈ Bða0, rÞ × Bða0, rÞ, condition
(d) is also satisfied.
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Case 20. If ða, xÞ ∉ Bða0, rÞ × Bða0, rÞ, e.g., a = 2 and x = 3,
then

F d Ta, Txð Þð Þ = ln 22 − 32
�� ��� �

> ln e−3/7 2 − 3ð Þj j� �
= F α a, xð Þd a, xð Þð Þ

= F
αd a, xð Þ

+βd a, Tað Þ + γd x, Txð Þ

" #
:F d Ta, Txð Þð Þ

= ln 22 − 32
�� ��� �

> In e−3/7 2 − 3j j� �
= F α a, xð Þd a, xð Þð Þ

= F
αd a, xð Þ

+βd a, Tað Þ + γd x, Txð Þ

" #
:

ð52Þ

Hence, condition (b) holds only for Bða0, rÞ and not
on X × X. Moreover, 0 ∈ Bða0, rÞ is the fixed point of T . Given
below Figure 1 shows two maps f ðaÞ = a/3 and gðaÞ = ln ðaÞ

Figures 2 and 3 are 3D graphs of the functions z = d
ð f a, f xÞ = ðða/3Þ − ðx/3ÞÞ2 and z = dða, xÞ = ða − xÞ2,
respectively.

Multiplying αða, xÞ = e−3/7 to dða, xÞ of the contractive
inequality and combining Figures 2 and 3, we get the
below 3D graph which clearly demonstrate that the graph
of αða, xÞdða, xÞ is dominating the graph of dð f a, f xÞ.

α a, xð Þd a, xð Þ + β a, xð Þ
d a, f að Þ
+d x, f xð Þ

( )
:

d f a, f xð Þ:
ð53Þ

As we see in Figure 1, lnx is an increasing function.
Therefore, it will not change the inequality, i.e., the right
side of the inequality will still be dominant. Note that z
-axis represents the values of the function g, and it can

be observed that for every value of a and x, Fðdð f a, f xÞÞ
< Fðαða, xÞdða, xÞÞ and hence satisfy the inequality of
the above example.

Corollary 21. Assume ðg, σÞ ∈ G × ½0,∞Þ, ðF, τÞ ∈ G × ð0,∞Þ
such that σ < τ and ðX, dÞ is an F-complete F-MS. Let S:
T : X⟶ X are self-maps and k : X × X ⟶ ½0, 1Þ: Assume
that for a0 ∈ X and r > 0, the below conditions are fulfilled:

(a) Bða0, rÞ ⊆ X is F-closed

(b) τ + FðdðSa, TxÞÞ ≤ F½kða, xÞ/2ðdða, SaÞ + dðx, TxÞÞ�,
for all a, x ∈ Bða0, rÞ

(c) dða0, a1Þ ≤ ð1 − λÞr, for a1 ∈ X and λ = kða, xÞ/2 − k
ða, xÞ

(d) ∃ 0 < ϵ < r such as gðð1 − λn+1ÞrÞ ≤ gðϵÞ − σ, where
n ∈N

Then Sy = Ty = y for a unique y in Bða0, rÞ.

4. Application to Functional Equations

This section discusses the application of our results in finding
a common solution of functional equations that are used in
dynamic programming.

The study of dynamic programming splits into two parts.
A state space is a set of parameters of various states, i.e., initial
states, transitional states, and action states. On the other
hand, a decision space is a series of actions taking place for
finding the possible solution to the indicated problem. The
problem of dynamic program is transformed into functional
equations:

g xð Þ =max
y∈X

H x, yð Þ + J x, y, g η x, yð Þð Þð Þf g for  x ∈ A,

ð54Þ

.
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f xð Þ =max
y∈X

H x, yð Þ + K x, y, g η x, yð Þð Þð Þf g for  x ∈ A,

ð55Þ
where U and V are Banach spaces such thatA ⊆U and X ⊆V
and

η : A × X⟶ A,

H : A × X⟶ R,

J , K : A × X × R⟶ R:

ð56Þ

Assume A and X are state space and decision spaces,
respectively. AssumeWðAÞ denotes a set of all-bounded real-
valued maps on A. Let hЄWðAÞ and say∣∣h∣∣ =max

x∈A
jhðxÞj.

Then, ðWðAÞ, ‖:‖Þ is a Banach space and d is the metric
defined as

d h, kð Þ =max
x∈A

h xð Þ − k xð Þj j: ð57Þ

Suppose the following conditions are satisfied:
(C1): H, J , andK are bounded.
(C2): For x ∈ A and h ∈WðAÞ, define P,Q : WðAÞ⟶

WðAÞ by

Ph xð Þ =max
y∈X

H x, yð Þ + J x, y, h η x, yð Þð Þð Þf gfor x ∈ A,

Qh xð Þ =max
y∈X

H x, yð Þ + K x, y, h η x, yð Þð Þð Þf gfor x ∈ A:
ð58Þ

Observe that the functions H, J , and K are bounded
hence P and Q are well-defined.

(C3): For σ < τ : R+ ⟶ R+, ðx, yÞ ∈ A × X, h, k ∈WðAÞ
and t ∈ A, we have

J x, y, h tð Þð Þ − K x, y, k tð Þð Þj j ≤ e−τM h, kð Þ, ð59Þ

where

M h, kð Þ = αd h, kð Þ + βd k, Phð Þ + γd h,Qkð Þ ð60Þ

for α, β, γ ∈ ½0,∞Þ such thatα + β + γ < 1, where min fdðPh,
QkÞ, dðh, kÞg > 0.

Based on the above hypothesis, we present the below
theorem.

Theorem 22. Let ðC1Þ − ðC3Þ are satisfied, then at most one
bounded common solution exists for Equations (54) and (55).

Proof. We know by Lemma 10 that ðWðAÞ, dÞ is an F-com-
plete F-MS, d is stated by (57) and (C1) say that P and Q
are self-maps on WðAÞ: Choose any positive numberω and
h1, h2 ∈WðAÞ. Take x ∈ A and y1, y2 ∈ X such that

Phc <H x, ycð Þ + J x, yc,hc η x, ycð Þð Þ� �
+ ω, ð61Þ

Qhc <H x, ycð Þ + K x, yc,hc η x, ycð Þð Þ� �
+ ω, ð62Þ

Ph1 ≥H x, y2ð Þ + J x, y2,h1 η x, y2ð Þð Þ� �
, ð63Þ

Qh2 ≥H x, y1ð Þ + K x, y1, h2 η x, y1ð Þð Þð Þ: ð64Þ
Then using (61) and (64), we get

Ph1 xð Þ −Qh2 xð Þ
< J x, y1,h1 η x, y1ð Þð Þ� �

− J x, y1,h2 η x, y1ð Þð Þ� �
+ ω

≤ K x, y1,h1 η x, y1ð Þð Þ� �
− K x, y1,h2 η x, y1ð Þð Þ� ��� �� + ω

≤ e−τM h1 xð Þ, h2 xð Þð Þ + ω:

ð65Þ

Similarly, by (62) and (63), we get

Qh2 xð Þ − Ph1 xð Þ < e−τM h1 xð Þ, h2 xð Þð Þ + ω: ð66Þ

Combining the above two inequalities, we get

Ph1 xð Þ −Qh2 xð Þj j < e−τM h1 xð Þ, h2 xð Þð Þ + ω, ð67Þ

for all ω > 0. Hence,

d Ph1 xð Þ,Qh2 xð Þð Þ ≤ e−τM h1 xð Þ, h2 xð Þð Þ, ð68Þ

that is,

d Ph1,Qh2ð Þ ≤ e−τM h1, h2ð Þ, ð69Þ

for each x ∈ A. Applying logarithms on both sides, we get

ln d Ph1,Qh2ð Þð Þ ≤ ln e−τM h1, h2ð Þð Þ: ð70Þ

This shows that F : R+ ⟶ R defined as FðxÞ = ln x is a
member ofG , and

τ + F d Ph1,Qh2ð Þð Þ ≤ F M h1, h2ð Þð Þ: ð71Þ

As every condition in Theorem 11 is fulfilled, therefore
using heorem 11 P and T have a unique common and
bounded solution of the Equations (54) and (55).

5. Conclusion

This article instigated the establishment of fixed point result
of Reich type F-contractions, while imposing the contractive
conditions on both the whole F-MS as well as only on a sub-
set (F-closed ball) of the F-MS. However, the constants in the
inequality of Reich type contractive conditions are replaced
by real-valued functions. The validity of the inequality is ver-
ified graphically, making the results clearer and more certain.
At last, the use of our results in assuring the existence of a
solution to the functional equation is described.

Data Availability

No data were used to support the study.

8 Journal of Function Spaces



Conflicts of Interest

The authors declare that they have no competing interests

Authors’ Contributions

All the authors contributed equally to the research.

References

[1] M. R. Alfuraidan and M. A. Khamsi, “On multivalued G-
monotone Ciric and Reich contraction mappings,” Filomat,
vol. 31, no. 11, pp. 3285–3290, 2017.

[2] N. Hussain, M. Arshad, M. Abbas, and N. Hussain, “General-
ized dynamic process for generalized (f,L)-almost F-
contraction with applications,” Journal of Nonlinear Sciences
and Applications, vol. 9, pp. 1702–1715, 2016.

[3] M. Arshad, E. Ameer, and A. Hussain, “Hardy-Rogers-type
fixed point theorems for α-GF-contractions,” ArchivumMath-
ematicum, vol. 51, pp. 129–141, 2015.

[4] M. Cosentino and P. Vetro, “Fixed point results for F-con-
tractive mappings of Hardy-Rogers type,” Filomat, vol. 28,
no. 4, pp. 715–722, 2014.

[5] G. Minak, A. Halvaci, and I. Altun, “Ćirić type generalized F-
contractions on complete metric spaces and fixed point
results,” Filomat, vol. 28, no. 6, pp. 1143–1151, 2014.

[6] T. Rasham, A. Shoaib, B. Alamri, and A. Asif, “Fixed point
results for α ∗-ψ-dominated multivalued contractive map-
pings endowed with graphic structure,” Mathematics, vol. 7,
p. 307, 2019.

[7] S. B. Nadler Jr., “Multivalued contraction mappings,” Pacific
Journal of Mathematics, vol. 30, pp. 475–488, 1969.

[8] S. Reich, “Some remarks concerning contraction mappings,”
Canadian Mathematical Bulletin, vol. 14, no. 1, pp. 121–124,
1971.

[9] D.Wardowski, “Fixed points of a new type of contractive map-
pings in complete metric spaces,” Fixed Point Theory and
Applications, vol. 2012, no. 1, Article ID 94, 2012.

[10] D. Klim and D. Wardowski, “Fixed points of dynamic pro-
cesses of set-valued F-contractions and application to func-
tional equations,” Fixed Point Theory and Applications,
vol. 2015, no. 1, Article ID 22, 2015.

[11] M. Nazam, C. Park, A. Hussain, M. Arshad, and J. R. Lee,
“Fixed point theorems for F-contractions on closed ball in par-
tial metric spaces,” Journal of Computational Analysis and
Applications, vol. 27, pp. 759–769, 2019.

[12] M. Sgroi and C. Vetro, “Multi-valued F-contractions and the
solution of certain functional and integral equations,” Filomat,
vol. 27, no. 7, pp. 1259–1268, 2013.

[13] A. Shoaib and A. Asif, “Generalized dynamic process for gen-
eralized multivalued F-contraction of Hardy Rogers type in b-
metric spaces,” Turkish Journal of Anal. and Number Theory,
vol. 6, pp. 43–48, 2018.

[14] A. Asif, M. Nazam, M. Arshad, and S. O. Kim, “F-metric, F-
contraction and common Fixed-Point theorems with applica-
tions,” Mathematics, vol. 7, no. 7, p. 586, 2019.

[15] D. Wardowski and N. V. Dung, “Fixed points of F-weak con-
tractions on complete metric spaces,” Demonstratio Mathe-
matics, vol. 47, no. 1, pp. 146–155, 2014.

[16] D. Wardowski and N. V. Dung, “A note on fixed point theo-
rems in metric spaces,” Carpathian Journal of Mathematics,
vol. 31, no. 1, pp. 127–134.

[17] M. Jleli and B. Samet, “On a new generalization of metric
spaces,” Journal of Fixed Point Theory and Applications,
vol. 20, no. 3, p. 128, 2018.

[18] A. Hussain and T. Kanwal, “Existence and uniqueness for a
neutral differential problem with unbounded delay via fixed
point results,” Transactions of A. Razmadze Mathematical
Institute, vol. 172, no. 3, pp. 481–490, 2018.

9Journal of Function Spaces


	3D Dynamic Programming Approach to Functional Equations with Applications
	1. Introduction and Preliminaries
	2. Common Fixed Points Results of Reich Type &thinsp;F-Contractions
	3. Investigation of Fixed Points of&thinsp;F-Contractions on F-Closed Balls
	4. Application to Functional Equations
	5. Conclusion
	Data Availability
	Conflicts of Interest
	Authors’ Contributions

