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In this article, an effective computing approach is presented by exploiting the power of Levenberg-Marquardt scheme (LMS) in a
backpropagation learning task of artificial neural network (ANN). It is proposed for solving the magnetohydrodynamics (MHD)
fractional flow of boundary layer over a porous stretching sheet (MHDFF BLPSS) problem. A dataset obtained by the fractional
optimal homotopy asymptotic (FOHA) method is created as a simulated data simple for training (TR), validation (VD), and
testing (TS) the proposed approach. The experiments are conducted by computing the results of mean-square-error (MSE),
regression analysis (RA), absolute error (AE), and histogram error (HE) measures on the created dataset of FOHA solution.
During the learning task, the parameters of trained model are adjusted by the efficacy of ANN backpropagation with the LMS
(ANN-BLMS) approach. The ANN-BLMS performance of the modeled problem is verified by attaining the best convergence
and attractive numerical results of evaluation measures. The experimental results show that the approach is effective for
finding a solution of MHDFF BLPSS problem.

1. Introduction

In many engineering and industrial processes, an incom-
pressible flow liquid of boundary layer is common to be used
over stretching sheet. This field has been paid attention by
researchers in the last few decades. Boundary layer has wide
ranges of applications in engineering industry. For instance,
it is utilized in thermal wrapping, polymer paper aerody-
namic extraction from debris, cooling plate without cooling
tuber, glass-fiber development, and the boundary layer of

liquid flow film in the phase of condensation [1–3]. Many
metals require to be cool with continuous fibers through
immersing them in quiescent liquids. The features of final
mechanical product only depended on the temperature of
the process and the drawing of the costs. Sakiadis [4, 5]
investigated this area with the new work, and several
researchers have explored the boundary flow layer into
ongoing stretching sheet in increasing with increasing the
speed. A solution of a closed form for viscous fluid flow that
is incomprehensible than the advisory plate was discovered
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by the author Crane [6]. Similarly, in [7], the authors studied
the same magnetic flexible field wherein the fluid flow can
absorb electrically a model or site of evaporation or injec-
tion, illustrated by the researcher Anderson [8]. In addition,
Ariel [9] has examined the combination effect of the mag-
netic fields and the viscoelasticity on Crane’s problem. Due
to stretching sheet that occurs in different behaviors, the
flow passing through it does not continuously require to be
with two sizes. However, if the flow extension is radial, it
could be with three. On the other hand, three stretches of flat
surface with the same size of width were studied by author
Wang [10]. In [11, 12], Brady and Acrivos monitored the
flow that is inside the tube or channel and the flow that is
performed outside the tube. Moreover, the authors in [13,
14] have evaluated the unstable property of the stretching
sheet. In [15], the authors utilized homotopy perturbation
method (HPM) and it is expanded for obtaining a solution
in axisymmetric analysis of the flow in a flat layer. Samuel
and Hall [16] provided noniterative solutions to the MHD
flow. Magnetohydrodynamics (MHD) concerns with study-
ing the interaction of electromagnetic conditions and the
transfer of liquid heat. The flow of conducting fluids is
essential in many areas and fields of engineering and science,
such as MHD pumps, MHD power generation, and MHD
generators. Recently, many researchers worked on BL flow
[17–25]. These studies are done by analytical/numerical
approach. The recent usage of stochastic numerical comput-
ing solvers are thermodynamics, offline circuits, astrophys-
ics, atomic physics, plasma physics, MHD, dynamics of
fluid, bioinformatics, nanotechnology, electromagnetics,
electricity, theories of random matrix, energy, and finance
[26–41]. In addition, to solve different statistics [42, 43], sto-
chastic computing solutions are used.

The mechanisms of proposed stochastic are as follows:

(i) An effective application of artificial intelligence-
based computing is introduced by means of artifi-
cial neural network backpropagation with the
Levenberg-Marquardt scheme (ANN-BLMS) for
achieving a solution to MHDFF BLPSS at different
scenarios on variation of Deborah, porosity, and
magnetic numbers

(ii) The mathematical modeling of the work is formu-
lated with nonlinear coupled PDEs to MHDFF
BLPSS. The PDEs are converted to their equivalent
nonlinear ODE structure using the similarity of
variables

(iii) A dataset is created to evaluate the proposed ANN-
BLMS at several variations of MHDFF BLPSS on
the basis of Deborah, porosity, and magnetic
parameters

(iv) The phases of training, validation, and testing for
the ANN-BLMS are given by demonstrating the
MHDFF BLPSS at a set of scenarios and compari-
sons with the reference numerical results to validate
the applicability and effectiveness of the proposed
ANN-BLMS

(v) The performance results of ANN-BLMS for solving
the MHDFF BLPSS is further confirmed by the con-
vergence plots of the mean squared errors, fitting
graphs, histogram errors, and regression analysis
curves

2. Problem Formulation

We consider an incompressible viscous flow over a flat
porous plate. The fluid is electrically conducting under the
influence of applied magnetic field βðxÞ normal to the
stretching sheet as shown in Figure 1.

The fundamental equations [44] are as follows:

∇∙W = 0, ð1Þ

∂W
∂u

+ W∙∇ð ÞW = 1
ρ
∇p + μ∇2W −

1
ρ

J × βð ÞW −
μ

ρk
W,

ð2Þ
where W = ðxðu, vÞ, yðu, vÞ, 0Þ, β is the magnetic field, and J
is the current density.

The boundary conditions (BCs) are used.

x i, 0ð Þ = cin,
y i, 0ð Þ = 0,
u i,∞ð Þ = 0:

ð3Þ

This model is generalized through changing the first
time derivative by the fractional derivative with order α,
1< α <2. The fractional time model of Navier–Stokes equa-
tion then takes the following form:

Dα
uW + W∙∇ð ÞW = −

1
ρ
∇p + y∇2W −

1
ρ

J × βð ÞW −
μ

ρk
W,

ð4Þ

where Dα
u is the Caputo fractional derivative of order α.

For reducing the governing equation of the boundary
value problem, the similarity transformation is performed
using the following equations [44]:
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Figure 1: Sketch of the flow problem.
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x i, vð Þ = xiv f ′ ηð Þ,

η = v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c r + 1ð Þ
2y

s

i r−1ð Þ/2v,

y ηð Þ = −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c r + 1ð Þ
2

r

i r−1ð Þ/2 f ηð Þ + r − 1ð Þ
r + 1ð Þ ηf ′ ηð Þ

� �

:

ð5Þ

We obtain

Dα
uW + ∂3 f

∂η3
+ f

∂2 f
∂η2

− β
∂f
∂η

� �2
−M

∂f
∂η

− γ
∂f
∂η

= 0,

f 0ð Þ = 0,
∂f
∂η

0ð Þ = 1,

∂f
∂η

∞ð Þ = 0,

ð6Þ

where β = 2n/ð1 + nÞ, γ = μ/ðρrð1 + nÞÞ, M = 2σβ2
0/ðρcð1 +

nÞÞ.

Definition 1. The Riemann-Liouville fractional integral
operator [45].

Jα f ηð Þ = 1
Γ αð Þ

ðu

0
u − τð Þm−1 f τð Þdτ,

Jα f ηð Þ = f ηð Þ,

Jαuξ = Γ ξ + αð Þ
Γ ξ + α + 1ð Þ u

α+m:

ð7Þ

Definition 2. The fractional derivative of the function, f ðuÞ,
in the Caputo sense [46].

Dα
u f uð Þ = 1

Γ m − αð Þ
ðu

0
u − τð Þm−α−1 f m τð Þdτ: ð8Þ

Definition 3. The Laplace of Caputo [46].

L Dα
u f uð Þ½ � = sαL f uð Þ½ � − 〠

n−1

r=0
sα−n−1 f τ τð Þ: ð9Þ

3. Solution Procedure of the New
Stochastic Method

Figure 2 shows the single neural network structure of the
proposed ANN-BLMS model. The design of our ANN-
BLMS model contains ten neurons, as visualized in
Figure 3. Also, the general procedure of ANN-BLMS is pre-
sented step by step and specified by Figure 4. ANN-BLMS is
accomplished with the help of nftool in MATLAB by setting
the parameters to fit the neural network model with the
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Figure 2: A single neural network structure.
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Figure 3: A general representation of ANN-BLMS input, output, and hidden layer.
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functioning of Levenberg-Marquardt backpropagation and
updating the neural network model’s weights. It is clear from
analysis that the ANN-BLMS is implemented for the fluidic
model MHDFF BLPSS. Set the values of one parameter β
and treating the other physical parameters γ,M as fixed. In
the same fashion, the other parameters are changeable and
there are a total of three scenarios with three cases for every
scenario as exposed in Table 1. For using the ANN-BLMS,
we used the step size 0.03 between the intervals of the prob-
lem by using the FOHA method. Selecting randomly 80%,
10%, and 10% for the testing, training, and validation from
201 data input points of f values is employed for conducting
the experiments. The TR dataset is exploited for training the
model, and VD is utilized for validating of the trained
model, while the TS dataset is used to test the model and
get the performance results for evaluation.

The single-layer structure of neural networks (input,
hidden, and output layers) is displayed in Figure 4.

4. Analysis of Results

The proposed ANN-BLMS is evaluated on three scenarios,
and each scenario has three cases, as given in Table 1.
Figures 5–6 show the state transition’s results and the other
performance results, as well as the fitting plots of the
proposed solution are given through Figures 7–12. In
Figure 13, we can see the plots of HEs, and from
Figures 14–19, we can see the regression analysis results of
the MHDFF BLPSS. For cases 1 and 3 of all scenarios, the
MSEs of TR, VLD, and TS datasets are exposed in
Figures 5(a)–5(f). From Figures 5(a)–5(f), we can notice that
best performance result has been attained at epochs [1000,
324, 366, 143, 73, 24] with MSEs of about [1:3224 × 10−10,
4:702 × 10−9, 1:21138 × 10−8, 5:02766 × 10−7, 2:7001 × 10−5,
and 1:0658 × 10−9], correspondingly.

The best performance is established for every scenario in
which suitable values of the step size (Mu) for the gradient
descent (GD) and Levenberg-Marquardt are [1:0553 × 10
− 07, 9:9298 × 10 − 08,9:9259 × 10 − 08, 8:4492 × 10 − 7,
9:7359 × 10 − 8, and 9:6455 × 10 − 8� and [10-08, 10-8, 10-
08, 10-08, 10-09], as presented in Figures 6(a)–6(f). From
these figures and results, it is clearly demonstrated that the
ANN-BLMS is accurate and a reliable convergence in every
case of MHDFF BLPSS. For cases 1 and 3 of all scenarios
of MHDFF BLPSS model, the effectiveness of ANN-BLMS
is scrutinized with the reference numerical results of OHAM
along with the errors of dynamics shown in Figures 7–12.
We see that the maximum errors achieved on the VL and
TS of the ANN-BLMS model are less than [0:3 × 10 − 03,
0:1 × 10 − 03, 0:1 × 10 − 3, 3 × 10 − 03, 0:5 × 10 − 03, and
0:9 × 10 − 05], as illustrated in Figures 7–12. The errors’ var-
iability is similarly measured with HE results, which are
specified in Figures 13(a)–13(f). Also, we can see that the
maximum errors attained with reference results and a value
of errors are less than [-2.37 E-7, -3.5E-6, 3.64E-4, -1.2E-4,
-1.1E-4, and -2.5E-5] in all the cases of the MHDFF BLPSS.

The investigation concluded by regression analysis is
accompanied using co-relation readings. The results of
regression analysis are clarified by Figures 14–19. The study

of co-relation is piloted by regression studies. The results of
regression for each scenario are around unity values of the
co-relation ðRÞ and are reliable, which means that testing
training and validations are accurately modeled to perform
the ANN-BLMS. Moreover, for all three cases of each
scenario of MHDFF BLPSS, the convergence attains good
outcomes in terms of MSEs, regression analysis, and other
backpropagation performance measures, as demonstrated
by Table 2 for all cases of every scenario, separately.

The performance results are about 10-04 to 10-07, 10-8
to 10-10, and 10-06 to 10-08 for all the scenarios with cases
1 and 3 of MHDFF BLPSS. These results demonstrate that
the performance of ANN-BLMS is stable for every case of
model for the MHDFF BLPSS. The effects of the physical
parameters on the velocity profile based on the results of
ANN-BLMS are given by Figures 20(a), 21(a), and 22(a).
The variation (rise) of the physical parameter Deborah num-
ber β results to a decrease in the velocity value of the profile.
Initially, the effect of β is very small in interval [0,0.5] and
the effect of increasing β is very clear in 0.5 to 3, which
caused the decrease in the velocity profile, as shown in
Figure 20(a). Similarly, the effects of porosity and magnetic
parameters γ and M on velocity profile are obtained in
Figures 21(a) and 22(a), respectively. It is observed that by
the increase in the values of γ,M, a decreasing in velocity
value of profile (boundary layer thickness) is observed.
These parameters have low effects near the origin and have
a clear impact away from the origin.

By increasing values of physical parameters γ, β, and M,
decreasing in the velocity profiles is detected. It is because of
the fact that the parameters that increase the opposing forces
can turn to reduce the velocity value of the profile. The
ANN-BLMS results are verified by comparing them with
the numerical reference results, and hence, the validation
of our method is proved. In Figures 20(b), 21(b), and
22(b), the absolute errors (AEs) are shown for all scenarios.
It is obvious to show that the AEs are observed with 10-03 to
10-05, 10-02 to 10-08, and 10-04 to 10-07, respectively.
These explanations obviously indicate the performance of
ANN-BLMS for solving the fluid application. Still, the AEs
validate the accuracy and precision of the method.

Table 1: A description of adopted scenarios and cases to boundary
layer flow model with physical parameters of interest.

Scenario number Case number
Physical quantity

β γ M

1

1 1 1 1

2 2 1 1

3 3 1 1

2

1 1 1 1

2 1 2 1

3 1 3 1

3

1 1 1 1

2 1 1 2

3 1 1 3
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Figure 5: Performance of MSEs for the proposed ANN-BLMS to solve MHDFF BLPSS: (a) MSE result of case 1 in scenario 1, (b) MSE result
of case 3 in scenario 1, (c) MSE result of case 1 in scenario 2, (d) MSE result of case 3 in scenario 2, (e) MSE result of case 1 in scenario 3, and
(f) MSE result of case 3 in scenario 3.
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Figure 6: State transitions of the proposed ANN-BLMS for solving MHDFF BLPSS: (a) state transition result of case 1 in scenario 1, (b) state
transition result of case 3 in scenario 1, (c) state transition result of case 1 in scenario 2, (d) state transition result of case 3 in scenario 2, (e)
state transition result of case 1 in scenario 3, and (f) R state transition result of case 3 of scenario 3.
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Figure 13: Continued.
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Figure 13: Histogram errors (HEs) for the proposed ANN-BLMS in cases 1 and 3 of all scenarios to solve MHDFF BLPSS: (a) histogram
errors of case 1 in scenario 1, (b) histogram errors of case 3 in scenario 1, (c) histogram errors of case 1 in scenario 2, (d) histogram errors of
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Figure 14: Regression analysis graph of the ANN-BLMS approach for case 1 in scenario 1 of MHDFF BLPSS.

10 Journal of Function Spaces



10
0

2
Target

3 4

1 2
Target

3 4

51 2
Target

3 4

10 2
Target

3 4 5

5

4

3

2

1

0

O
ut

pu
t∼
=
1⁎

ta
rg

et
+2

.2
e-

08
4

3

2

1

O
ut

pu
t∼
=
1⁎

ta
rg

et
+9

.7
e-

06

4

5

3

2

1

O
ut

pu
t∼
=
1⁎

ta
rg

et
+2

.7
e-

06

4

3

2

1

O
ut

pu
t∼
=
1⁎

ta
rg

et
+1

.8
e-

05

Training: R=1

Test R=1 All: R=1

Validation: R=1

Data
Fit
Y=T

Data
Fit
Y=T

Data
Fit
Y=T

Data
Fit
Y=T

0

1 2
Target

3 410 2
Target

3 4 5

4

3

2

1

O
ut

pu
t∼
=
1⁎

ta
rg

et
+9

.7
e-

06

4

5

3

2

1

O
ut

pu
t∼
=
1⁎

ta
rg

et
+2

.7
e-

06

g

Test R=1 All: R=1

Data
Fit
Y=T

Data
Fit
Y=T

Figure 15: Regression analysis graph of the ANN-BLMS approach for case 3 in scenario 1 of MHDFF BLPSS.
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Figure 16: Regression analysis graph of the ANN-BLMS approach for case 1 in scenario 2 of MHDFF BLPSS.
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Figure 17: Regression analysis graph of the ANN-BLMS approach for case 3 in scenario 2 of MHDFF BLPSS.
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Figure 18: Regression analysis graph of the ANN-BLMS approach for case 1 in scenario 3 of MHDFF BLPSS.
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Figure 19: Regression analysis graph of the ANN-BLMS approach for case 3 in scenario 3 of MHDFF BLPSS.
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Table 2: Experimental results of ANN-BLMS for all cases of scenarios 1, 2, and 3 of MHDFF BLPSS.

No. of Mean square errors Performance Gradients Mu Epochs Time

Scenario 1 cases

1 9.665419E-10 1.015905E-8 8.26437E-6 9.67E-10 9.93E-08 1.00E-08 336 <1
2 1.744190E-5 8.33558E-8 2.6077E-6 3.33E-11 1.06E-07 1.00E-08 11 <1
3 3.33326E-11 1.32238E-10 1.35543E-10 3.33E-11 1.06E-07 1.00E-08 1000 <1
Scenario 2 cases

1 3.0384E-10 1.2138E-08 1.1378E-04 3.04E-10 9.93E-08 1.00E-08 366 <1
2 9.3526E-10 6.3979E-07 3.8721E-07 7.59E-10 1.28E-07 1.00E-8 70 <1
3 1.9107E-11 2.7001E-05 1.501E-07 7.59E-11 9.65E-08 1.00E-8 73 <1
Scenario 3 cases

1 9.31098E-10 5.02758E-07 6.25522E-06 8.65E-10 8.45E-07 1.00E-08 149 <1
2 1.58051E-10 4.36870E-09 2.41002E-08 1.58E-10 9.98E-08 1.00E-08 603 <1
3 4.91107E-11 1.06570E-09 5.91223E-07 4.91E-11 9.74E-08 1.00E-08 249 <1
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Figure 20: Comparisons for the ANN-BLMS results and the reference results regarding scenario 1 of MHDFF BLPSS: (a) variation of
performance at different values of β and (b) absolute error (AE) analysis.
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Figure 21: Comparisons for the ANN-BLMS results and the reference results regarding scenario 2 of MHDFF BLPSS: (a) variation of
performance at different values of γ and (b) absolute error (AE) analysis.
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Furthermore, Figure 23 demonstrates the variations of frac-
tional derivative at different values of order α. It shows that
the ANN-BLMS model can be generalized through changing
the fractional derivative at order values α = 0:5, α = 0:75, and
α = 1. Therefore, we can conclude that the fractional order of
the model with changed orders can give a better fitting with
fluid actual data.

5. Conclusion

In this paper, an effective computing approach is proposed
by exploiting the power of Levenberg-Marquardt scheme
(LMS) for backpropagation learning task. It is applied for
solving the magnetohydrodynamics (MHD) fractional flow
of boundary layer over a porous stretching sheet (MHDFF
BLPSS) problem. A simulated dataset is generated by the

fractional optimal homotopy asymptotic (FOHA) method
for training (TR), validation (VD), and testing (TS) the pro-
posed approach. The main strength of the ANN-BLMS
approach is exploited for a numerical solution to MHDFF
BLPSS after performing the PDE transformation. This trans-
formation is based on the flow of the model into an ODEs
system using the conversion of the similarity variables. The
optimal homotopy asymptotic method is utilized for gener-
ating the dataset of the flow model. The ratio of training,
testing, and validation from the dataset of ANN-BLMS at
different scenarios is specified by 80%, 10%, and 10%, respec-
tively. The comparison between both the results of proposed
model and the reference numerical results is employed for
evaluation. The experimental results and comparisons showed
that the developed model gives better accurate outputs and
results for the fluidic system in its required considerations.
Therefore, the performance and efficacy of ANN-BLMT
approach for solving the flow model appear through mean
squared errors (MSEs), regression analysis metric, perfor-
mance measure, and histogram errors (HEs), and absolute
errors (AEs). Some of the key points are given as follows:

(i) ANN-BLMS takes a less computational cost, as
well as it has fast convergent and does not require
linearization

(ii) ANN-BLMS is simple in applicability

(iii) ANN-BLMS has a good performance compared
with other numerical approaches and methods

(iv) ANN-BLMS can minimize the results of absolute
error measure

(v) The effectiveness of ANN-BLMS is assessed by mea-
suring the MSEs, HEs, RA, AEs, and FT metrics on
80% training, 10% test, and 10% validation data
samples
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Figure 22: Comparisons for the ANN-BLMS results and the reference results regarding scenario 3 of MHDFF BLPSS: (a) variation of
performance at different values of M and (b) absolute error (AE) analysis.
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(vi) Also, the physical variation of the approach
parameters indicates that the boundary layer thick-
ness decreases by the increase in the values of
Deborah, porosity, and magnetic parameters

(vii) The boundary layer flows have many applications
in engineering and industries such as “hot rolling,
aerodynamic extrusion of a polymer sheet from a
die, boundary layer along a liquid film in conden-
sation process, cooling of an infinite metallic plate
in a cooling bath, and glass–fiber production”

(viii) The conducting boundary layer flows have
industrial and engineering applications like MHD
generators, MHD power generation, and MHD
pump productions

(ix) This procedure will be used for the nanofluid flow
problems and nanotechnology

In future work, the new platforms and applications using
artificial intelligence methods will be implemented for solv-
ing flow issues in a more effective way. Moreover, we plan
to apply this method to recent developments in nanotech-
nology, energy, biological models, and detecting spreading
diseases like COVID-19.
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