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The integral inequalities have become a very popular area of research in recent years. The present paper deals with some important
generalizations of convex stochastic processes. Several mean square integral inequalities are derived for this generalization. The
involvement of the beta function in the results makes the inequalities more convenient for applied sciences.

1. Introduction

Just as the probability theory is regarded as the study of
mathematical models of random phenomena, the theory of
stochastic processes plays an important role in the investiga-
tion of random phenomena depending on time. A random
phenomenon that arises through a process which is develop-
ing in time and controlled by some probability law is called a
stochastic process. Thus, stochastic processes can be referred
to as the dynamic part of the probability theory. We will now
give a formal definition of a stochastic process.

Various collections of random variables Xðl, ·Þ, l ∈ J , have
the property in some sense that XðlÞ is stochastically convex
(or −Xðl, ·Þ is stochastically concave). The stochastic process
with convexity properties has a large number of applications.
In [1], the authors demonstrated the use of a stochastically
convex function in different areas of probability and
statistics.

In queueing theory, the convexity of steady-state waiting
time is used in [2]. More in [1], the authors used the convex-
ity of payoff in the success rate to obtain an imperfect repair.

In 1980, Nikodem introduced the study of quadratic and
convex stochastic processes (see [3, 4]). In [5, 6], Skowronski
explained the properties of the Wright-convex and Jensen-
convex stochastic process. Also, Kotrys described results on
convex and strongly convex stochastic processes, together

with a Hermite-Hadamard-type inequality for convex sto-
chastic processes (see [7–9]).

The Hermite-Hadamard inequality for the convex sto-
chastic process is defined as follows:

Let X : J ×Ω⟶ℝ be a convex and mean square con-
tinuous in the interval T ×Ω; then, the inequality holds
almost everywhere:

X
r + s
2 , ·

� �
≤

1
r − s

ðs
r
X l, ·ð Þdl ≤ X r, ·ð Þ + X s, ·ð Þ

2 , ð1Þ

for any r, s ∈ J . For more details on Hermite-Hadamard-type
inequalities for the stochastic process, we may refer the
reader to [10–12].

Definition 1 (see [13]). A stochastic process is a collection of
random variables XðlÞ parameterized by l ∈ J , where J ⊂ℝ.
When J = f1, 2,⋯g, then XðlÞ is said to be a stochastic pro-
cess in discrete time (i.e., a sequence of random variables).
When J is an interval in ℝðJ = ½0,∞ÞÞ, then we say that
XðlÞ is a stochastic process in continuous time.

For every ω ∈Ω, the function

J ∋ l↦ X l, ωð Þ ð2Þ

is said to be a path or sample path of XðlÞ.
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Definition 2 (see [13]). A family Fl of α-fields on Ω parame-
trized by l ∈ J , where J ⊂ℝ, is said to be a filtration if

Fs ⊂ Fl ⊂ F, ð3Þ

for any s, l ∈ J such that s ≤ l.

Definition 3 (see [13]). A stochastic process XðlÞ parame-
trized by l ∈ T is said to be a martingale (supermartingale,
submartingale) with respect to a filtration Fl if

(1) XðlÞ is integrable for each l ∈ J

(2) XðlÞ is Fl-measurable for each l ∈ J

(3) XðsÞ = EðXðlÞ ∣ FsÞ (respectively, ≤ or ≥) for every s,
l ∈ J such that s ≤ l.

Definition 4 (see [7]). Let ðΩ, A, PÞ be an arbitrary probability
space and J ⊂ℝ be an interval. A stochastic process X : Ω
⟶ℝ is called as follows:

(1) Stochastically continuous in interval J , if ∀l∘ ∈ J

P − lim
l⟶l∘

X l, ·ð Þ = X l∘, ·ð Þ, ð4Þ

where P − lim denotes the limit in probability.

(2) Mean square continuous in J , if ∀l∘ ∈ J

P − lim
l⟶l∘

E X l, ·ð Þ − X l∘, ·ð Þð Þ = 0, ð5Þ

where EðXðl, ·ÞÞ denotes the expectation value of the
random variable Xðl, ·Þ.

(3) Increasing (decreasing) if ∀μ, ν ∈ J such that

X μ, ·ð Þ ≤ X ν, ·ð Þ, X μ, ·ð Þ ≥ X ν, ·ð Þ: ð6Þ

(4) Monotonic if it is increasing or decreasing

(5) If there exists a random variable X ′ðl, ·Þ: J ×Ω⟶ℝ,
then we say that it is differentiable at a point l ∈ J, such
that

X ′ l, ·ð Þ = P − lim
l⟶l∘

X l, ·ð Þ − X l∘, ·ð Þ
l − l∘

: ð7Þ

A stochastic process X : J ×Ω⟶ℝ is continuous (dif-
ferentiable) if it is continuous (differentiable) at every point
of interval J .

Definition 5 (see [7, 14]). Suppose that ðΩ, A, PÞ be a proba-
bility space and J ⊂ℝ be an interval with EðXðϑÞ2Þ <∞∀
ϑ ∈ J . If ½r, s� ⊂ J , r = ϑ0 < ϑ1 < ϑ2 <⋯<ϑn = s is a partition of
½r, s� and Θ ∈ ½ϑκ−1, ϑκ� for κ = 1, 2,⋯, n. A random variable

Z : Ω⟶ℝ is known as mean square integral of the process
Xðϑ, ·Þ on ½r, s� if

lim
n⟶∞

E 〠
∞

κ=1
X Θκ, ·ð Þ ϑκ, ϑκ−1ð Þ − Z ·ð Þ

" #2

= 0, ð8Þ

then, we have

ðs
r
X ϑ, ·ð Þdϑ = Z ·ð Þ a:e:ð Þ: ð9Þ

Also, the mean square integral operator is increasing;
thus,

ðs
r
X ϑ, ·ð Þdϑ ≤

ðs
r
Y ϑ, ·ð Þ a:e:ð Þ, ð10Þ

where Xðϑ, ·Þ ≤ Yðϑ, ·Þ in ½r, s�.
For more details on stochastic processes, we may refer the

reader to [15, 16].

Next, we write some basic definitions which will be used
in this work:

Definition 6 (see [4]). Let ðΩ, A, PÞ be a probability space and
J ⊆ R be an interval. A stochastic process X : J ×Ω⟶ R is
called a convex stochastic process; then, the inequality holds
almost everywhere:

X ϑr + 1 − ϑð Þs, ·ð Þ ≤ ϑX r, ·ð Þ + 1 − ϑð ÞX s, ·ð Þ, ð11Þ

∀r, s ∈ J and ϑ ∈ ½0, 1�.

Definition 7 (see [17]). A process X : J ×Ω⟶ℝ is said to
be a p-convex stochastic process, if the following inequality
holds:

X ϑrp + 1 − ϑð Þsp½ �1/p, ·
� �

≤ ϑX r, ·ð Þ + 1 − ϑð ÞX s, ·ð Þ a:e:ð Þ,
ð12Þ

for all r, s ∈ J and ϑ ∈ ½0, 1�.

In [18], Barráez et al. defined the definition of the h
-convex stochastic process as follows:

Definition 8 (see [18]). Let h : ð0, 1Þ⟶ℝ be a nonnegative
function, h ≠ 0. A stochastic process X : J ×Ω⟶ℝ is a h
-convex stochastic process, if the inequality holds:

X ϑr + 1 − ϑð Þs, ·ð Þ ≤ h ϑð ÞX r, ·ð Þ + h 1 − ϑð ÞX s, ·ð Þ a:e:ð Þ, ð13Þ

for every r, s ∈ J and ϑ ∈ ½0, 1�.
Obviously, by taking hðϑÞ = ϑ in (13), then the definition

of the h-convex stochastic process reduces to the definition of
the convex stochastic process [4].
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Definition 9 (see [9]). Let c : Ω⟶ℝ be a positive random
variable. A stochastic process X : J ×Ω⟶ℝ is known as
strongly convex with modulus cð·Þ > 0, if the following
inequality holds:

X ϑr + 1 − ϑð Þs, ·ð Þ ≤ ϑX r, ·ð Þ + 1 − ϑð ÞX s, ·ð Þ − c ·ð Þϑ 1 − ϑð Þ r − sð Þ2 a:e:ð Þ,
ð14Þ

for all r, s ∈ J and ϑ ∈ ½0, 1�.
For more details on the strongly convex stochastic pro-

cess, we refer to [9], and for some interesting properties of
some special function, see [19, 20]. Obviously, if we omit
the term cð·Þϑð1 − ϑÞðr − sÞ2 in (14), then we get the defini-
tion of a convex stochastic process (see [4]). On the other
hand, if we set c = 0, then we get it from (14) in limit case.
Also, we use the beta function in this present work which is
expressed as

β r, sð Þ =
ð1
0
ϑr−1 1 − ϑð Þs−1dϑ, Re rð Þ > 0, Re sð Þ > 0: ð15Þ

2. Main Results

Lemma 10 (see [21]). Suppose that X : J ×Ω⟶ℝ be a
mean square continuous and mean square integrable stochas-
tic process. Then, the following equality holds almost every-
where:

ðs
r
ω − rð Þμ s − ωð ÞνX ω, ·ð Þdω = s − rð Þμ+ν+1

ð1
0
1 − ϑð ÞμϑνX ϑr + 1 − ϑð Þs, ·ð Þdϑ,

ð16Þ

for some fixed μ, ν > 0.

Lemma 11. Suppose that X : J ×Ω⟶ℝ be a mean square
continuous and mean square integrable stochastic process.
Then, the following equality holds almost everywhere:

ðsp
rp

ωp − rpð Þμ sp − ωpð Þν X ω, ·ð Þ
ω1−p dω

= sp − rpð Þμ+ν+1
p

ð1
0
1 − ϑð ÞμϑνX ϑrp + 1 − ϑð Þsp½ �1/p, ·

� �
dϑ,

ð17Þ

for some fixed μ, ν > 0.

Proof. Let ω = ½ϑrp + ð1 − ϑÞsp�1/p. Then, ϑ = ðsp − ωpÞ/ðsp −
rpÞ, 1 − ϑ = ðωp − rpÞ/ðsp − rpÞ, and dϑ = −p/ðsp − rpÞω1−pdω,
so

ð1
0
1 − ϑð ÞμϑνX ϑrp + 1 − ϑð Þsp½ �1/p, ·

� �
dϑ

= p

sp − rpð Þμ+ν+1
ðsp
rp

ωp − rpð Þμ sp − ωpð Þν X ω, ·ð Þ
ω1−p dω a:e:ð Þ,

ð18Þ

which completes the proof. ☐

Remark 12. If we take p = 1 in Lemma 11, then we obtain
Lemma 3.1 of [21].

The following results are derived for p-convex stochastic
processes.

Theorem 13. Suppose that X : J ×Ω⟶ℝ be a mean square
continuous and mean square integrable stochastic process. If
jXj is p-convex on ½r, s�, where r, s ∈ J with r < s, and μ, ν > 0
is taken, then the inequality holds almost everywhere:

ðsp
rp

ωp − rpð Þμ sp − ωpð Þν X ω, ·ð Þ
ω1−p dω

≤
sp − rpð Þμ+ν+1

p
β μ + 1, ν + 2ð Þ X r, ·ð Þj j + β μ + 2, ν + 1ð Þ X s, ·ð Þj jð Þ:

ð19Þ

Proof. By using Lemma 11, the definition of the p-convexity
of jXj and the beta function yield that

ðsp
rp

ωp − rpð Þμ sp − ωpð Þν X ω, ·ð Þ
ω1−p dω

≤
sp − rpð Þμ+ν+1

p

ð1
0
1 − ϑð Þμϑν X ϑrp + 1 − ϑð Þsp½ �1/p, ·

� ���� ���dϑ
≤

sp − rpð Þμ+ν+1
p

ð1
0
1 − ϑð Þμϑν ϑ X r, ·ð Þj j + 1 − ϑð Þ X s, ·ð Þj jð Þdϑ

≤
sp − rpð Þμ+ν+1

p
β μ + 1, ν + 2ð Þ X r, ·ð Þj j + β μ + 2, ν + 1ð Þ X s, ·ð Þj jð Þ a:e:ð Þ,

ð20Þ

which completes the proof. ☐

Remark 14. If we take p = 1 in Theorem 13, then we obtain
Theorem 3.1 of [21].

Theorem 15. Suppose that X : J ×Ω⟶ℝ be a mean square
continuous and mean square integrable stochastic process. If
jXjq is p-convex on ½r, s� for q > 1 with 1/κ + 1/q = 1, where r
, s ∈ J , r < s, and μ, ν > 0 is taken, then the inequality holds
almost everywhere:

ðsp
rp

ωp − rpð Þμ sp − ωpð Þν X ω, ·ð Þ
ω1−p dω

≤
sp − rpð Þμ+ν+1

p
β κμ + 1, κν + 1ð Þð Þ1/κ X r, ·ð Þj jq + X s, ·ð Þj jq

2

� �1/q
:

ð21Þ
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Proof. Employing Lemma 11 and Hölder’s integral inequal-
ity, we have ða:e:Þ

ðsp
rp

ωp − rpð Þμ sp − ωpð Þν X ω, ·ð Þ
ω1−p dω

≤
sp − rpð Þμ+ν+1

p

ð1
0
1 − ϑð Þμϑν X ϑrp + 1 − ϑð Þsp½ �1/p, ·

� ���� ���dϑ
≤

sp − rpð Þμ+ν+1
p

ð1
0
1 − ϑð Þκμϑκνdϑ

� �1/κ

�
ð1
0
X ϑrp + 1 − ϑð Þsp½ �1/p, ·
� ���� ���qdϑ� �1/q

:

ð22Þ

Since jXjq is a p-convex stochastic process, one can yield
that

ð1
0
X ϑrp + 1 − ϑð Þsp½ �1/p, ·
� ���� ���qdϑ

≤
ð1
0
ϑ X r, ·ð Þj jq + 1 − ϑð Þ X s, ·ð Þj jqð Þdϑ

= X r, ·ð Þj jq + X s, ·ð Þj jq
2 a:e:ð Þ,

ð23Þ

and by the definition of the beta function, we can write

ð1
0
1 − ϑð Þκμϑκνdϑ = β κμ + 1, κν + 1ð Þ: ð24Þ

Inserting (23) and (24) in (22) yields the required
inequality (21). ☐

Remark 16. If we take p = 1 in Theorem 15, then we get The-
orem 3.2 of [21].

Theorem 17. Let X : J ×Ω⟶ℝ be a mean square continu-
ous and mean square integrable stochastic process. If jXjq is p
-convex on ½r, s� for q > 1, where r, s ∈ J with r < s, and μ, ν > 0
is taken, then the inequality holds almost everywhere:

ðsp
rp

ωp − rpð Þμ sp − ωpð Þν X ω, ·ð Þ
ω1−p dω

≤
sp − rpð Þμ+ν+1

p
β κμ + 1, κν + 1ð Þð Þ1− 1/qð Þ

× β μ + 1, ν + 2ð Þ X r, ·ð Þj jq + β μ + 2, ν + 1ð Þ X s, ·ð Þj jqð Þ1/q:
ð25Þ

Proof.Making use of Lemma 11 and the power-mean integral
inequality for κ ≥ 1 yields that

ðsp
rp

ωp − rpð Þμ sp − ωpð Þν X ω, ·ð Þ
ω1−p dω

≤
sp − rpð Þμ+ν+1

p

ð1
0
1 − ϑð Þμϑν X ϑrp + 1 − ϑð Þsp½ �1/p, ·

� ���� ���dϑ a:e:ð Þ

≤
sp − rpð Þμ+ν+1

p

ð1
0
1 − ϑð Þκμϑκνdϑ

� �1− 1/qð Þ

×
ð1
0
1 − ϑð Þμϑν X ϑrp + 1 − ϑð Þsp½ �1/p, ·

� ���� ���qdϑ� �1/q
a:e:ð Þ:

ð26Þ

By using the p-convexity of the stochastic process jXjq
and by the definition of the beta function, we have ða:e:Þ

≤
sp − rpð Þμ+ν+1

p

ð1
0
1 − ϑð Þκμϑκνdϑ

� �1− 1/qð Þ

×
ð1
0
1 − ϑð Þμϑν ϑ X r, ·ð Þj jq + 1 − ϑð Þ X s, ·ð Þj jqð Þdϑ

� �1/q

≤
sp − rpð Þμ+ν+1

p
β κμ + 1, κν + 1ð Þð Þ1− 1/qð Þ

× β μ + 1, ν + 2ð Þ X r, ·ð Þj jq + β μ + 2, ν + 1ð Þ X s, ·ð Þj jqð Þ1/q:
ð27Þ

which completes the proof. ☐

Remark 18. If we take p = 1 in Theorem 17, then we obtain
Theorem 3.3 of [21].

The following results are derived for h-convex stochastic
processes.

Theorem 19. Suppose that X : J ×Ω⟶ℝ be a mean square
continuous and mean square integrable stochastic process. If
jXj is h-convex on ½r, s�, where r, s ∈ J with r < s, and μ, ν > 0
is taken, then the inequality holds almost everywhere:

ðs
r
ω − rð Þμ s − ωð ÞνX ω, ·ð Þdω

≤ s − rð Þμ+ν+1 X r, ·ð Þj jβh ϑð Þ + X s, ·ð Þj jβh 1 − ϑð Þð Þ,
ð28Þ

where

βh ϑð Þμ,ν =
ð1
0
1 − ϑð Þμϑνh ϑð Þdϑ, ð29Þ

βh 1 − ϑð Þμ,ν =
ð1
0
1 − ϑð ÞμϑνhÞ 1 − ϑð Þdϑ: ð30Þ

Proof. By Lemma 10, the definition of the h-convexity of ∣X ∣
and the beta function yield that
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ðs
r
ω − rð Þμ s − ωð ÞνX ω, ·ð Þdω

≤ s − rð Þμ+ν+1
ð1
0
1 − ϑð Þμϑν X ϑr + 1 − ϑð Þs, ·ð Þj jdϑ

≤ s − rð Þμ+ν+1
ð1
0
1 − ϑð Þμϑν h ϑð Þ X r, ·ð Þj j + h 1 − ϑð Þ X s, ·ð Þj jð Þdϑ

≤ s − rð Þμ+ν+1 X r, ·ð Þj j
ð1
0
1 − ϑð Þμϑνh ϑð Þdϑ + X s, ·ð Þj j

ð1
0
1 − ϑð Þμϑνh 1 − ϑð Þ

� �
= s − rð Þμ+ν+1 X r, ·ð Þj jβh ϑð Þμ,ν + X s, ·ð Þj jβh 1 − ϑð Þμ,νð Þ a:e:ð Þ,

ð31Þ

which completes the proof. ☐

Remark 20. If we take hðϑÞ = ϑ in Theorem 19, then we obtain
Theorem 3.1 of [21].

Theorem 21. Suppose that X : J ×Ω⟶ℝ be a mean square
continuous and mean square integrable stochastic process. If
jXjq is h-convex on ½r, s� for q > 1 with 1/κ + 1/q = 1, where r
, s ∈ J , r < s, and μ, ν > 0 is taken, then the inequality holds
almost everywhere:

ðs
r
ω − rð Þμ s − ωð ÞνX ω, ·ð Þdω

≤ s − rð Þμ+ν+1 β κμ + 1, κν + 1ð Þð Þ1/κ X r, ·ð Þj jqβh ϑð Þ + X s, ·ð Þj jqβh 1 − ϑð Þð Þ1/q,
ð32Þ

where βhðϑÞ =
Ð 1
0hðϑÞdϑ and βhð1 − ϑÞ = Ð 1

0hð1 − ϑÞdϑ:

Proof. Employing Lemma 10 and Hölder’s integral inequal-
ity, we have ða:e:Þ
ðs
r
ω − rð Þμ s − ωð ÞνX ω, ·ð Þdω

≤ s − rð Þμ+ν+1
ð1
0
1 − ϑð Þμϑν X ϑr + 1 − ϑð Þs, ·ð Þj jdϑ

≤ s − rð Þμ+ν+1
ð1
0
1 − ϑð Þκμϑκνdϑ

� �1/κ ð1
0
X ϑr + 1 − ϑð Þs, ·ð Þj jqdϑ

� �1/q
:

ð33Þ

Since jXjq is an h-convex stochastic process, one can yield
that

ð1
0
X ϑr + 1 − ϑð Þs, ·ð Þj jqdϑ

≤
ð1
0
h ϑð Þ X r, ·ð Þj jq + h 1 − ϑð Þ X s, ·ð Þj jqð Þdϑ

≤ X r, ·ð Þj jq
ð1
0
h ϑð Þdϑ + X s, ·ð Þj jq

ð1
0
h 1 − ϑð Þdϑ

≤ X r, ·ð Þj jqβh ϑð Þ + X s, ·ð Þj jqβh 1 − ϑð Þ a:e:ð Þ,

ð34Þ

and by the definition of the beta function, we can write

ð1
0
1 − ϑð Þκμϑκνdϑ = β κμ + 1, κν + 1ð Þ: ð35Þ

Inserting (34) and (35) in (33) yields the desired inequal-
ity (32). ☐

Remark 22. If we take hðϑÞ = ϑ in Theorem 21, then we obtain
Theorem 3.2 of [21].

Theorem 23. Let X : J ×Ω⟶ℝ be a mean square continu-
ous and mean square integrable stochastic process. If jXjq is h
-convex on ½r, s� for q > 1, where r, s ∈ J with r < s, and μ, ν > 0
is taken, then the inequality holds almost everywhere:

ðs
r
ω − rð Þμ s − ωð ÞνX ω, ·ð Þdω

≤ s − rð Þμ+ν+1 β κμ + 1, κν + 1ð Þð Þ1− 1/qð Þ

� βh ϑð Þμ,ν X r, ·ð Þj jq + βh θð Þμ,ν X s, ·ð Þj jqð Þ1/q,

ð36Þ

where

βh ϑð Þμ,ν =
ð1
0
1 − ϑð Þμϑνh ϑð Þdϑ, ð37Þ

βh 1 − ϑð Þμ,ν =
ð1
0
1 − ϑð Þμϑνh 1 − ϑð Þdϑ: ð38Þ

Proof. By Lemma 10 and the power-mean integral inequality
for κ ≥ 1, one can yield that

ðs
r
ω − rð Þμ s − ωð ÞνX ω, ·ð Þdω

≤ s − rð Þμ+ν+1
ð1
0
1 − ϑð Þμϑν X ϑr + 1 − ϑð Þs, ·ð Þj jdϑ a:e:ð Þ

≤ s − rð Þμ+ν+1
ð1
0
1 − ϑð Þκμϑκνdϑ

� �1− 1/qð Þ

×
ð1
0
1 − ϑð Þμϑν X ϑr + 1 − ϑð Þs, ·ð Þj jqdϑ

� �1/q
a:e:ð Þ:

ð39Þ

By using the h-convexity of the stochastic process jXjq
and by the definition of the beta function, we have ða:e:Þ

≤ s − rð Þμ+ν+1
ð1
0
1 − ϑð Þκμϑκνdϑ

� �1−1/q

×
ð1
0
1 − ϑð Þμϑν hðÞϑÞ X r, ·ð Þj jq + h 1 − ϑð Þ X s, ·ð Þj jqð Þdϑ

� �1/q

≤ s − rð Þμ+ν+1
ð1
0
1 − ϑð Þκμϑκνdϑ

� �1−1/q

× X r, ·ð Þj jq
ð1
0
1 − ϑð Þμϑνh ϑð Þ + X s, ·ð Þj jq

ð1
0
h 1 − ϑð Þdϑ

� �1/q

≤ s − rð Þμ+ν+1 β κμ + 1, κν + 1ð Þð Þ1− 1/qð Þ βh ϑð Þμ,ν X r, ·ð Þj jqð
+ βh θð Þμ,ν X s, ·ð Þj jqÞ1/q,

ð40Þ

which completes the proof. ☐
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Remark 24. If we take hðϑÞ = ϑ in Theorem 23, then we obtain
Theorem 3.3 of [21].

The following results are derived for strongly convex sto-
chastic processes.

Theorem 25. Suppose that X : J ×Ω⟶ℝ be a mean square
continuous and mean square integrable stochastic process. If
jXj is strongly convex on ½r, s�, where r, s ∈ J with r < s, and
μ, ν > 0 is taken, then the inequality holds almost everywhere:

ðs
r
ω − rð Þμ s − ωð ÞνX ω, ·ð Þdω

≤ s − rð Þμ+ν+1 β μ + 1, ν + 2ð Þ X r, ·ð Þj j + β μ + 2, ν + 1ð Þð
� X s, ·ð Þj j − c ·ð Þ r − sð Þ2β μ + 2, ν + 2ð Þ�:

ð41Þ

Proof. From Lemma 10, the definition of the strong convexity
of jXj and the beta function yield that

ðs
r
ω − rð Þμ s − ωð ÞνX ω, ·ð Þdω

≤ s − rð Þμ+ν+1
ð1
0
1 − ϑð Þμϑν X ϑr + 1 − ϑð Þs, ·ð Þj jdϑ

≤ s − rð Þμ+ν+1
ð1
0
1 − ϑð Þμϑν ϑ X r, ·ð Þj jð

+ 1 − ϑ X s, ·ð Þj j − c ·ð Þϑ 1 − ϑð Þ r − sð Þ2�dϑ
≤ s − rð Þμ+ν+1 β μ + 1, ν + 2ð Þ X r, ·ð Þj jð

+ β μ + 2, ν + 1ð Þ X s, ·ð Þj j − c ·ð Þ r − sð Þ2
� β μ + 2, ν + 2ð ÞÞ a:e:ð Þ,

ð42Þ

which completes the proof. ☐

Remark 26. If we take c = 0 in Theorem 25, then we obtain
Theorem 3.1 of [21].

Theorem 27. Suppose that X : J ×Ω⟶ℝ be a mean square
continuous and mean square integrable stochastic process. If
jXjq is strongly convex on ½r, s� for q > 1 with 1/κ + 1/q = 1,
where r, s ∈ J with r < s, and μ, ν > 0 is taken, then the
inequality holds almost everywhere:

ðs
r
ω − rð Þμ s − ωð ÞνX ω, ·ð Þdω

≤ s − rð Þμ+ν+1 β κμ + 1, κν + 1ð Þð Þ1/κ

� 1
2

X r, ·ð Þj jq + X s, ·ð Þj jqð Þ − 1
6
c ·ð Þ r − sð Þ2

� �1/q
:

ð43Þ

Proof. By Lemma 10 and Hölder’s integral inequality, we
have ða:e:Þ

ðs
r
ω − rð Þμ s − ωð ÞνX ω, ·ð Þdω

≤ s − rð Þμ+ν+1
ð1
0
1 − ϑð Þμϑν X ϑr + 1 − ϑð Þs, ·ð Þj jdϑ

≤ s − rð Þμ+ν+1
ð1
0
1 − ϑð Þκμϑκνdϑ

� �1/κ

�
ð1
0
X ϑr + 1 − ϑð Þs, ·ð Þj jqdϑ

� �1/q
:

ð44Þ

Since jXjq is a strongly convex stochastic process, one can
yield that

ð1
0
X ϑr + 1 − ϑð Þs, ·ð Þj jqdϑ

≤
ð1
0
ϑ X r, ·ð Þj jq + 1 − ϑ X s, ·ð Þj jq − c ·ð Þϑ 1 − ϑð Þ r − sð Þ2� �

dϑ

≤
1
2 X r, ·ð Þj jq + X s, ·ð Þj jqð Þ − 1

6 c ·ð Þ r − sð Þ2� �
a:e:ð Þ,

ð45Þ

and taking the definition of the beta function, we can write

ð1
0
1 − ϑð Þκμϑκνdϑ = β κμ + 1, κν + 1ð Þ: ð46Þ

Replacing (45) and (46) in (44) yields the desired inequal-
ity (43). ☐

Remark 28. If we take c = 0 in Theorem 27, then we get The-
orem 3.2 of [21].

Theorem 29. Let X : J ×Ω⟶ℝ be a mean square continu-
ous and mean square integrable stochastic process. If jXjq is
strongly convex on ½r, s� for q > 1, where r, s ∈ J with r < s,
and μ, ν > 0 is taken, then the inequality holds almost every-
where:

ðs
r
ω − rð Þμ s − ωð ÞνX ω, ·ð Þdω

≤ s − rð Þμ+ν+1β κμ + 1, κν + 1ð Þ1− 1/qð Þ

× β μ + 1, ν + 2ð Þ X r, ·ð Þj jq + β μ + 2, ν + 1ð Þð
� X s, ·ð Þj jq − c ·ð Þ r − sð Þ2β μ + 2, ν + 2ð Þ�1/q:

ð47Þ

Proof. Bymaking use of Lemma 11 and the power-mean inte-
gral inequality for κ ≥ 1, one can yield that
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ðs
r
ω − rð Þμ s − ωð ÞνX ω, ·ð Þdω

≤ s − rð Þμ+ν+1
ð1
0
1 − ϑð Þμϑν X ϑr + 1 − ϑð Þs, ·ð Þj jdϑ a:e:ð Þ

≤ s − rð Þμ+ν+1
ð1
0
1 − ϑð Þκμϑκνdϑ

� �1− 1/qð Þ

×
ð1
0
1 − ϑð Þμϑν X ϑr + 1 − ϑð Þs, ·ð Þj jqdϑ

� �1/q
a:e:ð Þ:

ð48Þ

By using the strong convexity of the stochastic process
jXjq and taking the definition of the beta function, we have
ða:e:Þ

≤ s − rð Þμ+ν+1
ð1
0
1 − ϑð Þκμϑκνdϑ

� �1− 1/qð Þ

×
�ð1

0
1 − ϑð Þμϑν ϑ X r, ·ð Þj jq + 1 − ϑð Þð

� X s, ·ð Þj jq − c ·ð Þϑ 1 − ϑð Þ r − sð Þ2�dϑ�1/q

≤ s − rð Þμ+ν+1 β κμ + 1, κν + 1ð Þð Þ1− 1/qð Þ

× β μ + 1, ν + 2ð Þ X r, ·ð Þj jq + β μ + 2, ν + 1ð Þð
� X s, ·ð Þj jq − c ·ð Þ r − sð Þ2β μ + 2, ν + 2ð Þ�1/q,

ð49Þ

which completes the proof. ☐

Remark 30. If we take c = 0 in Theorem 29, then we obtain
Theorem 3.1 of [21].

3. Conclusions

Stochastic processes have applications in many disciplines
such as biology, chemistry, ecology, neuroscience, physics,
image processing, signal processing, control theory, informa-
tion theory, computer science, cryptography, and telecom-
munications. In this paper, we studied the generalized
convex stochastic processes via a special function “beta func-
tion.” We established mean square integral inequalities for
these generalized convex stochastic processes.

4. Future Directions

It will be interesting for researchers to work on the general-
ized convex stochastic processes via different fractional inter-
nal operators.
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