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In the form of a T, a T-maze is an experimental design in which each trial consists of decisions between two or more options. It
contains choices with particular kinds of symmetries that have gained considerable attention in psychology and learning theories.
One of the simplest mazes utilized by rats is the T-maze since it requires just a single point of preference. At a T-maze base, the
mouse chooses to turn right or left to get food. This paper aims at analyzing the rat’s behavior in such circumstances and
proposing a suitable mathematical model for it. The existence and uniqueness of a solution to the proposed T-maze model are
investigated by using the appropriate fixed point method.

1. Introduction

Mathematical psychology is an approach to psychological
study focused on mathematical modeling of perceptual,
thinking, cognitive, and motor processes. The mathematical
methods are used to develop more reliable theories and thus
produce more rigorous empirical validations. The biggest
issue with today’s application of mathematics to psychologi-
cal problems and most likely for some time to come is model-
ing these problems.

In an animal or human being, the learning phase may
often be viewed as a series of choices between multiple pos-
sible reactions. Even in basic repetitive experiments under
strictly regulated conditions, preference sequences are typi-
cally volatile, suggesting that the probability governs the
choice of responses. It is also helpful to identify structural
adjustments in the series of alternatives that reflect changes
in trial-to-trial outcome probabilities. From this perspective,

most of the learning analysis explains the probability of a
trial-to-test occurrence that describes a stochastic
mechanism.

In modern mathematical learning experiments, the
researchers concluded that a basic learning experiment was
compatible with any stochastic process. It is not a new idea
(see [1] for a summary of its history). After 1950, two critical
features emerged mainly in the research initiated by Bush,
Estes, and Mosteller. In the first instance, the learning
method egalitarian essence was a core feature of the devel-
oped model. Second, these frameworks were studied and
applied in areas that did not conceal their quantitative
aspects.

Several studies (Estes and Straughan [2], Grant et al. [3],
Humphreys [4], and Jarvik [5]) on human actions in proba-
bility–learning scenarios have produced results aligned with
the so–called event-matching hypothesis that the allocation
of incentives would mirror the asymptotic distribution of
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answers in a two-choice setting. Conflicting findings have
been reported in other studies. For example, if subjects
choose the correct option in most trials, then, it would accel-
erate the probability close to 1 (for the detail, see [1, 6]).

Turab and Sintunavarat [7, 8] presented a functional
equation to analyze Bush and Wilson’s experimental study
on a paradise fish [9], in which they offered the fish two
options for swimming. As the starting gate was raised, swim-
mers had two options: swim on the right-hand side or the
left-hand side of the tank’s far end.

Recently, in [10], the authors discussed a particular
type of traumatic avoidance learning experiment of normal
dogs proposed by Solomon and Wynne [11]. They exam-
ined 30 mongrel dogs weighing between 9 and 13 kg and
observed a particular form of emotional resistance per-
formed in a tiny box with a steel grid floor. Turab and
Sintunavarat [10] analyzed the dogs’ behavior in such sit-
uations and proposed a mathematical model and also pre-
sented the existence of solutions of such model by using
the fixed point technique.

On the other hand, the genesis of the fixed point the-
ory was primarily for the use of successive approximations
to prove the existence and uniqueness of solutions, pri-
marily of differential and integral equations, in the second
half of the nineteenth century. It is indeed a beautiful
blend of pure and applied analysis, topology, and geome-
try. Picard’s work demonstrates the fundamental concepts
of a fixed point theoretic perspective. However, it is attrib-
uted to the Polish mathematician Banach for abstracting
the fundamental ideas into a framework applicable to a
wide variety of applications beyond ordinary differential
and integral equations (see [12]). It has been generalized
and extended in various directions (for the detail, see
[13–16]). For more details about the fixed point theory
and its applications in different spaces, we refer the reader
to [17–22].

In this paper, we present a specific type of psycholog-
ical learning theory experiment related to the T-maze
model proposed by Brunswik and Stanley in [23, 24],
and suggest a mathematical model that is appropriate for
it. The existence and uniqueness of the proposed model’s
solution are investigated by using the suitable fixed point
theorem. Later on, to check the proposed model’s validity,
we shall highlight some particular aspects of the T-maze
model under the experimenter-subject controlled events.
In the end, we raise an open problem for the interested
readers.

2. A T–Maze Experiment Proposed by Brunswik
and Stanley

A T-maze [23, 24] is a unique design that has gotten much
attention in the past few years. It is a classic maze for rats
since it has only one choice point. While experimental
design modifications and generalizations have been used
with mice and other subjects, we shall concentrate on the
primary form of the open maze used with rats.

In Figure 1, a schematic of the apparatus can be seen. At
the starting position, s, a rat is put and it runs to the point of

preference, w. After that, the rat moves to one of the two aim
bins, A and B, where it may get food.

Here, the experimental trials constitute the series of
behavior. With the same rat, the process is usually per-
formed several times. A very elaborate course of action is
the overall activity of a rat during an experimental study.
The rat is in a particular stimulation position when it crosses
the labyrinth and is in two potential stimulus conditions
after reaching the preference stage. Of course, this overall
activity on a test may be divided up and appropriate mea-
surements or indexes used by each part can be used. For
example, we could ask about the starting location latency, s
, or the running momentum between s and the w-point of
preference. However, it seems to us that the part of the rat’s
conduct that is unique to this experiment is the behavior at
the option stage, w.

In the study that follows, we only consider a rat’s choice
of the path on a trial instead of any other actions it may
exhibit. The rat arrives at the decision point at a complete
experimental study where the stimulation factor population
is kept unchanged from trial to trial. Corresponding to the
target box achieved, A or B, two groups of responses are
listed in Table 1. One and only one of these response groups
take part in each study trial. Then, an experimental study
compares to a trial as described in [12]—a chance to select
between alternatives that are mutually exclusive and
exhaustive.

The condition of the organism on a specific test, accord-
ing to the model, is fully specified by a probability k that the
rat will go to goal box A and a probability 1 − k that it will go
to goal box B. We have complete information about the
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A
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Figure 1: The behavior of a rat in a T-maze experiment.

Table 1: Alternative definitions of experimental events in a T-maze
experiment depending on the placement of the food and chosen
side.

Responses Outcomes

A : left turn O1 : food side (reward)

B : left turn O1 : food side (reward)

A : right turn O2 : nonfood side (no reward)

B : right turn O2 : nonfood side (no reward)
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learning process model when these probabilities are recog-
nized for each trial. These probabilities can be estimated
from the proportion of turns made by a single rat on several
trials to goal box A or from the proportion of a population of
rats that go on a specific trial to goal box B.

3. Mathematical Modeling of the Proposed T-
Maze Experiment

In the above experiment, the significant interest lies in the
behavior of a rat; turn left or right, “A” or “B,” and get the
food which is dependent on where the food is placed and
the movement of a rat towards that compartment. In our
view, if a rat chooses the food side, there would be an occur-
rence of alternative O1, and if a rat made a move to the other
side, then, there will be an occurrence of alternative O2.
According to the mathematical point of view, there would
be four possibilities of events, depending on the movement
of the rat and the placement of the food. These events are
listed in Table 2.

The probability of the responses A and B are x and
ð1 − xÞ, respectively, where x ∈ ½0, 1�. The experimental
pattern asks for the outcomes of the responses (whether
the rat gets the food or not), trials’ fixed proportion of
ς ∈ ½0, 1�. Therefore, we get the event probabilities stated
below (see Table 3).

Let us assume that ϑ1, ϑ2 ∈ ð0, 1Þ are the learning–rate
parameters and their values measure the ineffectiveness of
the events E1 − E4 in altering the response probability. Also,
λk ∈ ½0, 1�, where k = 1, 2 is the constant of the corresponding
event E1 − E4. If ςx is the probability of response A with out-
come O1 on some trial and A is fulfilled, the new probability
of A with outcome O1 is ϑ1x + ð1 − ϑ1Þλ1, and if A is
achieved with outcome O2, then, the new probability will
be ϑ1x + ð1 − ϑ1Þð1 − λ1Þ with the event probability ð1 − ςÞx
: Similarly, if B is performed with outcomes O1 and O2,
then, the new probabilities of B are ϑ2x + ð1 − ϑ2Þλ2 and ϑ2
x + ð1 − ϑ2Þð1 − λ2Þ, having event probabilities of occurrence
ð1 − xÞς and ð1 − ςÞð1 − xÞ, respectively. For the four events
E1 − E4, we can define the transition operators P1, P2, P3,
P4 : ½0, 1�⟶ ½0, 1� as

P1x = ϑ1x + 1 − ϑ1ð Þλ1,
P2x = ϑ2x + 1 − ϑ2ð Þλ2,

P3x = ϑ1x + 1 − ϑ1ð Þ 1 − λ1ð Þ,
P4x = ϑ2x + 1 − ϑ2ð Þ 1 − λ2ð Þ,

ð1Þ

for all x ∈ ½0, 1� and 0 < ϑ1, ϑ2 < 1.

It can be observed that a rat following such description,
in the long run, will stop giving feedback to one of the
responses and react only with the other (with probability
one). Now, giving x, ϑ1, ϑ2, λ1, λ2, what is the probability
that the rat stops providing B’s, that is, consumed by A?
We define such probability by Pðx, ϑ1, ϑ2, λ1, λ2Þ as a func-
tion of x, and it depends on the path as well as the responses
and outcomes. After one trial, the rat has a new probability
shown in (1) depending on the events E1 − E4 with the
respective probabilities of occurrence. Thus, if its first trial
is A with outcomes O1 and O2, its new probability of con-
sumption by A will be Pðϑ1x + ð1 − ϑ1Þλ1, ϑ1, λ1Þ and Pðϑ1x
+ ð1 − ϑ1Þð1 − λ1Þ, ϑ1, λ1Þ, respectively. But, if the first trial
is B with outcomes O1 and O2, then, the new probability
of absorption by B will be Pðϑ2x + ð1 − ϑ2Þλ2, ϑ2, λ2Þ and P
ðϑ2x + ð1 − ϑ2Þð1 − λ2Þ, ϑ2, λ2Þ, respectively.

By considering the above transition operators with their
corresponding probabilities and events given in Table 3, we
have the following functional equation

P x, ϑ1, ϑ2, λ1, λ2ð Þ = ςxP ϑ1x + 1 − ϑ1ð Þλ1, ϑ1, λ1ð Þ
+ 1 − xð ÞςP ϑ2x + 1 − ϑ2ð Þλ2, ϑ2, λ2ð Þ
+ 1 − ςð ÞxP ϑ1x + 1 − ϑ1ð Þ 1 − λ1ð Þ, ϑ1, λ1ð Þ
+ 1 − ςð Þ 1 − xð ÞP ϑ2x + 1 − ϑ2ð Þ 1 − λ2ð Þ, ϑ2, λ2ð Þ:

ð2Þ

In the progression, the following noted result will be
needed.

Theorem 1. (Banach fixed point theorem [12]). Let ðS , dÞ be
a complete metric space and M : S ⟶ S be a mapping
defined by

d Mℓ,Mmð Þ ≤ ϖd ℓ,mð Þ, ð3Þ

for some ϖ < 1 and for all ℓ,m ∈ S: Then,M has precisely one
fixed point. Moreover, the Picard iteration fℓng in S which is
defined by ℓn =Mℓn−1 for all n ∈ℕ, where ℓ0 ∈ S , converges
to the unique fixed point of M.

4. Main Results

Let A = ½0, 1�: Throughout this article, we denote by B the
class of all continuous real-valued functions W : A ⟶ℝ
such that W ð0Þ = 0 and

sup
x≠y

W xð Þ −W yð Þj j
x − yj j <∞: ð4Þ

Table 2: The movement of a rat and its corresponding events.

Response Outcomes Events

A O1 E1

B O1 E2

A O2 E3

B O2 E4

Table 3: Corresponding probabilities of the four events.

Event Probability of occurrence

E1 ςx

E2 1 − xð Þς
E3 1 − ςð Þx
E4 1 − ςð Þ 1 − xð Þ
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It is easy to see that ðB, k·kÞ is a Banach space, where k·k
is defined by

Wk k = sup
x≠y

W xð Þ −W yð Þj j
x − yj j ,

for all W ∈B.
For the computational convenience, we define an opera-

tor W : A ⟶ℝ and write functional equation (2) as

W xð Þ = ςxW ϑ1x + 1 − ϑ1ð Þλ1ð Þ + 1 − xð ÞςW ϑ2x + 1 − ϑ2ð Þλ2ð Þ
+ 1 − ςð ÞxW ϑ1x + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ
+ 1 − ςð Þ 1 − xð ÞW ϑ2x + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ,

ð5Þ

where 0 < ϑ1, ϑ2 < 1 and λ1, λ2 ∈A . Our objective is to inves-
tigate the existence and uniqueness of a solution to func-
tional equation (5) by using the fixed point technique. We
begin with the following outcome.

Theorem 2. Let 0 < ϑ1, ϑ2 < 1 and λ1, λ2, ς ∈A such that
ϖ < 1, where

ϖ≔ 2ς − 1ð Þ 1 − ϑ1ð Þλ1 + 1 − ϑ2ð Þλ2ð Þ + 1 − ςð Þj
� 1 − ϑ1ð Þ + 1 − ϑ2ð Þð Þ + 2 ϑ1 + ϑ2ð Þj: ð6Þ

If there exists a closed subset Λ of B such that Λ is Z
invariant, that is, ZðΛÞ ⊆Λ, where Z is the operator from
Λ defined for each W ∈Λ by

ZWð Þ xð Þ = ςxW ϑ1x + 1 − ϑ1ð Þλ1ð Þ + ς 1 − xð Þ
�W ϑ2x + 1 − ϑ2ð Þλ2ð Þ + 1 − ςð Þ
� xW ϑ1x + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ + 1 − ςð Þ
� 1 − xð ÞW ϑ2x + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ,

ð7Þ

for all x ∈A , then, Z is a Banach contraction mapping
with the metric d induced by k·k.

Proof. Let W 1,W 2 ∈Λ. For each distinct points x, y ∈A , we
obtain

ZW 1 − ZW 2ð Þ xð Þ − ZW 1 − ZW 2ð Þ yð Þj j
x − yj j

= 1
x − y

ςx W 1 −W 2ð Þ ϑ1x + 1 − ϑ1ð Þλ1ð Þ½
�
�
�
�

+ ς 1 − xð Þ W 1 −W 2ð Þ ϑ2x + 1 − ϑ2ð Þλ2ð Þ
+ 1 − ςð Þx W 1 −W 2ð Þ ϑ1x + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ
+ 1 − ςð Þ 1 − xð Þ W 1 −W 2ð Þ ϑ2x + 1 − ϑ2ð Þð
� 1 − λ2ð ÞÞ − ςy W 1 −W 2ð Þ ϑ1y + 1 − ϑ1ð Þλ1ð Þ
− ς 1 − yð Þ W 1 −W 2ð Þ ϑ2y + 1 − ϑ2ð Þλ2ð Þ
− 1 − ςð Þy W 1 −W 2ð Þ ϑ1y + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ
− 1 − ςð Þ 1 − yð Þ W 1 −W 2ð Þ ϑ2y + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ

��
�
�
�

= 1
x − y

ςx W 1 −W 2ð Þ ϑ1x + 1 − ϑ1ð Þλ1ð Þ − ςx W 1 −W 2ð Þ½
�
�
�
�

� ϑ1y + 1 − ϑ1ð Þλ1ð Þ + ς 1 − xð Þ W 1 −W 2ð Þ
� ϑ2x + 1 − ϑ2ð Þλ2ð Þ − ς 1 − xð Þ W 1 −W 2ð Þ
� ϑ2y + 1 − ϑ2ð Þλ2ð Þ + 1 − ςð Þx W 1 −W 2ð Þ
� ϑ1x + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ − 1 − ςð Þx W 1 −W 2ð Þ
� ϑ1y + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ + 1 − ςð Þ 1 − xð Þ W 1 −W 2ð Þ
� ϑ2x + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ − 1 − ςð Þ 1 − xð Þ W 1 −W 2ð Þ
� ϑ2y + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ + ςx W 1 −W 2ð Þ
� ϑ1y + 1 − ϑ1ð Þλ1ð Þ − ςy W 1 −W 2ð Þ
� ϑ1y + 1 − ϑ1ð Þλ1ð Þ + ς 1 − xð Þ W 1 −W 2ð Þ
� ϑ2y + 1 − ϑ2ð Þλ2ð Þ − ς 1 − yð Þ W 1 −W 2ð Þ ϑ2y + 1 − ϑ2ð Þð
� λ2Þ + 1 − ςð Þx W 1 −W 2ð Þ ϑ1y + 1 − ϑ1ð Þð
� 1 − λ1ð ÞÞ − 1 − ςð Þy W 1 −W 2ð Þ ϑ1y + 1 − ϑ1ð Þð
� 1 − λ1ð ÞÞ + 1 − ςð Þ 1 − xð Þ W 1 −W 2ð Þ ϑ2y + 1 − ϑ2ð Þð
� 1 − λ2ð ÞÞ − 1 − ςð Þ 1 − yð Þ W 1 −W 2ð Þ ϑ2y + 1 − ϑ2ð Þð
� 1 − λ2ð ÞÞ

��
�
�
�
= 1

x − y
ςx W 1 −W 2ð Þ ϑ1x + 1 − ϑ1ð Þλ1ð Þ − ςx½

�
�
�
�

� W 1 −W 2ð Þ ϑ1y + 1 − ϑ1ð Þλ1ð Þ� + 1
x − y

ς 1 − xð Þ½
� W 1 −W 2ð Þ ϑ2x + 1 − ϑ2ð Þλ2ð Þ − ς 1 − xð Þ W 1 −W 2ð Þ
� ϑ2y + 1 − ϑ2ð Þλ2ð Þ� + 1

x − y
1 − ςð Þx W 1 −W 2ð Þ½

� ϑ1x + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ − 1 − ςð Þx W 1 −W 2ð Þ
� ϑ1y + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ� + 1

x − y
1 − ςð Þ 1 − xð Þ½

� W 1 −W 2ð Þ ϑ2x + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ − 1 − ςð Þ 1 − xð Þ
� W 1 −W 2ð Þ ϑ2y + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ� + 1

x − y
� ςx W 1 −W 2ð Þ ϑ1y + 1 − ϑ1ð Þλ1ð Þ − ςy W 1 −W 2ð Þ½
� ϑ1y + 1 − ϑ1ð Þλ1ð Þ� + 1

x − y
ς 1 − xð Þ W 1 −W 2ð Þ½

� ϑ2y + 1 − ϑ2ð Þλ2ð Þ − ς 1 − yð Þ W 1 −W 2ð Þ
� ϑ2y + 1 − ϑ2ð Þλ2ð Þ� + 1

x − y
1 − ςð Þ½

� x W 1 −W 2ð Þ ϑ1y + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ − 1 − ςð Þ
� y W 1 −W 2ð Þ ϑ1y + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ� + 1

x − y
1 − ςð Þ½

� 1 − xð Þ W 1 −W 2ð Þ ϑ2y + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ − 1 − ςð Þ
� 1 − yð Þ W 1 −W 2ð Þ ϑ2y + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ�j ≤ ϑ1ςx
� W 1 −W 2k k + ϑ2ς 1 − xð Þ W 1 −W 2k k + ϑ1 1 − ςð Þx
� W 1 −W 2k k + ϑ2 1 − ςð Þ 1 − xð Þ W 1 −W 2k k + ςj
� W 1 −W 2ð Þ ϑ1y + 1 − ϑ1ð Þλ1ð Þ − ς W 1 −W 2ð Þ 0ð Þj + ςj
� W 1 −W 2ð Þ ϑ2y + 1 − ϑ2ð Þλ2ð Þ − ς
� W 1 −W 2ð Þ 0ð Þj + 1 − ςð Þ W 1 −W 2ð Þ ϑ1y + 1 − ϑ1ð Þðj
� 1 − λ1ð ÞÞ − 1 − ςð Þ W 1 −W 2ð Þ 0ð Þj + 1 − ςð Þ W 1 −W 2ð Þj
� ϑ2y + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ − 1 − ςð Þ W 1 −W 2ð Þ 0ð Þj = ϑ1ςx
� W 1 −W 2k k + ϑ2ς 1 − xð Þ W 1 −W 2k k + ϑ1
� 1 − ςð Þx W 1 −W 2k k + ϑ2 1 − ςð Þ 1 − xð Þ
� W 1 −W 2k k + ς ϑ1y + 1 − ϑ1ð Þλ1ð Þ
� W 1 −W 2k k + ς ϑ2y + 1 − ϑ2ð Þλ2ð Þ
� W 1 −W 2k k + 1 − ςð Þ ϑ1y + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ
� W 1 −W 2k k + 1 − ςð Þ ϑ2y + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ
� W 1 −W 2k k ≤ ϖ W 1 −W 2k k,
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where ϖ is defined in (6). This gives that

d ZW 1, ZW 2ð Þ = ZW 1 − ZW 2k k ≤ ϖ W 1 −W 2k k
= ϖd W 1,W 2ð Þ:

It follows from 0 < ϖ < 1 that Z is a Banach contraction
mapping with the metric d induced by k·k.

We get the following conclusion from Theorem 2 about
the uniqueness of a solution to functional equation (5).

Theorem 3. The functional equation (5) has a unique solu-
tion provided that ϖ < 1, where ϖ is defined in (6), and there
exists a closed subset Λ of B such that Λ is Z invariant, that
is, ZðΛÞ ⊆Λ, where Z is the operator from Λ defined for each
W ∈Λ by

ZWð Þ xð Þ = ςxW ϑ1x + 1 − ϑ1ð Þλ1ð Þ + ς 1 − xð Þ
�W ϑ2x + 1 − ϑ2ð Þλ2ð Þ + 1 − ςð Þ
� xW ϑ1x + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ + 1 − ςð Þ
� 1 − xð ÞW ϑ2x + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ,

ð8Þ

for all x ∈A :Moreover, the iteration fW ng in Λ is defined by

W nð Þ xð Þ = ςxW n−1 ϑ1x + 1 − ϑ1ð Þλ1ð Þ + ς 1 − xð Þ
�W n−1 ϑ2x + 1 − ϑ2ð Þλ2ð Þ + 1 − ςð Þ
� xW n−1 ϑ1x + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ
+ 1 − ςð Þ 1 − xð ÞW n−1 ϑ2x + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ,

ð9Þ

for all n ∈ℕ, whereW 0 ∈Λ, converges to the unique solution
of functional equation (5) in the sense of the metric d induced
by k·k.

Proof.We derive the result of this theorem by combining the
Banach fixed point theorem with Theorem 3.

5. A Certain Case of a T-Maze Experiment with
Experimenter-Subject-Controlled Events

It has been highlighted that the examination of any experi-
ment is based on suppositions, which are assembled about
the subject. Experiments are classified as contingent and
noncontingent, based on the occurrences of the result.

In the previous models on imitation problems such as T-
maze experiments with fish, dogs, and humans (see [7, 10,
25]), it was already mentioned that such experiments
required a contingent approach; the result of the trials was
entirely dependent on the subject’s choice. Such types of
models required experimenter-subject-controlled events.
The two responses A and B along with outcomes O1 and
O2 are choosing the right or left side or pushing the right
or left button, which coincides with rewarding and nonre-
warding or choosing the correct and incorrect side, respec-
tively. Now, we define the probabilities ς1 and ς2 which
indicate the conditional probability of outcomes O1 and

O2 of the given alternatives A and B, respectively, such that

ς1 + ς2 = 1: ð10Þ

With such conditions, we have Table 4.
We have the following functional equation from the data

given above

W xð Þ = ς1xW ϑ1x + 1 − ϑ1ð Þλ1ð Þ + ς2 1 − xð Þ
�W ϑ2x + 1 − ϑ2ð Þλ2ð Þ + 1 − ς1ð Þ
� xW ϑ1x + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ
+ 1 − ς2ð Þ 1 − xð ÞW ϑ2x + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ,

ð11Þ

where W : A ⟶ℝ is an unknown function, 0 < ϑ1, ϑ2 < 1,
and λ1, λ2, ς1, ς2 ∈A with ς1 + ς2 = 1. We shall begin with
the following outcome.

Theorem 4. Let 0 < ϑ1, ϑ2 < 1 and λ1, λ2, ς1, ς2 ∈A such that
ϖ⋆ < 1, where

ϖ⋆ ≔ 2λ1 − 1ð Þ ς1 1 − ϑ1ð Þð Þ + 2λ2 − 1ð Þ ς2 1 − ϑ2ð Þð Þ
�
�
�
�
�

+ 1 − ϑ1ð Þ 1 − λ1ð Þ + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ + 2 ϑ1 + ϑ2ð Þ

�
�
�
�
�
:

ð12Þ

If there exists a closed subset Λ of B such that Λ is Z
invariant, that is, ZðΛÞ ⊆Λ, where Z is the operator from
Λ defined for each W ∈Λ by

ZWð Þ xð Þ = ς1xW ϑ1x + 1 − ϑ1ð Þλ1ð Þ + ς2 1 − xð Þ
�W ϑ2x + 1 − ϑ2ð Þλ2ð Þ + 1 − ς1ð Þ
� xW ϑ1x + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ
+ 1 − ς2ð Þ 1 − xð ÞW ϑ2x + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ,

ð13Þ

for all x ∈A , then, Z is a Banach contraction mapping with
the metric d induced by k·k.

Table 4: Four events under conditional probabilities of occurrence.

Events Outcomes Transition operators
Probability of
occurrence

A O1 P1x = ϑ1x + 1 − ϑ1ð Þλ1 ς1x

B O1 P2x = ϑ2x + 1 − ϑ2ð Þλ2 ς2 1 − xð Þ
A O2 P3x = ϑ1x + 1 − ϑ1ð Þ 1 − λ1ð Þ 1 − ς1ð Þx
B O2 P4x = ϑ2x + 1 − ϑ2ð Þ 1 − λ2ð Þ 1 − ς2ð Þ 1 − xð Þ
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Proof. Let W 1,W 2 ∈Λ. For each distinct points x, y ∈A , we
obtain

ZW 1 − ZW 2ð Þ xð Þ − ZW 1 − ZW 2ð Þ yð Þj j
x − yj j

= 1
x − y

ς1x W 1 −W 2ð Þ ϑ1x + 1 − ϑ1ð Þλ1ð Þ + ς2 1 − xð Þ W 1 −W 2ð Þ ϑ2x + 1 − ϑ2ð Þλ2ð Þ½
�
�
�
�

+ 1 − ς1ð Þx W 1 −W 2ð Þ ϑ1x + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ + 1 − ς2ð Þ 1 − xð Þ W 1 −W 2ð Þ
� ϑ2x + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ − ς1y W 1 −W 2ð Þ ϑ1y + 1 − ϑ1ð Þð
� λ1Þ − ς2 1 − yð Þ W 1 −W 2ð Þ ϑ2y + 1 − ϑ2ð Þλ2ð Þ − 1 − ς1ð Þ
� y W 1 −W 2ð Þ ϑ1y + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ − 1 − ς2ð Þ 1 − yð Þ
� W 1 −W 2ð Þ ϑ2y + 1 − ϑ2ð Þ 1 − λ2ð Þð �j

= 1
x − y

ς1x W 1 −W 2ð Þ ϑ1x + 1 − ϑ1ð Þλ1ð Þ − ς1x W 1 −W 2ð Þ½
�
�
�
�

� ϑ1y + 1 − ϑ1ð Þλ1ð Þ + ς2 1 − xð Þ W 1 −W 2ð Þ ϑ2x + 1 − ϑ2ð Þð
� λ2Þ − ς2 1 − xð Þ W 1 −W 2ð Þ ϑ2y + 1 − ϑ2ð Þλ2ð Þ + 1 − ς1ð Þ
� x W 1 −W 2ð Þ ϑ1x + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ − 1 − ς1ð Þ
� x W 1 −W 2ð Þ ϑ1y + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ + 1 − ς2ð Þ 1 − xð Þ
� W 1 −W 2ð Þ ϑ2x + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ − 1 − ς2ð Þ 1 − xð Þ
� W 1 −W 2ð Þ ϑ2y + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ + ς1x W 1 −W 2ð Þ
� ϑ1y + 1 − ϑ1ð Þλ1ð Þ − ς1y W 1 −W 2ð Þ ϑ1y + 1 − ϑ1ð Þλ1ð Þ
+ ς2 1 − xð Þ W 1 −W 2ð Þ ϑ2y + 1 − ϑ2ð Þλ2ð Þ − ς2 1 − yð Þ
� W 1 −W 2ð Þ ϑ2y + 1 − ϑ2ð Þλ2ð Þ + 1 − ς1ð Þx W 1 −W 2ð Þ
� ϑ1y + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ − 1 − ς1ð Þy W 1 −W 2ð Þ
� ϑ1y + 1 − ϑ1ð Þ 1 − λ1ð ÞÞ + 1 − ς2ð Þ 1 − xð Þ W 1 −W 2ð Þ
� ϑ1y + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ − 1 − ς2ð Þ 1 − yð Þ W 1 −W 2ð Þ
� ϑ1y + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ�j

= 1
x − y

ς1x W 1 −W 2ð Þ ϑ1x + 1 − ϑ1ð Þλ1ð Þ − ς1x W 1 −W 2ð Þ½
�
�
�
�

� ϑ1y + 1 − ϑ1ð Þλ1ð Þ� + 1
x − y

ς2 1 − xð Þ W 1 −W 2ð Þ½
� ϑ2x + 1 − ϑ2ð Þλ2ð Þ − ς2 1 − xð Þ W 1 −W 2ð Þ ϑ2y + 1 − ϑ2ð Þλ2ð Þ�
+ 1
x − y

1 − ς1ð Þx W 1 −W 2ð Þ ϑ1x + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ − 1 − ς1ð Þ½

� x W 1 −W 2ð Þ ϑ1y + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ� + 1
x − y

1 − ς2ð Þ 1 − xð Þ½
� W 1 −W 2ð Þ ϑ2x + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ − 1 − ς2ð Þ 1 − xð Þ
� W 1 −W 2ð Þ ϑ2y + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ� + 1

x − y
ς1x W 1 −W 2ð Þ ϑ1yð½

+ 1 − ϑ1ð Þλ1Þ − ς1y W 1 −W 2ð Þ ϑ1y + 1 − ϑ1ð Þλ1ð Þ� + 1
x − y

� ς2 1 − xð Þ W 1 −W 2ð Þ ϑ2y + 1 − ϑ2ð Þλ2ð Þ − ς2 1 − yð Þ W 1 −W 2ð Þ½
� ϑ2y + 1 − ϑ2ð Þλ2ð Þ� + 1

x − y
1 − ς1ð Þx W 1 −W 2ð Þ½

� ϑ1y + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ − 1 − ς1ð Þy W 1 −W 2ð Þ ϑ1y + 1 − ϑ1ð Þð
� 1 − λ1ð ÞÞ� + 1

x − y
1 − ς2ð Þ 1 − xð Þ W 1 −W 2ð Þ ϑ2y + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ½

− 1 − ς2ð Þ 1 − yð Þ W 1 −W 2ð Þ ϑ2y + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ�j ≤ ϑ1ς1x W 1 −W 2k k + ϑ2ς2 1 − xð Þ
� W 1 −W 2k k + ϑ1 1 − ς1ð Þx W 1 −W 2k k + ϑ2 1 − ς2ð Þ 1 − xð Þ W 1 −W 2k k +
� ς1 W 1 −W 2ð Þ ϑ1y + 1 − ϑ1ð Þλ1ð Þ − ς1 W 1 −W 2ð Þ 0ð Þj j + ς2 W 1 −W 2ð Þ ϑ2y + 1 − ϑ2ð Þλ2ð Þj
− ς2 W 1 −W 2ð Þ 0ð Þj + 1 − ς1ð Þ W 1 −W 2ð Þ ϑ1y + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ − 1 − ς1ð Þ W 1 −W 2ð Þ 0ð Þj j
+ 1 − ς2ð Þ W 1 −W 2ð Þ ϑ2y + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ − 1 − ς2ð Þ W 1 −W 2ð Þ 0ð Þj j = ϑ1ς1x W 1 −W 2k k
+ ϑ2ς2 1 − xð Þ W 1 −W 2k k + ϑ1 1 − ς1ð Þx W 1 −W 2k k + ϑ2 1 − ς2ð Þ 1 − xð Þ W 1 −W 2k k
+ ς1 ϑ1y + 1 − ϑ1ð Þλ1ð Þ W 1 −W 2k k + ς2 ϑ2y + 1 − ϑ2ð Þλ2ð Þ W 1 −W 2k k + 1 − ς1ð Þ
� ϑ1y + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ W 1 −W 2k k + 1 − ς2ð Þ ϑ2y + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ W 1 −W 2k k ≤ ϖ⋆

� W 1 −W 2k k,

where ϖ⋆ is defined in (12). This gives that

d ZW 1, ZW 2ð Þ = ZW 1 − ZW 2k k ≤ ϖ⋆ W 1 −W 2k k
= ϖ⋆d W 1,W 2ð Þ:

It follows from 0 < ϖ⋆ < 1 that Z is a Banach contraction
mapping with the metric d induced by k·k.

We get the following conclusion from Theorem 4 about
the uniqueness of a solution to functional equation (11).

Theorem 5. The functional equation (11) has a unique solu-
tion provided that ϖ⋆ < 1, where ϖ⋆ is given in (12), and there
exists a closed subset Λ of B such that Λ is Z invariant, that
is, ZðΛÞ ⊆Λ, where Z is the operator from Λ defined for each
W ∈Λ by

ZWð Þ xð Þ = ς1xW ϑ1x + 1 − ϑ1ð Þλ1ð Þ + ς2 1 − xð Þ
�W ϑ2x + 1 − ϑ2ð Þλ2ð Þ + 1 − ς1ð Þ
� xW ϑ1x + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ + 1 − ς2ð Þ
� 1 − xð ÞW ϑ2x + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ,

ð14Þ

for all x ∈A : Moreover, the iteration fW ng in Λ which is
defined by

W nð Þ xð Þ = ς1xW n−1 ϑ1x + 1 − ϑ1ð Þλ1ð Þ + ς2 1 − xð Þ
�W n−1 ϑ2x + 1 − ϑ2ð Þλ2ð Þ + 1 − ς1ð Þ
� xW n−1 ϑ1x + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ + 1 − ς2ð Þ
� 1 − xð ÞW n−1 ϑ2x + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ,

ð15Þ

for all n ∈ℕ, where W 0 ∈Λ, converges to the unique solution
of functional equation (11) in the sense of the metric d
induced by k·k.

Proof.We derive the result of this theorem by combining the
Banach fixed point theorem with Theorem 4.

6. Some Particular Aspects of the Proposed T-
Maze Model

In this section, we have discussed some particular cases of
the proposed T-maze model.

6.1. Events with Equal Lambda Conditions. This condition
(sometimes called commutative condition) says that the
transition operators P1 − P4 (none of them is an identity
operator) have the same lambda conditions ðλ1 = λ = λ2Þ.
These conditions reduce our transition operators (1) to

P1x = ϑ1x + 1 − ϑ1ð Þλ,
P2x = ϑ2x + 1 − ϑ2ð Þλ,

P3x = ϑ1x + 1 − ϑ1ð Þ 1 − λð Þ,
P4x = ϑ2x + 1 − ϑ2ð Þ 1 − λð Þ:

ð16Þ

Now, we can write our functional equation (5) as

W xð Þ = ςxW ϑ1x + 1 − ϑ1ð Þλð Þ + ς 1 − xð ÞW ϑ2x + 1 − ϑ2ð Þλð Þ
+ 1 − ςð ÞxW ϑ1x + 1 − ϑ1ð Þ 1 − λð Þð Þ
+ 1 − ςð Þ 1 − xð ÞW ϑ2x + 1 − ϑ2ð Þ 1 − λð Þð Þ,

ð17Þ

where W : A ⟶ℝ is an unknown function, 0 < ϑ1, ϑ2 < 1
and λ, ς ∈A . The following conclusions are drawn as a result
of Theorem 3.
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Corollary 6. Let 0 < ϑ1, ϑ2 < 1 and λ, ς ∈A with

1 − ςð Þ 1 − λð Þ + λςð Þ 1 − ϑ1ð Þ + 1 − ϑ2ð Þð Þ + 2 ϑ1 + ϑ2ð Þj j < 1:

ð18Þ

If there exists a closed subset Λ of B such that Λ is Z
invariant, that is, ZðΛÞ ⊆Λ, where Z is the operator from
Λ defined for each W ∈Λ by

ZWð Þ xð Þ = ςxW ϑ1x + 1 − ϑ1ð Þλð Þ + ς 1 − xð Þ
�W ϑ2x + 1 − ϑ2ð Þλð Þ + 1 − ςð Þ
� xW ϑ1x + 1 − ϑ1ð Þ 1 − λð Þð Þ + 1 − ςð Þ
� 1 − xð ÞW ϑ2x + 1 − ϑ2ð Þ 1 − λð Þð Þ,

ð19Þ

for all x ∈A , then, Z is a Banach contraction mapping with
the metric d induced by k·k.

Corollary 7. The functional equation (17) has a unique solu-
tion provided that

1 − ςð Þ 1 − λð Þ + λςð Þ 1 − ϑ1ð Þ + 1 − ϑ2ð Þð Þ + 2 ϑ1 + ϑ2ð Þj j < 1:

ð20Þ

Also, there exists a closed subset Λ of B such that Λ is Z
invariant, that is, ZðΛÞ ⊆Λ, where Z is the operator from Λ
defined for each W ∈Λ by

ZWð Þ xð Þ = ςxW ϑ1x + 1 − ϑ1ð Þλð Þ + ς 1 − xð Þ
�W ϑ2x + 1 − ϑ2ð Þλð Þ + 1 − ςð Þ
� xW ϑ1x + 1 − ϑ1ð Þ 1 − λð Þð Þ + 1 − ςð Þ
� 1 − xð ÞW ϑ2x + 1 − ϑ2ð Þ 1 − λð Þð Þ,

ð21Þ

for all x ∈A : Moreover, the iteration fW ng in Λ which is
defined by

W nð Þ xð Þ = ςxW n−1 ϑ1x + 1 − ϑ1ð Þλð Þ + ς 1 − xð Þ
�W n−1 ϑ2x + 1 − ϑ2ð Þλð Þ + 1 − ςð Þ
� xW n−1 ϑ1x + 1 − ϑ1ð Þ 1 − λð Þð Þ
+ 1 − ςð Þ 1 − xð ÞW n−1 ϑ2x + 1 − ϑ2ð Þ 1 − λð Þð Þ,

ð22Þ

for all n ∈ℕ, whereW 0 ∈Λ, converges to the unique solution
the functional equation (17) in the sense of the metric d
induced by k·k.
6.2. Extinction of an Operant Response. In some cases, non-
food side responses (turning right or left) frequently by the
mouse decrease the probability of that event towards an
asymptote to zero. In this situation, we have λ1 = 0 = λ2:

These conditions reduce our operators (1) to

P1x = ϑ1x,
P2x = ϑ2x,

P3x = ϑ1x + 1 − ϑ1ð Þ,
P4x = ϑ2x + 1 − ϑ2ð Þ:

ð23Þ

Now, we can write our functional equation (5) as

W xð Þ = ςxW ϑ1xð Þ + ς 1 − xð ÞW ϑ2xð Þ + 1 − ςð Þ
� xW ϑ1x + 1 − ϑ1ð Þð Þ + 1 − ςð Þ 1 − xð Þ
�W ϑ2x + 1 − ϑ2ð Þð Þ,

ð24Þ

where W : A ⟶ℝ is an unknown function such that, 0
< ϑ1, ϑ2 < 1, and ς ∈A . We have the following corollaries
of Theorem 3.

Corollary 8. For 0 < ϑ1, ϑ2 < 1 and ς ∈A with

1 − ςð Þ 1 − ϑ1ð Þ + 1 − ϑ2ð Þð Þ + 2 ϑ1 + ϑ2ð Þj j < 1: ð25Þ

If there exists a closed subset Λ of B such that Λ is Z
invariant, that is, ZðΛÞ ⊆Λ, where Z is the operator from
Λ defined for each W ∈Λ by

ZWð Þ xð Þ = ςxW ϑ1xð Þ + ς 1 − xð ÞW ϑ2xð Þ + 1 − ςð Þ
� xW ϑ1x + 1 − ϑ1ð Þð Þ + 1 − ςð Þ 1 − xð Þ
�W ϑ2x + 1 − ϑ2ð Þð Þ,

ð26Þ

for all x ∈A , then, Z is a Banach contraction mapping with
the metric d induced by k·k.

Corollary 9. The functional equation (24) has a unique solu-
tion provided that

1 − ςð Þ 1 − ϑ1ð Þ + 1 − ϑ2ð Þð Þ + 2 ϑ1 + ϑ2ð Þj j < 1: ð27Þ

Also, there exists a closed subset Λ of B such that Λ is Z
invariant, that is, ZðΛÞ ⊆Λ, where Z is the operator from Λ
defined for each W ∈Λ by

ZWð Þ xð Þ = ςxW ϑ1xð Þ + ς 1 − xð ÞW ϑ2xð Þ
+ 1 − ςð ÞxW ϑ1x + 1 − ϑ1ð Þð Þ + 1 − ςð Þ
� 1 − xð ÞW ϑ2x + 1 − ϑ2ð Þð Þ,

ð28Þ

for all x ∈A : Moreover, the iteration fW ng in Λ which is
defined by

W nð Þ xð Þ = ςxW n ϑ1xð Þ + ς 1 − xð ÞW n ϑ2xð Þ + 1 − ςð Þ
� xW n ϑ1x + 1 − ϑ1ð Þð Þ + 1 − ςð Þ 1 − xð Þ
�W n ϑ2x + 1 − ϑ2ð Þð Þ,

ð29Þ

for all n ∈ℕ, where W 0 ∈Λ, converges to the unique solution
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of functional equation (24) in the sense of the metric d
induced by k·k.

Similarly, if the mouse chooses the food side repeatedly,
then, the probability of that specific event will increase. Thus,
we have λ1 = 1 = λ2: In this situation, our four operators (1)
will be

P1x = ϑ1x + 1 − ϑ1ð Þ,
P2x = ϑ2x + 1 − ϑ2ð Þ,

P3x = ϑ1x,
P4x = ϑ2x:

ð30Þ

Now, we can write our functional equation (5) as

W xð Þ = ςxW ϑ1x + 1 − ϑ1ð Þð Þ + ς 1 − xð Þ
�W ϑ2x + 1 − ϑ2ð Þð Þ + 1 − ςð ÞxW ϑ1xð Þ
+ 1 − ςð Þ 1 − xð ÞW ϑ2xð Þ,

ð31Þ

where W : A ⟶ℝ is an unknown function, 0 < ϑ1, ϑ2 < 1,
and ς ∈A . Now, we have the following corollaries of Theorem
3.

Corollary 10. For 0 < ϑ1, ϑ2 < 1 and ς ∈A with

ς 1 − ϑ1ð Þ + 1 − ϑ2ð Þð Þ + 2 ϑ1 + ϑ2ð Þj j < 1: ð32Þ

If there exists a closed subset Λ of B such that Λ is Z
invariant, that is, ZðΛÞ ⊆Λ, where Z is the operator from
Λ defined for each W ∈Λ by

ZWð Þ xð Þ = ςxW ϑ1x + 1 − ϑ1ð Þð Þ + ς 1 − xð Þ
�W ϑ2x + 1 − ϑ2ð Þð Þ + 1 − ςð ÞxW ϑ1xð Þ
+ 1 − ςð Þ 1 − xð ÞW ϑ2xð Þ,

ð33Þ

for all x ∈A , then, Z is a Banach contraction mapping with
the metric d induced by k·k.

Corollary 11. The functional equation (31) has a unique
solution provided that

ς 1 − ϑ1ð Þ + 1 − ϑ2ð Þð Þ + 2 ϑ1 + ϑ2ð Þj j < 1: ð34Þ

Also, there exists a closed subset Λ of B such that Λ is Z
invariant, that is, ZðΛÞ ⊆Λ, where Z is the operator from Λ
defined for each W ∈Λ by

ZWð Þ xð Þ = ςxW ϑ1x + 1 − ϑ1ð Þð Þ + ς 1 − xð Þ
�W ϑ2x + 1 − ϑ2ð Þð Þ + 1 − ςð Þ
� xW ϑ1xð Þ + 1 − ςð Þ 1 − xð ÞW ϑ2xð Þ,

ð35Þ

for all x ∈A : Moreover, the iteration fW ng in Λ which is

defined by

W nð Þ xð Þ = ςxW n ϑ1x + 1 − ϑ1ð Þð Þ + ς 1 − xð Þ
�W n ϑ2x + 1 − ϑ2ð Þð Þ + 1 − ςð ÞxW n ϑ1xð Þ
+ 1 − ςð Þ 1 − xð ÞW n ϑ2xð Þ,

ð36Þ

for all n ∈ℕ, where W 0 ∈Λ, converges to the unique solution
of functional equation (31) in the sense of the metric d
induced by k·k.
6.3. Attraction towards the Specific Choice. In some specific
cases, it is possible that the mouse always follows the O1 out-
come and never choose O2. For such a case, we choose λ1
= 1: Similarly, if the mouse chooses O2 again and again,
then, the probability of that event should turn towards zero.
It means that λ2 = 0: These conditions reduce our four oper-
ators (1) to

P1x = ϑ1x + 1 − ϑ1ð Þ,
P2x = ϑ2x,
P3x = ϑ1x,

P4x = ϑ2x + 1 − ϑ2ð Þ:

ð37Þ

Now, we can write our functional equation (5) as

W xð Þ = ςxW ϑ1x + 1 − ϑ1ð Þ + ς 1 − xð ÞW ϑ2xð Þ
+ 1 − ςð ÞxW ϑ1xð Þ + 1 − ςð Þ 1 − xð ÞW ϑ2x + 1 − ϑ2ð Þ,

ð38Þ

where W : A ⟶ℝ is an unknown function, 0 < ϑ1, ϑ2 < 1,
and ς ∈A . We have the following results of Theorem 3.

Corollary 12. For 0 < ϑ1, ϑ2 < 1 and ς ∈A with

2ς − 1ð Þ 1 − ϑ1ð Þ + 1 − ςð Þ 1 − ϑ1ð Þ + 1 − ϑ2ð Þð Þ + 2 ϑ1 + ϑ2ð Þj j < 1:

ð39Þ

If there exists a closed subset Λ of B such that Λ is Z
invariant, that is, ZðΛÞ ⊆Λ, where Z is the operator from
Λ defined for each W ∈Λ by

ZWð Þ xð Þ = ςxW ϑ1x + 1 − ϑ1ð Þ + ς 1 − xð ÞW ϑ2xð Þ
+ 1 − ςð ÞxW ϑ1xð Þ + 1 − ςð Þ
� 1 − xð ÞW ϑ2x + 1 − ϑ2ð Þ,

ð40Þ

for all x ∈A , then Z is a Banach contraction mapping with
the metric d induced by k·k.

Corollary 13. The functional equation (38) has a unique
solution provided that

2ς − 1ð Þ 1 − ϑ1ð Þ + 1 − ςð Þ 1 − ϑ1ð Þ + 1 − ϑ2ð Þð Þ + 2 ϑ1 + ϑ2ð Þj j < 1,
ð41Þ
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and there exists a closed subset Λ of B such that Λ is Z
invariant, that is, ZðΛÞ ⊆Λ, where Z is the operator from
Λ defined for each W ∈Λ by

ZWð Þ xð Þ = ςxW ϑ1x + 1 − ϑ1ð Þ + ς 1 − xð ÞW ϑ2xð Þ
+ 1 − ςð ÞxW ϑ1xð Þ + 1 − ςð Þ 1 − xð Þ
�W ϑ2x + 1 − ϑ2ð Þ,

ð42Þ

for all x ∈A : Moreover, the iteration fW ng in Λ which is
defined by

W nð Þ xð Þ = ςxW n ϑ1x + 1 − ϑ1ð Þ + ς 1 − xð ÞW n ϑ2xð Þ
+ 1 − ςð ÞxW n ϑ1xð Þ + 1 − ςð Þ 1 − xð Þ
�W n ϑ2x + 1 − ϑ2ð Þ,

ð43Þ

for all n ∈ℕ, whereW 0 ∈Λ, converges to the unique solution
of functional equation (31) in the sense of the metric d
induced by k·k.

7. Conclusion

In an animal or a human being, the learning phase may also
be analyzed through a sequence of choices between multiple
possible answers. The choice sequence is usually unpredict-
able, even in basic experiments conducted under highly reg-
ulated conditions, indicating that probabilities govern the
selection of responses. Thus, it is helpful to think of the
sequential changes in a sequence of choices in response
probabilities from trial to trial. In this paper, we have dis-
cussed a particular type of stochastic process related to the
T-maze experiment [23, 24], which plays a vital role in
observing the behavior of the mouse in a two-choice situa-
tion. We analyzed the rat’s behavior in such situations and
proposed a mathematical model for it. The existence and
uniqueness of a solution to the proposed model have been
investigated by using the Banach fixed point theorem. To
observe the flexibility of the T-maze model, we examined it
under the experimenter-subject-controlled events. Further-
more, the proposed model depends only on the contingent
reinforcement behavior of rats in which a rat gets the reward
for choosing the food side. However, in general, a natural
question arises, which we present here to make this interac-
tion more interesting.

7.1. Question. What happens if a mouse does not move to
any side (left or right) on a specific trial k and remains stick-
ing to its starting position?

Moreover, one of the critical issues in functional equa-
tions is to find out its stability regarding Hyers-Ulam- and
Hyers-Ulam-Rassias-type stability (see for the detail,
[26–30]). We leave the stability question to the following
functional equation as an open problem:

W xð Þ = ςxW ϑ1x + 1 − ϑ1ð Þλ1ð Þ + ς 1 − xð Þ
�W ϑ2x + 1 − ϑ2ð Þλ2ð Þ + 1 − ςð ÞxW ϑ1x + 1 − ϑ1ð Þð
� 1 − λ1ð ÞÞ + 1 − ςð Þ 1 − xð ÞW ϑ2x + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ,

ð44Þ

where W : A ⟶ℝ is an unknown function, 0 < ϑ1, ϑ2 < 1,
and λ1, λ2, ς ∈A .
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