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Let f and g be bounded functions, and let T f and Tg be Toeplitz operators on A2
2ðDÞ. We show that if the product T f Tg equals

zero and one of f and g is a radial function satisfying a Mellin transform condition, then the other function must be zero.

1. Introduction

Let D be the open unit disk in ℂ equipped with the normal-
ized Lebesgue area measure dAðzÞ = ð1/πÞdxdy, and let L2

= L2ðD, dAÞ denote the Lebesgue space on D. For n ∈ℤ+,
let A2

n denote the n-analytic Bergman space, that is, the sub-
spaces of L2 consisting of n-differentiable functions such that
∂n�z f = 0, where

∂�z =
∂
∂�z

= 1
2

∂
∂x

+ i
∂
∂y

� �
: ð1Þ

As we know, A2
n is a Hilbert subspace with the inner

product

f , gh i =
ð
D

f ωð Þ �g ωð ÞdA ωð Þ, ð2Þ

where f , g ∈ A2
n.

The planar Beurling transform is the singular integral
operator given by

Sf zð Þ = −
ð
ℂ

f ωð Þ
ω − zð Þ2 dA ωð Þ, z ∈ℂ: ð3Þ

It is well known that the Beurling transform is a unitary
operator acting on L2ðℂ, dAÞ (see [1], p. 364). For D ⊂ℂ, the

compression of the Beurling transform to L2 is a bounded
linear operator acting on L2 defined by

SD f zð Þ = −
ð
D

f ωð Þ
ω − zð Þ2 dA ωð Þ, f zð Þ ∈ L2: ð4Þ

The n-analytic Bergman projection Pn is defined to be
the orthogonal projection of L2 onto A2

n. The singular inte-
gral operator SD is related to Pn, and it is known (see [2])
that

Pn = I − SDð Þn S∗Dð Þn, n ∈ℤ+: ð5Þ

For a function u ∈ L∞, the Toeplitz operator Tu with
symbol u on A2

n is defined by

Tuf = Pn ufð Þ, f ∈ A2
n: ð6Þ

n-analytic functions play an important role in mathe-
matical, and the space A2

n has been intensively studied. More
details about the structure of these spaces can be found in
paper [3–5] and Balk’s book [6].

Zero-product problem is a very important question in
the operator theory. For Toeplitz operators, we have the gen-
eral zero-product problem. Namely, if f and g are bounded
functions such that T f Tg = 0, then must one of the functions
be zero? Ahern and Cučković (see [7]) obtained an
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affirmative answer for Toeplitz operators on A2
1 when one of

the functions is radial. Le (see [8, 9]) generalized this result
to more than two functions. Cučković and Le (see [10]) gave
a positive answer when both functions are harmonic. While
the general zero-product problem (even on A2

1) is still far
from being solved, it is known that Toeplitz operators with
radial symbols are diagonal with respect to the standard
orthonormal basis of A2

1. However, this is not the case on
A2
n when n ≥ 2. Then, Cučković and Le (see [10]) raised

the following open question:

Question 1. Let f and g be bounded functions, one of which
is radial. If T f Tg = 0 on A2

n (or more generally, T f Tg has
finite rank), must one of these functions be zero?

In this paper, we give a partial answer to this question on
the 2-analytic Bergman space A2

2. We show that if g is a
radial function satisfying a Mellin transform condition, then
T f Tg = 0 if and only if f is a zero function.

2. Some Preliminary Results

We adopt the following boundary conditions for the bino-
mial coefficients:

n

−m

 !
= 0, where n = 0,±1,±2,⋯andm = 1, 2,⋯,

n

n +m

 !
= 0, where n = 0, 1, 2,⋯andm = 1, 2,⋯:

ð7Þ

An orthogonal basis in the space A2
n is given by (see [3,

11])

ϕj,k =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k + j − 1

p 1
k + j − 2ð Þ!

∂k+j−2

∂�zk−1∂zj−1
zj j2 − 1
� �k+j−2, ð8Þ

where k = 1, 2,⋯and j = 1, 2,⋯, n. The orthogonal basis can
also be written as

ϕj,k =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k + j − 1

p
〠
j−1

i=0
−1ð Þi

j − 1
i

 !
j + k − i − 2

j − 1

 !
zk−i−1�zj−i−1,

ð9Þ

where k = 1, 2,⋯and j = 1, 2,⋯, n. For n = 2, we have the
following lemma.

Lemma 2. An orthogonal basis in A2
2 is given by

ϕ1,k =
ffiffiffi
k

p
zk−1,

ϕ2,k =
ffiffiffiffiffiffiffiffiffiffi
k + 1

p
k zk−1�z − k − 1ð Þzk−2
� �

,
ð10Þ

where k = 1, 2,⋯.

For each z ∈D, since the point evaluation at z is a
bounded linear functional on A2

n, there exists a unique
reproducing kernel function Kðz, ωÞ ∈ A2

n such that

g zð Þ =
ð
D

g ωð ÞK z, ωð ÞdA ωð Þ, z ∈D, ð11Þ

for every g ∈ A2
n. On 2-analytic Bergman space A2

2,

K z, ωð Þ = 〠
+∞

k=1
ϕ1,k zð Þ �ϕ1,k ωð Þ + 〠

+∞

k=1
ϕ2,k zð Þ �ϕ2,k ωð Þ: ð12Þ

The Mellin transform ĝ of a function g ∈ L1ð½0, 1�, rdrÞ is
defined by

ĝ zð Þ =
ð1
0
g sð Þsz−1ds: ð13Þ

It is easy to see that ĝ is well defined and analytic on the
right half-plane fz : Re z ≥ 2g. Cučković and Rao (see [12])
first used the Mellin transform to study Toeplitz operators
on the classical Bergman space.

For notational convenience, we define ϕ1,0 = ϕ2,0 = 0 and
a0 = b0 = c0 = d0 = 0. For some Toeplitz operators on 2-
analytic Bergman space A2

2ðDÞ, we obtain the following
lemmas.

Lemma 3. Let g be a bounded radial function. Then, for each
p = 1, 2,⋯, we haveð

D

g rð Þωp−1K z,wð ÞdA ωð Þ = apϕ1,p zð Þ + bpϕ2,p+1 zð Þ,ð
D

g rð Þωp−1�ωK z,wð ÞdA ωð Þ = cpϕ1,p−1 zð Þ + dpϕ2,p zð Þ,

ð14Þ

where ap = 2
ffiffiffi
p

p
ĝð2pÞ, bp = 2

ffiffiffiffiffiffiffiffiffiffi
p + 2

p ½ðp + 1Þĝð2p + 2Þ − p
ĝð2pÞ�, cp = 2

ffiffiffiffiffiffiffiffiffiffi
p − 1

p
ĝð2pÞ, and dp = 2

ffiffiffiffiffiffiffiffiffiffi
p + 1

p ½pĝð2p + 2Þ − ð
p − 1Þĝð2pÞ�.

Proof. For each p = 1, 2,⋯, since g is a bounded radial func-
tion, thus

ð
D

g rð Þωp−1K z,wð ÞdA ωð Þ =
ð
D

g rð Þωp−1 〠
+∞

k=1
ϕ1,k zð Þ �ϕ1,k ωð Þ

"

+ 〠
+∞

k=1
ϕ2,k zð Þ �ϕ2,k ωð Þ

#
dA ωð Þ

= 〠
+∞

k=1
ϕ1,k zð Þ

ð
D

g rð Þωp−1 ffiffiffi
k

p
�ωk−1dA ωð Þ

+ 〠
+∞

k=1
ϕ2,k zð Þ

ð
D

g rð Þωp−1 �ϕ2,k ωð ÞdA ωð Þ

= 2 ffiffiffi
p

p
ĝ 2pð Þϕ1,p zð Þ + 2

ffiffiffiffiffiffiffiffiffiffi
p + 2

p
� p + 1ð Þĝ 2p + 2ð Þ − pĝ 2pð Þ½ �ϕ2,p+1 zð Þ,
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ð
D

g rð Þωp−1�ωK z,wð ÞdA ωð Þ =
ð
D

g rð Þωp−1�ω 〠
+∞

k=1
ϕ1,k zð Þ �ϕ1,k ωð Þ

"

+ 〠
+∞

k=1
ϕ2,k zð Þ �ϕ2,k ωð Þ

#
dA ωð Þ

= 〠
+∞

k=1
ϕ1,k zð Þ

ð
D

g rð Þωp−1�ω
ffiffiffi
k

p
�ωk−1dA ωð Þ

+ 〠
+∞

k=1
ϕ2,k zð Þ

ð
D

g rð Þωp−1�ω �ϕ2,k ωð ÞdA ωð Þ

= 2
ffiffiffiffiffiffiffiffiffiffi
p − 1

p
ĝ 2pð Þϕ1,p−1 zð Þ + 2

ffiffiffiffiffiffiffiffiffiffi
p + 1

p
� pĝ 2p + 2ð Þ − p − 1ð Þĝ 2pð Þ½ �ϕ2,p zð Þ:

ð15Þ

It is well known that radial Toeplitz operators acting on
A2
1 are diagonal, and radial Toeplitz operators acting on A2

n
can be represented as matrix sequences (see [13]). In the fol-
lowing, we give the exact expression of radial Toeplitz oper-
ators on A2

2.

Lemma 4. Let g be a bounded radial function. Then, for each
p ∈ℤ+,

Tg ϕ1,p

� �
= ffiffiffi

p
p

apϕ1,p zð Þ + bpϕ2,p+1 zð Þ
h i

,

Tg ϕ2,p

� �
=

ffiffiffiffiffiffiffiffiffiffi
p + 1

p
pcp − p − 1ð Þap−1
	 


ϕ1,p−1 zð Þ
n

+ pdp − p − 1ð Þbp−1
	 


ϕ2,p zð Þ
o
:

ð16Þ

Proof. Since g is a bounded radial function, for each p ∈ℤ+,
using Lemma 3, we get

Tg ϕ1,p

� �
= Pn g

ffiffiffi
p

p
ωp−1� �

zð Þ

=
ð
D

g rð Þ ffiffiffi
p

p
ωp−1K z,wð ÞdA ωð Þ

= ffiffiffi
p

p
apϕ1,p zð Þ + bpϕ2,p+1 zð Þ
h i

,

Tg ϕ2,p

� �
= Pn g

ffiffiffiffiffiffiffiffiffiffi
p + 1

p
pωp−1�ω − p − 1ð Þωp−2� �� �

zð Þ

=
ffiffiffiffiffiffiffiffiffiffi
p + 1

p ð
D

g rð Þ pωp−1�ω − p − 1ð Þωp−2� �
K z,wð ÞdA ωð Þ

=
ffiffiffiffiffiffiffiffiffiffi
p + 1

p
p
ð
D

g rð Þωp−1�ωK z,wð ÞdA ωð Þ
�

− p − 1ð Þ
ð
D

g rð Þωp−2K z,wð ÞdA ωð Þ
�

=
ffiffiffiffiffiffiffiffiffiffi
p + 1

p
p cpϕ1,p−1 zð Þ + dpϕ2,p zð Þ
h in

− p − 1ð Þ ap−1ϕ1,p−1 zð Þ + bp−1ϕ2,p zð Þ
h io

=
ffiffiffiffiffiffiffiffiffiffi
p + 1

p
pcp − p − 1ð Þap−1
	 


ϕ1,p−1 zð Þ
n

+ pdp − p − 1ð Þbp−1
	 


ϕ2,p zð Þ
o
:

ð17Þ

Applying Lemma 4, we conclude that radial Toeplitz
operators on A2

2 are not diagonal. The following corollary
is an immediate consequence of Lemma 4.

Corollary 5. Let g be a bounded radial function. Then, for
each p, q ∈ℤ+,

Tgϕ1,p, ϕ1,q
D E

=
ffiffiffi
p

p
ap, if q = p,

0, if q ≠ p,

(

Tgϕ1,p, ϕ2,q
D E

=
ffiffiffi
p

p
bp, if q = p + 1,

0, if q ≠ p + 1,

(

Tgϕ2,p, ϕ1,q
D E

=
ffiffiffiffiffiffiffiffiffiffi
p + 1

p
pcp − p − 1ð Þap−1
	 


, if q = p − 1,
0, if q ≠ p − 1,

(

Tgϕ2,p, ϕ2,q
D E

=
ffiffiffiffiffiffiffiffiffiffi
p + 1

p
pdp − p − 1ð Þbp−1
	 


, if q = p,
0, if q ≠ p:

(
ð18Þ

3. Products of Two Toeplitz Operators

A bounded function f is said to be quasihomogeneous of
degree k ∈ℤ if

f reiθ
� �

= eikθg rð Þ, ð19Þ

where gðrÞ is a radial function (see [14]). For any function
f ∈ L2ðD, dAÞ, it has the polar decomposition, i.e.,

f reiθ
� �

= 〠
k∈ℤ

eikθ f k rð Þ, ð20Þ

where f kðrÞ are radial functions in L2ð ½0, 1�, rdrÞ (see [12]).
A direct calculation gives the following lemma.

Lemma 6. Let f be a bounded function. Then, for each p, q
∈ℤ+,

f ϕ1,p, ϕ1,q
D E

= 2
ffiffiffiffiffi
pq

p
f̂ q−p p + qð Þ,

f ϕ1,p, ϕ2,q
D E

= 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p q + 1ð Þ

p
qf̂ q−p−1 p + q + 1ð Þ
h

− q − 1ð Þ f̂ q−p−1 p + q − 1ð Þ
i
,

f ϕ2,p, ϕ1,q
D E

= 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p + 1ð Þq

p
pf̂ q−p−1 p + q + 1ð Þ
h

− p − 1ð Þ f̂ q−p+1 p + q − 1ð Þ
i
,

f ϕ2,p, ϕ2,q
D E

= 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p + 1ð Þ q + 1ð Þ

p
pqf̂ q−p p + q + 2ð Þ
h

+ p + q − 2pqð Þ f̂ q−p p + qð Þ
+ p − 1ð Þ q − 1ð Þ f̂ q−p p + q − 2ð Þ

i
:

ð21Þ
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Proof. For all p, q ∈ℤ+, it is easy to verify that

f ϕ1,p, ϕ1,q
D E

= 〠
k∈ℤ

eikθ f k rð Þ ffiffiffi
p

p
zp−1, ffiffiffi

q
p

zq−1
D E

= 〠
k∈ℤ

ffiffiffiffiffi
pq

p
eikθ f k rð Þzp−1, zq−1
D E

= 2 ffiffiffiffiffi
pq

p
f̂ q−p p + qð Þ:

ð22Þ

Similarly, the rest of the lemma can be proved.

When considering the product of two Toeplitz opera-
tors, we often use the Mellin convolution. If f , g ∈ L1ð ½0, 1�
, rdrÞ, then their Mellin convolution is given by

f ∗ gð Þ rð Þ =
ð1
r
f

r
t

� �
g tð Þ dt

t
, 0 ≤ t < 1: ð23Þ

The Mellin convolution theorem (see [15]) states that

df ∗ g sð Þ = f̂ sð Þĝ sð Þ, ð24Þ

and if f and g are bounded, then so is f ∗ g.
It is well known that the Mellin transform is uniquely

determined by its value on an arithmetic sequence of inte-
gers. The following results (see [15], p. 102, [16]) will be
needed later.

Theorem 7. Suppose f is a bounded analytic function on fz
: Re z > 0g which vanishes at the pairwise distinct points z1,
z2, ⋯, where

inf znj jf g > 0,

〠
n≥1

Re 1
zn

� �
=∞:

ð25Þ

Then, f vanishes identically on fz : Re z > 0g.

Remark 8. Using this theorem, we can see that if g ∈ L1ð ½0
, 1�, rdrÞ and if there exists a sequence fnkgk≥0 ⊂ℕ such that

ĝ nkð Þ = 0,

〠
k≥0

1
nk

=∞, ð26Þ

then, ĝðzÞ = 0 for all z ∈ fz : Re z > 2g, by the Müntz-Szasz
theorem (see [17], p. 312), g = 0.

For p ∈ℤ+, we obtain

ĝ pð Þ =
ð1
0
g sð Þsp−1ds: ð27Þ

the numbers ĝðpÞ can also be called the moment Mellin
sequence of g. Let

A pð Þ =
ap−1 bp−1

pcp − p − 1ð Þap−1 pdp − p − 1ð Þbp−1

 !
: ð28Þ

AðpÞ is closed related to the moment Mellin sequence of
g, and we have the following lemma.

Lemma 9. Let p be a fixed positive integer. Then, the follow-
ing statements hold:

(i) ap = cp = 0 if and only if ĝð2pÞ = 0

(ii) bp = 0 if and only if ðp + 1Þĝð2p + 2Þ − pĝð2pÞ = 0

(iii) dp = 0 if and only if pĝð2p + 2Þ − ðp − 1Þĝð2pÞ = 0

(iv) jAðp + 1Þj = 0 if and only if dðr2g ∗ r2gÞð2pÞ −dðr4g ∗ gÞð2pÞ = 0

Proof. From Lemma 3, it is easy to check that (i), (ii), and
(iii) hold.

To prove (iv), in fact, for a fixed p ∈ℤ+,

A p + 1ð Þj j =
ap bp

p + 1ð Þcp+1 − pap p + 1ð Þdp+1 − pbp

0@ 1A


= p + 1ð Þapdp+1 − p + 1ð Þbpcp+1
= 4 p + 1ð Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p p + 2ð Þ

p
ĝ 2p + 4ð Þĝ 2pð Þ − g∧ 2p + 2ð Þ½ �2� �

:

ð29Þ

It follows that jAðp + 1Þj = 0 if and only if

g∧ 2p + 2ð Þ½ �2 − ĝ 2p + 4ð Þĝ 2pð Þ = 0: ð30Þ

Using ĝð2p + 2Þ =dr2gð2pÞ, ĝð2p + 4Þ =dr4gð2pÞ, and
Mellin convolution (24), we get the above equality is equiv-
alent to

dr2g ∗ r2gð Þ 2pð Þ − dr4g ∗ gð Þ 2pð Þ = 0: ð31Þ

Lemma 10. Let g be a bounded radial function. The function
g = 0 if and only if there exists a sequence fpkgk≥0 ⊂ℤ+,

〠
k≥0

1
pk

=∞,such that dr2g ∗ r2gð Þ 2pkð Þ = dr4g ∗ gð Þ 2pkð Þ:

ð32Þ

Proof. If the function g = 0, then r2g ∗ r2g = r4g ∗ g = 0, for
each p ∈ℤ+,

dr2g ∗ r2gð Þ 2pð Þ = dr4g ∗ gð Þ 2pð Þ = 0: ð33Þ

This proves the sufficient condition.
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Next, we prove the necessary condition. Suppose
fpkgk≥0 ⊂ℤ+,

〠
k≥0

1
pk

=∞,

dr2g ∗ r2gð Þ 2pkð Þ = dr4g ∗ gð Þ 2pkð Þ:
ð34Þ

Using Remark 8, we have

dr2g ∗ r2gð Þ zð Þ = dr4g ∗ gð Þ zð Þ, ð35Þ

for all z ∈ fz : Re z > 2g. Therefore, for each p ∈ℤ+,

g∧ 2p + 2ð Þ½ �2 = ĝ 2p + 4ð Þĝ 2pð Þ: ð36Þ

That is, fĝð2pÞg∞p=1 is a geometric sequence. There exists
a constant a such that

ĝ 2p + 2ð Þ = a · ĝ 2pð Þ: ð37Þ

Then,

dr2g − agð Þ 2pð Þ = 0: ð38Þ

Since f2pg∞p=1 ⊂ℤ+ is a sequence and ∑∞
p=1ð1/2pÞ =∞,

by Remark 8, ðr2 − aÞg = 0, which implies g = 0.

For each p, q ∈ℤ+, let b11ðp, qÞ = h f ϕ1,p, ϕ1,qi, b12ðp, qÞ
= h f ϕ1,p, ϕ2,qi, b21ðp, qÞ = h f ϕ2,p, ϕ1,qi, and b22ðp, qÞ = h f ϕ2,p
, ϕ2,qi. Let

B p, qð Þ =
b11 p, qð Þ b12 p, qð Þ

b21 p + 1, qð Þ b22 p + 1, qð Þ

 !
: ð39Þ

The first main result of this paper is the following
theorem.

Theorem 11. Let f be a bounded function and g be a
bounded radial function. Then, T f Tg = 0 on A2

2 if and only
if for each p, q ∈ℤ+, AðpÞBðp − 1, qÞ = 0.

Proof. Using the fact that f is a bounded function, we have

f reiθ
� �

= 〠
+∞

k=−∞
eikθ f k rð Þ: ð40Þ

If T f Tg = 0, then for each p, q ∈ℤ+,

T f Tgϕ1,p, ϕ1,q
D E

= 0,

T f Tgϕ1,p, ϕ2,q
D E

= 0:
ð41Þ

By Lemma 4,

ap f ϕ1,p, ϕ1,q
D E

+ bp f ϕ2,p+1, ϕ1,q
D E

= 0,

ap f ϕ1,p, ϕ2,q
D E

+ bp f ϕ2,p+1, ϕ2,q
D E

= 0,
ð42Þ

from which we conclude that

ap, bp
� �

B p, qð Þ = 0: ð43Þ

Since p is arbitrary, it follows that

ap−1, bp−1
� �

B p − 1, qð Þ = 0: ð44Þ

Analogously, for each p, q ∈ℤ+, it is easily verified that

T f Tgϕ2,p, ϕ1,q
D E

= 0,

T f Tgϕ2,p, ϕ2,q
D E

= 0,
ð45Þ

thus, we get

pcp − p − 1ð Þap−1, pdp − p − 1ð Þbp−1
� �

B p − 1, qð Þ = 0: ð46Þ

The above equations are equivalent to

A pð ÞB p − 1, qð Þ = 0: ð47Þ

This completes the proof of the theorem.

For p = 1, 2,⋯, firstly if ap = cp = 0, then ĝð2pÞ = 0, using
Remark 8, we get g = 0. Now, if bp = 0, then

2p + 2ð Þĝ 2p + 2ð Þ − 2pĝ 2pð Þ = 0: ð48Þ

Letting ζ = 2p, we have

ζĝ ζð Þ = ζ + 2ð Þĝ ζ + 2ð Þ: ð49Þ

It is easy to see that the function ζĝðζÞ is a periodic function
with a period 2. Using the same argument as the one at the
end of Section 2 in [12], we conclude that ζĝðζÞ must be a
constant function. Hence,

ĝ ζð Þ = C
ζ
, ð50Þ

where C is a constant and it is clear that g is also a constant.
Finally, if dp = 0, then

2pĝ 2p + 2ð Þ − 2p − 2ð Þĝ 2pð Þ = 0 ; ð51Þ

that is,

2p dg · r2 2pð Þ − 2p − 2ð Þ dg · r2 2p − 2ð Þ = 0: ð52Þ
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Similarly, we can also conclude that r2 · g is a constant.
Thus, if g is a bounded radial function, it must be zero.
Finally, we obtain the following lemma.

Lemma 12. Let g be a bounded radial function. Then, the fol-
lowing statements hold:

(i) ap = cp = 0 for all p ∈ℤ+ if and only if g = 0

(ii) bp = 0 for all p ∈ℤ+ if and only if g is a constant

(iii) dp = 0 for all p ∈ℤ+ if and only if g = 0

Remark 13. In Lemma 12, the condition “for all p ∈ℤ+” can
also be replaced by “a sequence fpkgk≥0 ⊂ℤ+ satisfying
∑k≥0ð1/pkÞ =∞.”

In Theorem 11, if ap = 0 or cp = 0, or dp = 0, then g = 0,
so it is clear that T f Tg = 0. If bp = 0, then g is a constant; it
is also easy to see that if g is not zero and T f Tg = 0, then f
must be zero. If ∣Aðp + 1Þ ∣ = 0, Aðp + 1Þ is not invertible.
On the other hand, when jAðp + 1Þj ≠ 0, then Aðp + 1Þ is
an invertible matrix. For a bounded radial function g such
that jAðp + 1Þj ≠ 0, if T f Tg = 0, is it necessary that f = 0?
The second main theorem of this paper answers this ques-
tion by giving a sufficient and necessary condition.

Theorem 14. Let g and f be bounded functions and g be a
bounded radial function satisfying

dr2g ∗ r2gð Þ 2pð Þ ≠ dr4g ∗ gð Þ 2pð Þ, ð53Þ

for each p ∈ℤ+. Then, T f Tg = 0 on A2
2 if and only if f = 0.

Proof. If f is a zero function, it is obvious that T f Tg = 0.
Now, we assume T f Tg = 0 and we shall prove f = 0. If g

is a bounded radial function and for each p ∈ℤ+,

dr2g ∗ r2gð Þ 2pð Þ ≠ dr4g ∗ gð Þ 2pð Þ, ð54Þ

then, by the Mellin convolution theorem (24), it follows that

g∧ 2p + 2ð Þ½ �2 ≠ ĝ 2p + 4ð Þĝ 2pð Þ: ð55Þ

For each p ∈ℤ+,

A p + 1ð Þj j = 4 p + 1ð Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p p + 2ð Þ

p
ĝ 2p + 4ð Þĝ 2pð Þ − g∧ 2p + 2ð Þ½ �2� �

:

ð56Þ

Applying (55), we get jAðp + 1Þj ≠ 0, that is, Aðp + 1Þ is
an invertible matrix. If T f Tg = 0 and for each q ∈ℤ+, we get

A p + 1ð ÞB p, qð Þ = 0: ð57Þ

Since Aðp + 1Þ is invertible,

B p, qð Þ =
b11 p, qð Þ b12 p, qð Þ

b21 p + 1, qð Þ b22 p + 1, qð Þ

 !
= 0: ð58Þ

Thus, b11ðp, qÞ = 0, by Lemma 6, we have

f̂ q−p p + qð Þ = 0: ð59Þ

That is,

f̂ k k + 2pð Þ = 0, ð60Þ

where k = q − p. Since p and q are arbitrary elements in
ℤ+, by Remark 8, we obtain f k = 0 for all k in ℤ. It follows
that f = 0. This completes the proof of the theorem.

Example 1. Let g = rm, where m ∈ℤ+. Then, for each p ∈ℤ+,

dr2g ∗ r2gð Þ 2pð Þ = 1
2p +m + 2

� �2
,

dr4g ∗ gð Þ 2pð Þ = 1
2p +mð Þ 2p +m + 4ð Þ :

ð61Þ

Obviously, dðr2g ∗ r2gÞð2pÞ ≠ dðr4g ∗ gÞð2pÞ. It is easy to
see that T f Trm = 0 on A2

2 if and only if f = 0.

In the following, we discuss when condition (53) is not
satisfied.

Case 1. If g is a bounded radial function and for each p ∈ℤ+,

dr2g ∗ r2gð Þ 2pð Þ = dr4g ∗ gð Þ 2pð Þ: ð62Þ

Then, using the Mellin convolution theorem (24), we
have

g∧ 2p + 2ð Þ½ �2 = ĝ 2p + 4ð Þĝ 2pð Þ: ð63Þ

That is, fĝð2pÞg∞p=1 is a geometric sequence. Using
Lemma 10, we get g must be zero. It is clear that T f Tg = 0.

Case 2. If g is a bounded radial function and for some p ∈ℤ+

,

dr2g ∗ r2gð Þ 2pð Þ = dr4g ∗ gð Þ 2pð Þ: ð64Þ

(1) If there exists a sequence fpkgk≥0 ⊂ℤ+ satisfying
∑k≥0ð1/pkÞ =∞ such that

dr2g ∗ r2gð Þ 2pkð Þ = dr4g ∗ gð Þ 2pkð Þ, ð65Þ
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then, by using Lemma 10, we get that g must be zero
function.

(2) If there exists a finite sequence fpkg ⊂ℤ+, or an infi-
nite sequence fpkg ⊂ℤ+ satisfying ∑k≥0ð1/pkÞ <∞,
such that

dr2g ∗ r2gð Þ 2pkð Þ = dr4g ∗ gð Þ 2pkð Þ, ð66Þ

then, the radial function g may not be zero function. For
example, if fpkg = fp1g is finite sequence and p1 = 1, there
exist some nonzero bounded radial functions g such that

dr2g ∗ r2gð Þ 2ð Þ = dr4g ∗ gð Þ 2ð Þ: ð67Þ

Let g = ar2 + br4, where a, b ∈ℝ. Then,

ĝ 4ð Þ = a
6 + b

8 ;

ĝ 6ð Þ = a
8 + b

10 ;

ĝ 2ð Þ = a
4 + b

6 :

ð68Þ

When a = 360, b = −720 + 120
ffiffiffi
6

p
, a direct calculation

shows that condition (67) is satisfied. In this case, we can
prove that Að2Þ is not invertible. As

a1 = 2ĝ 2ð Þ ;
b1 = 2

ffiffiffi
3

p
2ĝ 4ð Þ − ĝ 2ð Þ½ � ;

c1 = 4ĝ 4ð Þ ;
d1 = 4

ffiffiffi
3

p
2ĝ 6ð Þ − ĝ 4ð Þ½ �,

ð69Þ

then

A 2ð Þ =
a1 b1

2c2 − a1 2d2 − b1

 !

=
2ĝ 2ð Þ 2

ffiffiffi
3

p
2ĝ 4ð Þ − ĝ 2ð Þ½ �

4ĝ 4ð Þ − 2ĝ 2ð Þ 2
ffiffiffi
3

p
4ĝ 6ð Þ − 4ĝ 4ð Þ + ĝ 2ð Þ½ �

0@ 1A:

ð70Þ

Since g = ar2 + br4, it follows from (68) and (70) that

A 2ð Þ =
a
2 + b

3

ffiffiffi
3

p

6 a + bð Þ
1
6 a + bð Þ 2

ffiffiffi
3

p a
12 + b

15

� �
0BBB@

1CCCA: ð71Þ

When a = 360, b = −720 + 120
ffiffiffi
6

p
, a direct calculation

shows that jAð2Þj = 0 and Að2Þ is not invertible.

Remark 15. For a nonzero function g whose related matrices
are AðpÞ, p ∈ℤ+, if there exist matrices BðpÞ, p ∈ℤ+ such
that

(i) BðpÞ are not all zero
(ii) For each p ∈ℤ+, AðpÞBðpÞ = 0

then, we can construct a nonzero function f , such that T f

Tg = 0. The following example solves (i) and (ii) for a fixed
p. However, it is still unknown if (i) and (ii) hold for all p
∈ℤ+, and we will study this question in the future work.

Example 2. Suppose g = 360r2 + ð−720 + 120
ffiffiffi
6

p Þr4. Then

A 2ð Þ = −60 + 40
ffiffiffi
6

p
−60

ffiffiffi
3

p
+ 60

ffiffiffi
2

p

−60 + 20
ffiffiffi
6

p
−36

ffiffiffi
3

p
+ 48

ffiffiffi
2

p
 !

: ð72Þ

As Að2Þ is not invertible, there exist some nonzero
matrix B such that Að2ÞB = 0. For example,

B =
ffiffiffi
6

p
2
ffiffiffi
3

pffiffiffi
2

p
+ 2

ffiffiffi
3

p
2 + 2

ffiffiffi
6

p
 !

: ð73Þ

For each p = 1, 2,⋯, analogous to Lemma 3, we define

ap′ = 2 ffiffiffi
p

p
f̂ 2pð Þ, bp′ = 2

ffiffiffiffiffiffiffiffiffiffi
p + 2

p
p + 1ð Þ f̂ 2p + 2ð Þ − pf̂ 2pð Þ

h i
,

cp′ = 2
ffiffiffiffiffiffiffiffiffiffi
p − 1

p
f̂ 2pð Þ, dp′ = 2

ffiffiffiffiffiffiffiffiffiffi
p + 1

p
pf̂ 2p + 2ð Þ − p − 1ð Þ f̂ 2pð Þ
h i

,

ð74Þ

and a0′ = b0′ = c0′ = d0′ = 0.

In Theorem 14, if f and g are all bounded radial function
and there exists a sequence fpkgk≥0 ⊂ℤ+,

〠
k≥0

1
pk

=∞,such that dr2g ∗ r2gð Þ 2pkð Þ ≠ dr4g ∗ gð Þ 2pkð Þ,

ð75Þ

the conclusion is still valid; then, we have the following
corollary.

Corollary 16. Let f and g be bounded radial functions. Sup-
pose there exists a sequence fpkgk≥0 ⊂ℤ+,

〠
k≥0

1
pk

=∞,such that dr2g ∗ r2gð Þ 2pkð Þ ≠ dr4g ∗ gð Þ 2pkð Þ:

ð76Þ

If T f Tg = 0 on A2
2, then f = 0.
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Proof. For p ∈ℤ+, define

Bp =

ffiffiffi
p

p
ap′

ffiffiffi
p

p
bp′ffiffiffiffiffiffiffiffiffiffi

p + 2
p

p + 1ð Þcp+1′ − pap′
h i ffiffiffiffiffiffiffiffiffiffi

p + 2
p

p + 1ð Þdp+1′ − pbp′
h i

0@ 1A:

ð77Þ

By the hypothesis, f is a bounded radial function, it fol-
lows from Lemma 4 and Theorem 11 that T f Tg = 0 if and
only if for each p ∈ℤ+,

ApBp−1 = 0: ð78Þ

Let g ≠ 0 and there exists a sequence fpkgk≥1 ⊂ℤ+,

〠
k≥1

1
pk

=∞,such that dr2g ∗ r2gð Þ 2pkð Þ ≠ dr4g ∗ gð Þ 2pkð Þ:

ð79Þ

Then, it follows that Aðpk + 1Þ is an invertible matrix.
Combining this with Apk+1Bpk

= 0, we get Bpk
= 0. It follows

that

apk
′ = 2 ffiffiffiffiffi

pk
p

f̂ 2pkð Þ = 0: ð80Þ

This implies that f̂ ð2pkÞ = 0, combing with

〠
k≥1

1
2pk

=∞, ð81Þ

and using Remark 8, we get f = 0.
For p ∈ℤ+, if f and g are bounded radial functions, it

follows from Lemma 4 that

T f Tg ϕ1,p

� �
= λ11 pð Þϕ1,p + λ12 pð Þϕ2,p+1,

T f Tg ϕ2,p

� �
= λ21 pð Þϕ1,p−1 + λ22 pð Þϕ2,p,

ð82Þ

where

λ11 pð Þ = papap′ +
ffiffiffi
p

p
bp ·

ffiffiffiffiffiffiffiffiffiffi
p + 2

p
p + 1ð Þcp+1′ − pap′

h i
,

λ12 pð Þ = papbp′ +
ffiffiffi
p

p
bp ·

ffiffiffiffiffiffiffiffiffiffi
p + 2

p
p + 1ð Þdp+1′ − pbp′

h i
,

λ21 pð Þ =
ffiffiffiffiffiffiffiffiffiffi
p + 1

p
pcp − p − 1ð Þap−1
	 
 ffiffiffiffiffiffiffiffiffiffi

p − 1
p

ap−1′
n

+ pdp − p − 1ð Þbp−1
	 
 ffiffiffiffiffiffiffiffiffiffi

p + 1
p

pcp′ − p − 1ð Þap−1′
h io

,

λ22 pð Þ =
ffiffiffiffiffiffiffiffiffiffi
p + 1

p
pcp − p − 1ð Þap−1
	 
 ffiffiffiffiffiffiffiffiffiffi

p − 1
p

bp−1′
n

+ pdp − p − 1ð Þbp−1
	 
 ffiffiffiffiffiffiffiffiffiffi

p + 1
p

pdp′ − p − 1ð Þbp−1′
h io

:

ð83Þ

If T f Tg has a finite rank, there exists N ∈ℤ+, for all p
>N , such that

T f Tg ϕ1,p

� �
= 0,

T f Tg ϕ2,p

� �
= 0:

ð84Þ

As in Corollary 16, there exists a sequence fpkgk≥0 meet
the conditions, where fpkg ⊂ℤ+ and pk >N ; using proper-
ties of Mellin transform, we can obtain that T f Tg has a finite
rank if and only if f = 0.

Remark 17. As in Corollary 16, let f and g are bounded
radial functions and there exists a sequence fpkgk≥0 ⊂ℤ+,

〠
k≥0

1
pk

=∞,such that dr2g ∗ r2gð Þ 2pkð Þ ≠ dr4g ∗ gð Þ 2pkð Þ:

ð85Þ

Then, T f Tg has finite rank if and only if f = 0.

The following question is the general zero-product prob-
lem on A2

n when n ≥ 3.

Question 18. Let f be a bounded function and g be a
bounded radial function. Suppose that T f Tg = 0 on A2

n when
n ≥ 3, can we obtain any similar conclusions?
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