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This paper is concerned with positive α-times resolvent families on an ordered Banach space E (with normal and generating cone),
where 0 < α ≤ 2. We show that a closed and densely defined operator A on E generates a positive exponentially bounded α-times
resolvent family for some 0 < α < 1 if and only if, for some ω ∈ℝ, when λ > ω, λ ∈ ρðAÞ, Rðλ, AÞ ≥ 0 and sup fkλRðλ, AÞk: λ ≥
ωg <∞. Moreover, we obtain that when 0 < α < 1, a positive exponentially bounded α-times resolvent family is always analytic.
While A generates a positive α-times resolvent family for some 1 < α ≤ 2 if and only if the operator λα−1ðλα − AÞ−1 is
completely monotonic. By using such characterizations of positivity, we investigate the positivity-preserving of positive
fractional resolvent family under positive perturbations. Some examples of positive solutions to fractional differential equations
are presented to illustrate our results.

1. Introduction

Many linear dynamical systems can bemodelled as an abstract
Cauchy problem:

u′ tð Þ = Au tð Þ, t > 0,
u 0ð Þ = x0

ð1Þ

on a Banach space and then be treated by the theory of C0
-semigroups [1–3] in a unified way. Motivated by problems
in probability theory and PDEs, it is necessary to investigate
Cauchy problems having positive solutions to each positive
initial value. For this purpose, the theory of semigroups on a
Banach space with an order structure was established. Feller
[4] and Phillips [5] gave the first characteristics of generators
of some special positive semigroups. After that, the theory of
positive operators on ordered Banach spaces has been devel-
oped systematically during the 60s and 70s [6, 7]. This led to
further progress in positive semigroups during the 80s, and
these developments were recorded in the first monograph on
positive semigroups [8]. For more recent work, we refer to [9].

Positive C0-semigroups are closely related to resolvent
positive operators. If TðtÞ is a positive C0-semigroup on an
ordered Banach space, then its generator A is resolvent pos-
itive, i.e., Rðλ, AÞ ≥ 0 when λ > ω for some ω ∈ℝ. However, a
densely defined resolvent positive operator does not always
generate a C0-semigroup. The first example was given in
[10]. Later, Arendt [11] proved that a densely defined resol-
vent positive operator generates a once integrated semigroup
(see Lemma 16).

During the last decades, there are considerable interests
on the abstract fractional Cauchy problem of order α:

Dα
t u tð Þ = Au tð Þ, t > 0,

u kð Þ 0ð Þ = xk, xk ∈ X, k = 0, 1,⋯,m − 1,
ð2Þ

where A is a closed, densely defined linear operator on X, Dα
t

is the Caputo derivative, and m = dαe is the smallest integer
greater than or equal to α. It is known that (2) is well posed if
and only if A generates an α-times resolvent family [12]. The
class of fractional resolvent families is a special class of resol-
vent families introduced by Prüss [13]. A once resolvent
family is actually a C0-semigroup, and a twice resolvent
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family is a cosine operator function. Bajlekova has proved
that the generator of an exponentially bounded α-times
resolvent family is bounded if α > 2 [12] (Theorem 2.6).
For this reason, we restrict ourselves only to the cases that α
∈ ð0, 2�. For the existence of solutions to the abstract Cauchy
problem of fractional order, see for examples [12, 14–16].
There are also literatures devoted to abstract semilinear frac-
tional Cauchy problems, see, e.g., [17, 18]. We refer to the sur-
vey paper [19] and the references therein for the basic theory
of abstract fractional differential equations.

It is natural to consider positive solutions to fractional
differential equations. For example, the positive solutions
to the time fractional diffusion equation:

Dα
t u t, xð Þ = Δu t, xð Þ, t > 0, x ∈ℝN , ð3Þ

were discussed in [20–22], and more general equation with
fractional Laplacian

Dα
t u t, xð Þ = − −Δð Þβu t, xð Þ, t > 0, x ∈ℝN , ð4Þ

was studied in [23, 24]. The positivity of the fundamental
solutions was derived from detailed analysis on some special
functions including Mittag-Leffler functions, Mainardi func-
tions, Bessel functions, and Fox H-functions. The investiga-
tion of positive solutions to these concrete fractional
differential equations inspires us to study positive fractional
resolvent families in a unified way. To our best knowledge,
the positive solutions for abstract fractional Cauchy
problems were discussed only in [25] on Banach lattices,
under the assumption that the operator A generates a C0
-semigroup.

By the theory of fractional resolvent families and subor-
dination principles developed in [12, 26, 27], we are able to
obtain the positivity of solutions to fractional Cauchy prob-
lems via an operator theoretic approach. Our main result in
this paper establishes the relations between positive frac-
tional resolvent families and resolvent positive operators
on an ordered Banach space E with generating and normal
cone. More precisely, we show that (Theorem 15) if A is a
closed densely defined operator on E, then A generates a
positive exponentially bounded α-times resolvent family
for some α ∈ ð0, 1Þ if and only if

A is resolvent positive,
sup λR λ, Að Þk k: λ ≥ ωf g <∞,

ð5Þ

for some ω ∈ℝ. Condition (5) is not enough to guarantee
that A generates a C0-semigroup, see Example 7, but it is suf-
ficient for the generator of an α-times resolvent family for
0 < α < 1. Our proof is based on a result given by Arendt
mentioned above. As a byproduct, we derive that a positive
exponentially bounded α-times resolvent family with
α ∈ ð0, 1Þ is “automatically” analytic (Theorem 17). While
for α ∈ ð1, 2�, A generates a positive α-times resolvent family
if and only if λα−1ðλα − AÞ−1 is completely monotonic. Based
on these characterizations, we obtain the positivity-
preserving of a positive fractional resolvent family under

positive perturbations of relatively bounded operators,
which generalizes those for positive semigroups [28, 29].
We would like to mention that the stability of positive frac-
tional resolvent families was studied by one of the authors
recently in [30].

The paper is organized as follows. In Section 2, we give
some introductions on fractional calculus, fractional resol-
vent families, and ordered Banach spaces. Several examples
of fractional differential equations with positive solutions
are given in Section 3. Our main results on the relations
between resolvent positive operators and positive resolvent
families are presented in Section 4, and the positivity of frac-
tional resolvent families is characterized there. We consider
in Section 5 the positive perturbations of positive fractional
resolvent families and apply our results to two examples
related to Schrödinger operators.

2. Preliminaries

Let us first recall the basic definitions of fractional calculus
(see [12, 31]). Let α > 0, m = dαe, and I = ð0, TÞ for some
T > 0. For f ∈ L1ðIÞ, the fractional integral of order α > 0 is
defined by

Jαt fð Þ tð Þ≔ gα ∗ fð Þ tð Þ =
ðt
0
gα t − sð Þf sð Þ ds t > 0ð Þ, ð6Þ

where

gα tð Þ≔
tα−1

Γ αð Þ , t > 0,

0, t ≤ 0,

8><
>: ð7Þ

and ΓðαÞ is the gamma function. Set moreover g0ðtÞ≔ δðtÞ,
the Dirac delta-function. The Caputo fractional derivative of
order α > 0 is defined by

Dα
t f tð Þ≔ Jm−α d

dt

� �m

f tð Þ, ð8Þ

if f ∈ L1ðIÞ ∩ Cm−1ðIÞ and gm−α ∗ f ∈Wm,1ðIÞ.
The Mittag-Leffler function Eα,βðzÞ is defined by

Eα,β zð Þ≔ 〠
∞

n=0

zn

Γ αn + βð Þ =
1
2πi

ð
Ha

μα−βeμ

μα − z
dμ, z ∈ℂ, ð9Þ

where α, β > 0, Ha is the Hankel contour which starts and
ends at −∞ and encircles the disc jtj ≤ jzj1/α counterclock-
wise. We use EαðtÞ≔ Eα,1ðtÞ for short. The Mittag-Leffler
function EαðtÞ satisfies the fractional differential equation:

Dα
t Eα ωtαð Þ = ωEα ωtαð Þ: ð10Þ

And the most important properties of these functions
are associated with their Laplace integral:
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ð∞
0
e−λt tβ−1Eα,β stαð Þdt = λα−β

λα − s
,  Re λð Þ > sj j1/α, ð11Þ

and their asymptotic expansion as z⟶∞. For 0 < α < 2
and β > 0,

Eα,β zð Þ = 1
α
z1−β/α exp z1/α

� �
+ εα,β zð Þ,  arg zj j ≤ 1

2 απ,

Eα,β zð Þ = εα,β zð Þ,  arg −zð Þj j < 1 − 1
2 α

� �
π,

ð12Þ

where

εα,β zð Þ = − 〠
N−1

n=1

z−n

Γ β − αnð Þ +O zj j−N� �
, ð13Þ

as z⟶∞ and 2 ≤N ∈ℕ.
Another function is the scaled Wright-type function ψα,β

with indexes 0 < α < 1, β ≥ 0:

ψα,β t, sð Þ≔ 〠
∞

n=0

−1ð Þnsntβ−αn−1
n!Γ −αð Þn + βð Þ = 1

2πi

ð
Ha

z−βetz−sz
α

dz, t > 0, s ∈ℂ:

ð14Þ

The Wright function ψα,β satisfies ψα,βðt, sÞ ≥ 0 for t, s
> 0,
ð∞
0
e−λtψα,β t, sð Þdt = λ−βe−λ

αs, s, λ > 0, ð15Þ

ð∞
0
eλsψα,β t, sð Þds = tα+β−1Eα,α+β λtαð Þ, t > 0, λ ∈ℂ:

ð16Þ
Moreover,

ψα,β+γ t, sð Þ = gγ ∗ ψα,β ·, sð Þ
� �

tð Þ, t, s, γ > 0: ð17Þ

More details about positivity and integral representation
of these two functions can be found in [32–34].

Now, we turn to the abstract fractional Cauchy problem
on a Banach space X. For a Banach space X, we denote by
LðXÞ the Banach algebra of all bounded linear operators
on X. Throughout this paper, we assume that A is a densely
defined closed operator on X. We denote by Rðλ, AÞ≔
ðλ − AÞ−1 the resolvent of A at λ if λ ∈ ρðAÞ, the resolvent
set of A. And we denote by sðAÞ≔ sup fRe λ : λ ∈ σðAÞg,
where σðAÞ is the spectrum of A.

Consider the Cauchy problem on X of order α ∈ ð0, 2�:

Dα
t u tð Þ = Au tð Þ, t > 0,

u 0ð Þ = x0 in addition u′ 0ð Þ = 0 if α > 1
� �

:
ð18Þ

The problem (18) is well posed if and only if the corre-
sponding Volterra integral equation

u tð Þ = x0 +
ðt
0
gα t − sð ÞAu sð Þds ð19Þ

is well posed in the sense of [13] (Definition 1.2). This leads
to the definition of the α-times resolvent family [12].

Definition 1. Let α ∈ ð0, 2�: A function Sαð·Þ: ½0,+∞Þ⟶ L
ðXÞ is called an α-times resolvent family generated by A
if the following conditions are satisfied:

(i) SαðtÞ is strongly continuous for t ≥ 0 and Sαð0Þ = I

(ii) SαðtÞDðAÞ ⊂DðAÞ and ASαðtÞx = SαðtÞAx for all
x ∈DðAÞ, t ≥ 0

(iii) For x ∈DðAÞ, the resolvent equation

Sα tð Þx = x + gα ∗ Sαð Þ tð ÞAx, ð20Þ

holds for all t ≥ 0

Suppose that A generates an α-times resolvent family
SαðtÞ. Then the Cauchy problem (18) is solvable, and its
unique mild solution is given by uðtÞ = SαðtÞx0. And for
α ∈ ð1, 2�, the unique mild solution to the Cauchy problem

Dα
t u tð Þ = Au tð Þ, t > 0,
u 0ð Þ = x0, u′ 0ð Þ = x1,

ð21Þ

is given by

u tð Þ = Sα tð Þx0 +
ðt
0
Sα τð Þx1dτ: ð22Þ

We call an α-times resolvent family SαðtÞ exponentially
bounded if there exist constants M ≥ 1 and ω ≥ 0 such that
kSαðtÞk ≤Meωt for all t ≥ 0. If A generates an exponentially
bounded α-times resolvent family, we will write for short
A ∈Cα.

SαðtÞ is called analytic if it admits an analytic extension
to a sector Σθ0

≔ fz ∈ℂ : z ≠ 0 and jarg zj < θ0g for some
θ0 ∈ ð0, π/2� and for each θ ∈ ð0, θ0Þ there exist constants
Mθ ≥ 1, ωθ ≥ 0 such that kSαðzÞk ≤Mθe

ωθ Re z ðz ∈ ΣθÞ: If A
generates an analytic exponentially bounded α-times resol-
vent family, we will write for short A ∈Aα.

Lemma 2 ([12], Theorem 2.9). Let 0 < α ≤ 2. Then A ∈Cα if
and only if there are constants M ≥ 1 and ω ≥ 0 such that
ðωα,+∞Þ ⊂ ρðAÞ, and there is a strongly continuous family
fSαðtÞg ⊂ LðXÞ satisfying kSαðtÞk ≤Meωt for all t ≥ 0 and

λα−1R λα, Að Þx =
ð∞
0
e−λtSα tð Þxdt, λ > ω, x ∈ X: ð23Þ

3Journal of Function Spaces



In [35] (Lemma 3), it was shown that if A generates an
exponentially bounded α-times resolvent family, then A is
densely defined.

It is well known that the analyticity of a cosine operator
function implies the boundedness of its generator. There-
fore, we will restrict ourselves to the analyticity only when
0 < α < 2. We need the following result on generating
bounded analytic α-times resolvent families.

Lemma 3 ([12], Corollary 2.17). If ρðAÞ ⊂ fλ : Re λ > 0g
and there exists a constant C such that

R λ, Að Þk k ≤ C
Re λ

,  Re λ > 0, ð24Þ

then A ∈Aα for any α ∈ ð0, 1Þ.

The next lemma is concerned with the perturbation of
fractional resolvent families [12] (Theorems 2.25 and 2.26).

Lemma 4.

(i) If A ∈Cα for some 1 ≤ α ≤ 2 and B ∈ LðXÞ, then A +
B ∈Cα

(ii) If A ∈Aα for some 0 < α < 2 and B is a closed linear
operator satisfying DðBÞ ⊃DðAÞ and

Bxk k ≤ a Axk k + b xk k, x ∈D Að Þ ð25Þ

Then there exists δ > 0 such that if 0 ≤ a ≤ δ then A + B
∈Aα.

The following subordination principles are very impor-
tant for C0-semigroups and fractional resolvent families.
The first one comes from [36]; the second one comes from
[12] (Theorems 3.1 and 3.3).

Lemma 5 (subordination principle).

(i) If A generates a bounded C0-semigroup TðtÞ, then for
0 < α < 1, −ð−AÞα generates the analytic C0-semigroup
TαðtÞ given by

Tα tð Þ =
ð∞
0
ψα,0 s, tð ÞT sð Þds, t > 0 ð26Þ

(ii) Let 0 < β < α ≤ 2 and A generate an exponentially
bounded α-times resolvent family SαðtÞ. Then A gen-
erates the analytic exponentially bounded β-times
resolvent family SβðtÞ, which is given by

Sβ tð Þ =
ð∞
0
ψβα,1−βα t, sð ÞSα sð Þds, t > 0 ð27Þ

Finally, we give a brief introduction on ordered Banach
spaces, as well as the positive operators, completely mono-
tonic functions, and Bernstein functions on ordered Banach
spaces. For details, we refer to [1, 8, 11, 37].

Definition 6. Let E be a real Banach space. By a positive cone
in E, we understand a closed subset E+ of E satisfying E+ +
E+ ⊂ E+ and λE+ ⊂ E+ for all λ > 0. The order relations on
E are defined by x ≥ y iff x − y ∈ E+. And moreover, the cone
E+ is said to be generating if E = E+ − E+; the cone E+ is said
to be normal if there is some constant c such that z ≤ y ≤ x
always implies kyk ≤ c max fkzk, kxkg.

Associated to each ordered Banach space E, there is an
ordering on its dual space E′ with the dual cone E′+ defined
by

E′+ = ω ∈ E′ : ω xð Þ ≥ 0 for all x ∈ E+
n o

: ð28Þ

Definition 7. An operator T ∈ LðEÞ is called positive if
TðE+Þ ⊂ E+ and will be denoted by T ≥ 0. A function f : Λ
⟶ E is called positive if f ðλÞ ∈ E+ for every λ ∈Λ and will
be denoted by f ≥ 0.

A function f ∈ C∞ðð0,+∞Þ, EÞ is called completely
monotonic if

−1ð Þn f nð Þ λð Þ ≥ 0, ∀λ > 0: ð29Þ

A function φ ∈ C∞ðð0,+∞Þ, EÞ is called a Bernstein
function if φðλÞ ≥ 0 for any λ > 0 and φ′ is completely
monotonic.

The exponential function e−axða > 0Þ and the Mittag-
Leffler function Eα,βð−axÞða > 0Þ with 0 < α < 1, α ≤ β, are
scalar completely monotonic functions, and xαð0 < α < 1Þ is
a Bernstein function.

Lemma 8. Let f , g be completely monotonic functions on E
and φ be a scalar Bernstein function. Then

(i) f + g, f · g are completely monotonic

(ii) f ∘ φ is completely monotonic

3. Positive Solutions to Fractional
Differential Equations

In this section, we give several examples of fractional differ-
ential equations with positive solutions. These are motiva-
tions for us to consider positive fractional resolvent
families on an ordered Banach space and then investigate
the positive solutions to fractional differential equations in
a unified way.
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Example 1. If 0 < α < 1, the solution to the following scalar
fractional differential equation

Dα
t u tð Þ = λu tð Þ, t > 0,
u 0ð Þ = u0

ð30Þ

is given by uðtÞ = u0EαðλtαÞ. It is obvious that uðtÞ ≥ 0
for t > 0 if λ > 0 and u0 ≥ 0. In case that λ < 0, since the
function Eαð−tÞ is completely monotonic for t ≥ 0 when
0 < α < 1, we also have the solution uðtÞ positive if the initial
data u0 ≥ 0.

Now, let 1 < α ≤ 2. The solution to

Dα
t u tð Þ = λu tð Þ, t > 0,
u 0ð Þ = u0, u′ 0ð Þ = u1,

ð31Þ

is given by

u tð Þ = u0Eα λtαð Þ + u1Eα,2 λtαð Þ: ð32Þ

As in the case of 0 < α < 1, it is obvious that uðtÞ ≥ 0 if
λ > 0 and u0, u1 ≥ 0. However, if λ < 0, the Mittag-Leffler
function EαðλtÞð1 < α < 2Þ has a finite number of zeros on
the positive real axis and thus is not positive [33, 38].

Example 2. Let E be an ordered Banach space with normal
and generating cone and let A be a linear bounded opera-
tor on E. For 0 < α ≤ 2, consider the fractional differential
equation

Dα
t u tð Þ = Au tð Þ, t > 0,

u 0ð Þ = u0 in addition u′ 0ð Þ = u1 if α > 1
� �

:
ð33Þ

The solution is given by

u tð Þ = Eα tαAð Þu0 = 〠
∞

n=0

tαn

Γ αn + 1ð ÞA
nu0, ð34Þ

if 0 < α ≤ 1 or

u tð Þ = Eα tαAð Þu0 + Eα,2 tαAð Þu1 = 〠
∞

n=0

tαn

Γ αn + 1ð ÞA
nu0

+ 〠
∞

n=0

tαn

Γ αn + 2ð ÞA
nu1,

ð35Þ

if 1 < α ≤ 2. If A ≥ 0, the solution uðtÞ remains positive if
both u0 and u1 are positive. If A = λI, a constant operator
on E, the solution uðtÞ is positive if u0, u1 ≥ 0 when either
0 < α ≤ 1 and λ ∈ℝ or 1 < α ≤ 2 and λ > 0.

Example 3. Let 0 < α < 1. Consider the following fractional
transport equation

Dα
t u t, xð Þ = −

∂
∂x

u t, xð Þ, t > 0,

u 0, xð Þ = f xð Þ:
ð36Þ

By the subordination principle (Lemma 5(ii)), on X =
L1ðℝÞ, the solution is given by

u t, xð Þ =
ð∞
0
ψα,1−α t, sð Þf x − sð Þds ; ð37Þ

while on X = L1ðℝ+Þ, the solution is given by

u t, xð Þ = ψα,1−α t, ·ð Þ ∗ f
� �

xð Þ =
ðx
0
ψα,1−α t, sð Þf x − sð Þds:

ð38Þ

See also [32] (Example 12). Since ψα,βðt, sÞ ≥ 0 when α

∈ ð0, 1Þ and β > 0, the solution uðt, xÞ is positive if f ðxÞ ≥ 0.

Example 4. Let 0 < α < 1; consider the following fractional
diffusion equation:

Dα
t u t, xð Þ = Δu t, xð Þ, t > 0, x ∈ℝN ,
u 0, xð Þ = f xð Þ

ð39Þ

on LpðℝNÞ ð1 ≤ p<∞Þ. When α = 1, this is the classical heat
equation. It is well known that the Laplacian operator Δ gen-
erates a bounded C0-semigroup TðtÞ on LpðℝNÞ given by

T tð Þfð Þ xð Þ = 1
4πtð ÞN/2

ð
ℝN

e− x−yj j2/4t f yð Þdy: ð40Þ

Thus again by the subordination principle, the solution
to the above fractional diffusion equation (38) is given by

u t, xð Þ =
ð∞
0

ψα,1−α t, sð Þ
4πsð ÞN/2

ð
ℝN

e− x−yj j2/4s f yð Þdyds, ð41Þ

which is positive if f ≥ 0.

Example 5. Let 1 < α ≤ 2. Consider the following fractional
wave equation:

Dα
t u t, xð Þ = Δu t, xð Þ, t > 0, x ∈ℝ,
u 0, xð Þ = f xð Þ, ut 0, xð Þ = g xð Þ

ð42Þ

on LpðℝÞ ð1 ≤ p<∞Þ. This is exactly the wave equation on
the real line; its solution is given by d’Alembert’s formula

u2 t, xð Þ = f x + tð Þ + f x − tð Þ
2 + 1

2

ðx+t
x−t

g sð Þds, ð43Þ
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which is positive if both f and g are positive. Thus, by the
subordination principle and (21), the solution to (41) is
given by

u t, xð Þ = 1
2

ð∞
0
ψα2,1−α2 t, sð Þ f x + sð Þ + f x − sð Þ½ �ds

+ 1
2

ðt
0

ð∞
0
ψα2,1−α2 τ, sð Þ g x + sð Þ + g x − sð Þ½ �dsdτ

= 1
2

ð∞
0
ψα2,1−α2 t, sð Þ f x + sð Þ + f x − sð Þ½ �ds

+ 1
2

ð∞
0
ψα2,2−α2 t, sð Þ g x + sð Þ + g x − sð Þ½ �ds,

ð44Þ

where we have used (16). So, the solution to (41) is pos-
itive if both f and g are positive.

Remark 9. The fundamental solution for fractional diffusion
equations (38) and (41) on ℝN was first given by Schneider
and Wyss in [22], where it was also shown that the funda-
mental solution changes sign in dimension N ≥ 2 if α > 1.
And in the case α > 1 and N = 1, the positivity of the funda-
mental solution was proved in [21].

Example 6. Consider the following fractional differential
equation for fractional Laplacian:

Dα
t u t, xð Þ = − −Δð Þβu t, xð Þ, t > 0, x ∈ℝN ,

u 0, xð Þ = f xð Þ
ð45Þ

on LpðℝNÞ ð1 ≤ p<∞Þ, where α, β ∈ ð0, 1Þ. Let TðtÞ be the C0
-semigroup generated by the Laplacian Δ as in (39), by
Lemma 5(i), −ð−ΔÞβ generates an analytic semigroup TβðtÞ
for every β ∈ ð0, 1Þ, which is given by

Tβ tð Þf xð Þ =
ð∞
0
ψβ,0 τ, tð Þ T τð Þfð Þ xð Þdτ: ð46Þ

Therefore, the solution for (44) can be represented by

u t, xð Þ =
ð∞
0
ψα,1−α t, sð ÞTβ sð Þf xð Þds

=
ð∞
0

ð∞
0
ψα,1−α t, sð Þψβ,0 τ, sð Þ T τð Þfð Þ xð Þdτds,

ð47Þ

which is positive if f ≥ 0.

Remark 10. Kemppainen gave the fundamental solution for
(44) in terms of the Fox H-functions in [23] and its positiv-
ity. It turns out that the fundamental solution is positive
only if α ∈ ð0, 1� and β ∈ ð0, 1� , or α ∈ ð1, 2Þ, α ≤ 2β ≤ 2 and
N = 1.

4. Resolvent Positive Operators and Positive
Fractional Resolvent Families

Throughout the rest of this paper, we assume that E is an
ordered Banach space with normal and generating cone E+
. We will investigate in this section the relations between
resolvent positive operators and the generators of positive
fractional resolvent families.

Definition 11. An operator A on E is called resolvent positive
if there exists ω ∈ℂ such that ðω,∞Þ ⊂ ρðAÞ and Rðλ, AÞ ≥ 0
(i.e., Rðλ, AÞE+ ⊆ E+) for all λ > ω:

An α-times resolvent family SαðtÞ is called positive if Sα
ðtÞ ≥ 0 for t ≥ 0.

We denote by A ∈Cα
+ to mean that A generates a positive

exponentially bounded α-times resolvent family. And by
A ∈Aα

+, we mean that A generates an analytic exponen-
tially bounded α-times resolvent family which is positive
on ½0,∞Þ.

Remark 12.

(i) Let A be a resolvent positive operator. Then

s Að Þ = inf w ∈ℝ : w,∞ð Þ ⊂ ρ Að Þ, R λ, Að Þ ≥ 0 for all λ >wf g,
ð48Þ

and the function Rð·, AÞ is decreasing on ðsðAÞ,∞Þ [1, 11]

(ii) If A generates a positive α-times resolvent family
SαðtÞ, then (17) has a positive mild solution SαðtÞ
x0 for every initial value x0 ∈ E+, and by (21),
the mild solutions to (20) are also positive if x0,
x1 ∈ E+

(iii) By the subordination principle (Lemma 5), if A ∈
Cα

+, then A ∈Aβ
+ for every 0 < β < α. More general

results for the positivity-preserving concerning the
fractional powers will be given in Proposition 18

The positivity of an α-times resolvent family is charac-
terized in the following result.

Theorem 13. Let α ∈ ð0, 2� and A be the generator of an expo-
nentially bounded α -times resolvent family SαðtÞ on E.

(i) If α ∈ ð1, 2�, then SαðtÞ is positive for t ≥ 0 if and only if

−1ð Þk dk

dλk
λα−1 λα − Að Þ−1
h i

≥ 0, ∀k ∈ℕ ∪ 0f g, ð49Þ

for λ large enough

(ii) If α ∈ ð0, 1�, then SαðtÞ is positive for t ≥ 0 if and only
if Rðλ, AÞ ≥ 0 for λ large enough

6 Journal of Function Spaces



Proof.

(i) Suppose that ∥SαðtÞ∥≤Meωt for some constants M
and ω, then by Lemma 2 λα ∈ ρðAÞ for λ > ω and
(22) holds; it then follows that

−1ð Þk dk

dλk
λα−1 λα − Að Þ−1
h i

=
ð∞
0
e−λt tkSα tð Þx dt: ð50Þ

The necessity of our assertion follows immediately from
the above identity. The sufficiency follows from the Post-
Widder inversion formula:

Sα tð Þx = lim
k⟶∞

−1ð Þk 1
k!

k
t

� �k+1
Sα∧

kð Þ k
t

� �

= lim
k⟶∞

1
k!

k
t

� �k+1
−1ð Þk dk

dλk
λα−1 λα − Að Þ−1
h i�����

λ=k/t

x

ð51Þ

(ii) The necessity follows from (22) and the positivity of
SαðtÞ. It remains to show the sufficiency in the case
α ∈ ð0, 1Þ. This follows from the asymptotic formula
below (see [13] (Proposition 2.11)):

Sα tð Þ = lim
n⟶∞

1
n!

〠
n+1

k=1
bαk,n+1 I −

t
n

� �α

A
� �−k

x, ð52Þ

where bαj,k are given by the recurrence relations

bα1,1 = 1,
bαj,k = k − 1 − jαð Þbαj,k−1 + α j − 1ð Þbαj−1,k−1, 1 ≤ j ≤ k, k = 2, 3,⋯,

bαj,k = 0, j > k, k = 1, 2,⋯, ð53Þ

and the fact that the coefficients bαj,k ≥ 0 when α ∈ ð0, 1Þ and
A is resolvent positive.

Remark 14. When 1 < α ≤ 2, Rðλ, AÞ ≥ 0 for λ large enough
does not imply that SαðtÞ ≥ 0 for all t ≥ 0. Since the scalar
function cos ðaxÞ oscillates for every a ∈ℝ, it is known that
for 1 < α < 2, the function Eαð−axÞ has finite zeros on the
positive real axis if a > 0 (see also Example 1) while
ðλ + aÞ−1 remains positive if λ is large enough.

Some examples are given in [11] to illustrate that a
densely defined resolvent positive operator Amay not gener-
ate a C0-semigroup. To guarantee such operator generates a
C0-semigroup, some additional conditions are needed.
Among them are the interior of E+ which is nonempty, D
ðAÞ+ is cofinal in E+, the resolvent of A is bounded below,
and so on. However, we will show in our main theorem that
a densely defined resolvent positive operator always gener-

ates a fractional resolvent family if a uniform boundedness
condition of its resolvents is satisfied, and such condition
is also necessary for the operator to generate a fractional
resolvent family.

Theorem 15. Let A be a closed densely defined operator on E.
ThenA ∈Cα

+ for some α ∈ ð0, 1Þ if and only ifA is resolvent pos-
itive and there exists some ω ∈ℝ such that ðω,∞Þ ⊂ ρðAÞ, and

sup λR λ, Að Þk k: λ ≥ ωf g <∞: ð54Þ

To prove the theorem, we need the following result from
[11], which says that a densely defined resolvent positive opera-
tor can always generate a once integrated semigroup.

Lemma 16. Let A be a resolvent positive operator on an
ordered Banach space X . If DðAÞ is dense, then A generates
a once integrated semigroup SðtÞ such that

R λ, Að Þ =
ð∞
0
e−λtdS tð Þ, λ > ω, ð55Þ

when ω > sðAÞ. Moreover, SðtÞ satisfies Sð0Þ = 0, 0 ≤ SðsÞ ≤ S
ðtÞ when 0 ≤ s ≤ t and limt⟶∞SðtÞ = −A−1 if sðAÞ < 0.

Proof of Theorem 15. First, we show the sufficiency. Suppose
that A is a densely defined resolvent positive operator satis-
fying (53). Set B = A − ωI, then B is resolvent positive with
sðBÞ < 0. For λ > 0, we have

λR λ, Bð Þ = λR λ + ω, Að Þ = λ + ωð ÞR λ + ω, Að Þ − ωR λ + ω, Að Þ ;
ð56Þ

it then follows

λR λ, Bð Þk k ≤ sup μR μ, Að Þk k: μ ≥ ωf g + C ωj j · R ω, Að Þk k
ð57Þ

for some constant C since Rðλ + ω, AÞ ≤ Rðω, AÞ (Remark
12(i)) and E+ is normal. Therefore, we obtain

sup λR λ, Bð Þk k: λ > 0f g <∞: ð58Þ

By Lemma 16, B generates integrated semigroup SðtÞ
such that

R λ, Bð Þ =
ð∞
0
e−λtdS tð Þ,  Re λ > 0, ð59Þ

and SðtÞ satisfies Sð0Þ = 0, 0 ≤ SðsÞ ≤ SðtÞ when 0 ≤ s ≤ t and
limt⟶∞SðtÞ = Rð0, BÞ. It follows from (58) that for λ satisfy-
ing Reλ > 0, x ∈ E+ and x′ ∈ E+′
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R λ, Bð Þx, x′
D E��� ��� ≤ ð∞

0
e−λt dS tð Þx, x′

	 
����
���� =

ð∞
0
e−λt d S tð Þx, x′

D E����
����

≤
ð∞
0
e−Re λt d S tð Þx, x′

D E
= R Re λ, Bð Þx, x′
D E

:

ð60Þ

Since E+ is generating and normal, so is E+′ [39]. For
every x′ ∈ E′, there is a decomposition x′ = x1′ − x2′ with
x1′, x2′ ∈ E+′ satisfying max fkx1′k, kx2′kg ≤M ′kx′k for
some constant M ′ ≥ 1. Thus, for x ∈ E+,

R λ, Bð Þxk k = sup
x′∈E ′,∥x′∥≤1

R λ, Bð Þx, x′
D E��� ��� ≤ 2 sup

y ′∈E+′ ,∥y ′∥≤M ′
R λ, Bð Þx, y′

D E��� ���
≤ 2 sup

y ′∈E+′ ,∥y ′∥≤M ′
R Re λ, Bð Þx, y′

D E��� ��� ≤ 2M ′ R Re λ, Bð Þxk k:

ð61Þ

Again, since E+ is generating, there exists another con-
stant M > 1 such that for every x ∈ E, there is a decomposi-
tion x = x1 − x2 with x1, x2 ∈ E+ satisfying max fkx1k, kx2kg
≤Mkxk. Thus, for x ∈ E,

R λ, Bð Þxk k ≤ 2M ′ R Re λ, Bð Þx1k k + R Re λ, Bð Þx2k kð Þ
≤ 4MM ′ R Reλ, Bð Þk k · xk k:

ð62Þ

Therefore, we obtain

sup ∥Re λR λ, Bð Þ∥ : Re λ > 0f g ≤ 4MM ′ sup ∥μR μ, Bð Þ∥ : μ > 0f g <∞:

ð63Þ

Thanks to this relation, we conclude by Lemma 3 that
B ∈Aα for any α ∈ ð0, 1Þ. Since A = B + ωI, by Lemma 4, A
also generates analytic α-times resolvent family SαðtÞ. The
positivity of SαðtÞ follows from Theorem 13 since A is resol-
vent positive.

Conversely, if A generates a positive exponentially
bounded α-times resolvent family SαðtÞ satisfying kSαðtÞk
≤Meω0t for all t ≥ 0, by Theorem 13, A is resolvent positive
and by Lemma 2,

λα−1R λα, Að Þ =
ð∞
0
e−λtSα tð Þdt, λ > ω0: ð64Þ

It then follows

λα−1R λα, Að Þ�� �� ≤
M

λ − ω0
, λ > ω0: ð65Þ

Choose ω > sðAÞ such that ω1/α > ω0, then for λ ≥ ω1/α,
we have λα ∈ ρðAÞ with

λαR λα,Að Þk k = λα−1 λ − ω0ð ÞR λα, Að Þ + ω0λ
α−1R λα, Að Þ�� ��

≤M + ω0M
ω1/α − ω0

,

ð66Þ

and thus, (53) follows.

It is remarkable that condition (53) is independent of α

∈ ð0, 1Þ. So, if A ∈Cα
+ for some 0 < α < 1, then A ∈Cβ

+ for
all 0 < β < 1. On the other hand, by the subordination prin-
ciple (Lemma 5(ii)), A ∈Cβ implies that A ∈Aα for all 0 <
α < β ≤ 2. Therefore, from the “positivity” of an exponen-
tially bounded α-times resolvent family with α ∈ ð0, 1Þ, one
can derive its “analyticity.”

Theorem 17. Let α ∈ ð0, 1Þ. If A ∈Cα
+, then A ∈Aβ

+ for all
β ∈ ð0, 1Þ. In particular, A ∈Cα

+ implies A ∈Aα
+.

The next example provides an example of a resolvent
positive operator satisfying (53). By Theorem 15, such opera-
tor can generate α-times resolvent family for every α ∈ ð0, 1Þ;
however, it is not the generator of a C0-semigroup.

Example 7. Let E = C0½0, 1� = f f ∈ C½0, 1�: f ð0Þ = 0g, 0 < θ <
1 and A : DðAÞ⟶ E defined by

Afð Þ xð Þ = −f ′ xð Þ + θ

x
f xð Þ, x ∈ 0, 1ð �,

0, x = 0,

8<
: ð67Þ

with DðAÞ = f f ∈ C1½0, 1�: f ′ð0Þ = f ð0Þ = 0g. Then the fol-
lowing assertions hold:

(i) A is resolvent positive and satisfies

sup μR μ, Að Þk k: μ ≥ 0f g ≤ 1
1 − θ

ð68Þ

(ii) A generates an α-times resolvent family for every
α ∈ ð0, 1Þ but not a C0-semigroup

(iii) A generates a β-times integrated semigroup TβðtÞ
for every β > 0 which is given by

Tβ tð Þf� �
xð Þ =

ðx∧t
0

t − sð Þβ−1
Γ βð Þ xθ x − sð Þ1−θ f x − sð Þds: ð69Þ

The proof of (i) was given in [11]. By Theorem 15, we
obtain that A generates an α-times resolvent family for any
α ∈ ð0, 1Þ. But as showed in [11], A is not a generator of a
C0-semigroup. This is (ii).

Finally, if we define TβðtÞ by (68), it is not hard to show
that TβðtÞ is bounded on E. By a routine calculation, one can
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verify that TβðtÞ is the β-times integrated semigroup gener-
ated by A.

By the theory of fractional powers developed by Martí-
nez and Sanz [40], we are able to show that the fractional
power of a resolvent positive operator is also resolvent
positive.

Proposition 18. Suppose that A is a resolvent positive opera-
tor satisfying ð0,∞Þ ⊂ ρðAÞ and sup fλkRðλ, AÞk: λ > 0g <
∞: Then for 0 < β ≤ 1, the operator −ð−AÞβ is resolvent pos-
itive and

sup λ R λ,− −Að Þβ
� ���� ���: λ > 0

n o
≤ sup λ R λ, Að Þk k: λ > 0f g:

ð70Þ

If in addition DðAÞ is dense, then so is Dð−ð−AÞβÞ and
−ð−AÞβ ∈Aα

+ for all α ∈ ð0, 1Þ.

Proof. By [40] (Proposition 5.3.2), we have the uniform
boundedness of the resolvent of the operator −xð−AÞβ and
the representation of its resolvents:

R λ,− −Að Þβ
� �

= sin βπ

π

ð∞
0

μβ

λ2 + 2λμβ cos βπ + μ2β
R μ, Að Þdμ, λ > 0 ;

ð71Þ

from this formula, one can derive the positivity of Rðλ,−
ð−AÞβÞ from the fact that A is resolvent positive. The last
assertion follows immediately from Theorems 15 and 17.

Remark 19.

(i) From Proposition 18, one immediately has the posi-
tivity of the solution to (44) with positive initial data

(ii) The subordination relations between the fractional
resolvent families generated by A and −ð−AÞβ were
established in [27], while the positivity of the subor-
dination function was discussed in [41]

At the end of this section, we consider the following frac-
tional inhomogeneous equation on E with α ∈ ð0, 1Þ:

Dα
t u tð Þ = Au tð Þ + f tð Þ, t ∈ 0, τð Þ,

u 0ð Þ = x0,
ð72Þ

where x0 ∈ E and f ∈ Cð½0, τÞ, EÞ. Recall that u is a mild solu-
tion of (71) if u ∈ Cð½0, τÞ, EÞ, ðgα ∗ uÞðtÞ ∈DðAÞ for t ∈ ½0,
τÞ and

u tð Þ = x0 + gα ∗ fð Þ tð Þ + A gα ∗ uð Þ tð Þ, t ∈ 0, τ½ Þ: ð73Þ

Proposition 20. Let A be a densely defined resolvent positive
operator satisfying (53), x0 ∈ E and f ∈ Cð½0, τÞ, EÞ.

(i) If uðtÞ is a mild solution of (71), then

u tð Þ = Sα tð Þx0 +
d
dt

gα ∗ Sα ∗ fð Þ tð Þ, t ∈ 0, τð Þ, ð74Þ

where SαðtÞ is the α-times resolvent family generated by A

(ii) If f = f ð0Þ + Ð t
0 f ′ðsÞds with f ′ ∈ L1ð½0, τÞ, EÞ, then

(71) has a unique mild solution

u tð Þ = Sα tð Þx0 + gα ∗ Sαð Þ tð Þf 0ð Þ + gα ∗ Sα ∗ f ′
� �

tð Þ, t ∈ 0, τð Þ:
ð75Þ

If in addition x0, f0 ∈ E+ and f ′ ∈ L1ð½0, τÞ, E+Þ, then
uðtÞ ≥ 0 for all t ∈ ½0, τÞ.

(iii) If f = f ð0Þ + ðg1−α ∗ hÞðtÞ with h ∈ L1ð½0, τÞ, EÞ, then
(71) has a unique mild solution

u tð Þ = Sα tð Þx0 + gα ∗ Sαð Þ tð Þf 0ð Þ + Sα ∗ hð Þ tð Þ, t ∈ 0, τð Þ:
ð76Þ

If in addition x0, f0 ∈ E+ and h ∈ L1ð½0, τÞ, E+Þ, then uðtÞ
≥ 0 for all t ∈ ½0, τÞ.

Proof. Our assumptions imply that A generates a positive α
-times resolvent family SαðtÞ for every α ∈ ð0, 1Þ by Theorem
15. The assertion (i) was proved in [27]. The first half of (ii)
follows from [13] (Proposition 1.2); the second half follows
from the positivity of SαðtÞ, x0, f ð0Þ, and f ′.

Now, we prove (iii). If f = f ð0Þ + ðg1−α ∗ hÞðtÞ and uðtÞ
is a mild solution to (71), we have by (i)

u tð Þ = Sα tð Þx0 +
d
dt

gα ∗ Sα ∗ fð Þ tð Þ = Sα tð Þx0

+ d
dt

g1+α ∗ Sαð Þ tð Þf 0ð Þ + gα ∗ Sα ∗ g1−α ∗ hð Þ tð Þ½ �
= Sα tð Þx0 + gα ∗ Sαð Þ tð Þf 0ð Þ + Sα ∗ hð Þ tð Þ ;

ð77Þ

this is (75). Conversely, if uðtÞ is given by the above formula,
then uðtÞ is continuous by [1] (Proposition 1.3.4), and it is
obvious that ðgα ∗ uÞðtÞ ∈DðAÞ with

A gα ∗ uð Þ tð Þ = A gα ∗ Sαð Þ tð Þx0 + A gα ∗ gα ∗ Sαð Þ tð Þf 0ð Þ
+ A gα ∗ Sα ∗ hð Þ tð Þ = Sα tð Þx0 − x0
+ gα ∗ Sαð Þ tð Þf 0ð Þ − g1+α tð Þf 0ð Þ + Sα ∗ hð Þ tð Þ
− g1 ∗ hð Þ tð Þ = u tð Þ − x0 − g1+α tð Þf 0ð Þ
− g1−α ∗ gα ∗ hð Þ tð Þ = u tð Þ − x0 − gα ∗ fð Þ tð Þ:

ð78Þ

Thus, uðtÞ is a mild solution of (71).

9Journal of Function Spaces



5. Positive Perturbations of Positive Fractional
Resolvent Families

In this section, we consider the positive perturbations of pos-
itive fractional resolvent families. Let us begin with bounded
perturbations. If A ∈Cα for some α ∈ ð1, 2� on a Banach
space and B is a bounded operator, we know by Lemma 4
that A + B ∈Cα. We show in the following result that the
positivity can be preserved if the perturbation is positive.

Theorem 21. Let α ∈ ð1, 2� and A ∈Cα
+. If B is a bounded pos-

itive operator on E, then A + B ∈Cα
+.

Proof. Let SαðtÞ be the α-times resolvent family generated by
A. By Lemma 4, A + B generates an α-times resolvent family
Sαðt ; A + BÞ, and it is given by a modified Dyson-Phillips
series:

Sα t ; A + Bð Þ = 〠
∞

n=0
Sα,n tð Þ, ð79Þ

with Sα,0ðtÞ = SαðtÞ, and

Sα,n tð Þ =
ðt
0
gα−1 ∗ Sαð Þ t − sð ÞBSα,n−1 sð Þds, n = 1, 2,⋯:

ð80Þ

From the above representation formula, one can con-
clude that Sαðt ; A + BÞ ≥ 0 by induction.

For unbounded perturbations, we first consider a pertur-
bation of Miyadera-Voigt-type [42].

Theorem 22. Let α ∈ ð1, 2�. Suppose that A generates a posi-
tive α -times resolvent family SαðtÞ satisfying kSαðtÞk ≤M
eωt , and B : DðAÞ⟶ E is a positive operator. If there are
constants μ > ω and γ ∈ ½0, 1Þ such that

ð∞
0
e−μr B

ðr
0
gα−1 r − sð ÞSα sð Þx ds

����
���� dr ≤ γ xk k, x ∈D Að Þ,

ð81Þ

then A + B ∈Cα
+.

Proof. It follows from [42] (Theorem 3.1) that A + B gener-
ates an α-times resolvent family Sαðt ; A + BÞ. It remains to
show the positivity of Sαðt ; A + BÞ. By Theorem 13, it is
enough to show that

−1ð Þk dk

dλk
λα−1R λα, A + Bð Þ� 

≥ 0, k = 0, 1, 2,⋯, ð82Þ

for λ large enough.
We first show that our assumptions imply kBRðλα, AÞk

≤ γ < 1 for λ ≥ μ. Indeed, since ðωα,∞Þ ⊂ ρðAÞ by Lemma
2, the operator BRðλα, AÞ: E⟶ E is bounded and positive
for λ ≥ μ. For x ∈DðAÞ, using (80), we get

BR λα,Að Þxk k = B
ð∞
0
e−λt gα−1 ∗ Sαð Þ tð Þx dt

����
����

≤
ð∞
0
e−λt B gα−1 ∗ Sαð Þ tð Þxk kdt

≤
ð∞
0
e−μt B gα−1 ∗ Sαð Þ tð Þxk kdt ≤ γ xk k:

ð83Þ

The positivity of SαðtÞ implies that λα−1Rðλα, AÞ is
completely monotonic by Theorem 13. Since Rðλα, AÞ =
λ1−α · λα−1Rðλα, AÞ, by Lemma 8, Rðλα, AÞ is completely
monotonic and so is BRðλα, AÞ since B : DðAÞ⟶ E is pos-
itive. Thus, (81) follows from Lemma 8, the identity

λα−1R λα,A + Bð Þ = λα−1R λα, Að Þ I − BR λα, Að Þð Þ−1

= λα−1R λα, Að Þ〠
∞

n=0
BR λα, Að Þð Þn,

ð84Þ

the complete monotonicity of λα−1Rðλα, AÞ and Rðλα, AÞ, and
the absolute convergence of the series∑∞

n=0ðBRðλα, AÞÞn since
kBRðλα, AÞk < 1 for λ ≥ μ.

Next, we consider the relative bounded perturbations.
The following lemma is needed.

Lemma 23 (see [11]). Let A be a resolvent positive operator
and B : DðAÞ⟶ E a positive operator. If rðBðRðλ, AÞÞ < 1
for some λ > sðAÞ, then A + B with domain DðAÞ is a resol-
vent positive operator and sðA + BÞ < λ. Moreover, if
sup fkμRðμ, AÞk: μ ≥ λg <∞, then also sup fkμRðμ, A + BÞ
k: μ ≥ λg <∞.

Theorem 24. Let α ∈ ð0, 2Þ. Suppose that A ∈Cα
+, B : DðBÞ

⟶ E is a positive and closed linear operator such that DðBÞ
⊃DðAÞ and there are constants a, b ≥ 0 such that

Bxk k ≤ a Axk k + b xk k, x ∈D Að Þ: ð85Þ

If any of the following conditions is satisfied:

(i) If α ∈ ð0, 1Þ
(ii) If α ∈ ½1, 2Þ and SαðtÞ is analytic
then there exists δ > 0, such that if 0 ≤ a ≤ δ, then A + B

∈Aα
+.

Proof. Since A ∈Cα
+, it follows from Theorem 15 and its

proof that there exists ω > 0 such that

M ≔ sup λR λ, Að Þ: λ ≥ ωf g <∞: ð86Þ
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By (84), for x ∈ X and λ > ω,

BR λ, Að Þxk k ≤ a AR λ, Að Þxk k + b R λ, Að Þxk k
= a λR λ, Að Þx − xk k + b R λ, Að Þxk k
≤ a M + 1ð Þ xk k + bM

λ
xk k:

ð87Þ

If we choose 0 < δ1 < 1/ð1 +MÞ, then kBRðλ, AÞk < 1
when λ ≥ ω1 for some ω1 ≥ ω.

Now, suppose that α ∈ ð0, 1Þ. Using Lemma 23, we also
have

sup λR λ, A + Bð Þ: λ ≥ ω1f g <∞: ð88Þ

Applying Theorem 15 to the operator A + B, we obtain
that A + B ∈Cα

+, which implies that A + B ∈Aα
+ by Theo-

rem 17.
If (ii) holds, then SαðtÞ is analytic. By Lemma 4, there is

some δ2 > 0 such that if 0 ≤ a ≤ δ2, then A + B ∈Aα. Choose
δ =min fδ1, δ2g, then when 0 ≤ a ≤ δ2, A + B ∈Aα and kB
Rðλ, AÞk < 1 when λ ≥ ω1. The positivity can be proved as
in the proof of Theorem 22.

Remark 25.

(i) (84) can be replaced by the following condition: the
operator B is closed with DðBÞ ⊃DðAÞ and

Bxk k ≤ a Axk k + b xk k, x ∈ K , ð89Þ

where K is a core of the generator A, i.e., �fðx, AxÞ ; x ∈ Kg
= fðx, AxÞ ; x ∈DðAÞg. In fact, for any x ∈DðAÞ, there exists
a sequence of elements fxng ∈ K, such that ðxn,AxnÞ⟶ ðx
, AxÞ, n⟶∞. Thus, xn ⟶ x and Axn ⟶ Ax. Since both
fxng and fAxng are Cauchy sequences, by (88), fBxng is also
a Cauchy sequence. By the closedness of B, Bxn ⟶ Bx. For
any xn ∈ K, we have by (88) that kBxnk ≤ akAxnk + bkxnk.
By letting n⟶∞, one gets (84) for every x ∈DðAÞ

(ii) It is known that if A is closed and B satisfies (84)
with a < 1, then ðA + B,DðAÞÞ is a closed operator
[2] (Ch. III, Lemma 2.4)

(iii) Assume that A ∈Cα
+ for some α ∈ ð0, 1Þ and B : D

ðAÞ⟶ E is a positive operator. If for any ε > 0,
there exists bε > 0 such that

Bxk k ≤ ε Axk k + bε xk k, ∀x ∈D Að Þ ð90Þ

Then, it follows from Theorems 15 and 17 that A + B ∈
Aα

+.
We end this paper with two examples related to Schrö-

dinger operators [43, 44] to illustrate our perturbation
theory.

Example 8. Let E = L1ðℝNÞ. Consider the following frac-
tional Schrödinger equation:

Dα
t u t, xð Þ = Δu t, xð Þ +V xð Þu t, xð Þ, t > 0, x ∈ℝN ,

u 0, xð Þ = u0 xð Þ,
ð91Þ

where Δ is the Laplacian and V is a potential function such
that VðxÞ ≥ 0. Let A be the closure of the Laplacian Δ defined
on C∞

0 ðℝNÞ. As a perturbation, we choose

Bf xð Þ≔ V xð Þf xð Þ for f ∈D Bð Þ≔ f ∈ E : V ·ð Þf ·ð Þ ∈ Ef g:
ð92Þ

It is clear that B is positive and closed on E. Moreover,
we assume that the potential function V ∈ KN , the Kato
class, that is,

lim
δ⟶0

sup
x∈ℝN

ð
x−yj j≤δ

x − yj j2−N V yð Þj jdy = 0, N ≥ 3,

lim
δ⟶0

sup
x∈ℝ2

ð
x−yj j≤δ

ln x − yj j−1� �
V yð Þj jdy = 0, N = 2,

sup
x∈ℝ

ð
x−yj j≤1

V yð Þj jdy <∞, N = 1:

ð93Þ

It was proved in [43] (Theorem 4.14) that for every ε > 0,
there exists CðεÞ > 0 such that

Vfk k1 ≤ ε Δfk k1 + C εð Þ fk k1, ∀f ∈D Að Þ, ð94Þ

if and only if V ∈ KN . By applying our Theorem 24, we con-
clude that if V ∈ KN , then A + B = Δ +V ∈Aα

+ for α ∈ ð0, 1Þ
on E. Therefore, for u0ðxÞ ≥ 0, there is a positive mild solu-
tion in E = L1ðℝNÞ to the fractional Schrödinger equation
(90) if α ∈ ð0, 1Þ.

This is also true if E = LpðℝNÞ for 1 < p <∞, since the
Schrödinger operator Δ + V also generates C0-semigroup
on LpðℝNÞ.

Next, we consider the positive solution for (90) in the
case of 1 < α < 2. By the analysis in Example 5, this is possi-
ble only if N = 1. Since the Laplacian Δ generates a cosine
operator function,

C tð Þuð Þ xð Þ = u x + tð Þ + u x − tð Þ
2 , ð95Þ

on E = L1ðℝÞ, Δ ∈Cα
+ for 0 < α < 2 by the subordination

principle. Provided the potential function V ≥ 0 and V ∈
K1, then it follows from (93) and Theorem 24 that Δ +V
∈Aα

+.

Remark 26. By using the higher-order Kato class Kβ intro-
duced by Davies and Hinz [45], similar results can be
obtained for the fractional Laplacian operator with positive
potentials in K2βð0 < β < 1Þ:
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Dα
t u t, xð Þ = − −Δð Þβu t, xð Þ +V xð Þu t, xð Þ, t > 0, x ∈ℝN ,
u 0, xð Þ = u0 xð Þ:

ð96Þ

While the higher-order Kato class K2β is defined by

Kβ ≔ V : lim
δ⟶0

sup
x∈ℝN

ð
x−yj j≤δ

x − yj j2β−N V yð Þj jdy = 0
( )

, ð97Þ

when 0 < 2β <N . Proposition 18 provides one way to show
−ð−ΔÞβ ∈Aα

+ for α ∈ ð0, 1Þ. To apply our perturbation the-
ory, we can use the following fact from [46]: V ∈ K2β if
and only if for every ε > 0 there exists CðεÞ > 0 such that

Vfk k1 ≤ ε −Δð Þβ f
��� ���

1
+ C εð Þ fk k1, ∀f ∈D −Δð Þβ

� �
: ð98Þ

It is known [43] that for N ≥ 2,

V : sup
x∈ℝN

ð
x−yj j≤1

V yð Þj jpdy<∞
( )

⊂ KN ⊂

� V : sup
x∈ℝN

ð
x−yj j≤1

V yð Þj jdy<∞
( )

,
ð99Þ

if p >N/2. And if VðxÞ = f ðjxjÞ is a spherically symmetric
function when N ≥ 3, then V ∈ KN if and only if

sup
xj j≥2

ð
x−yj j≤1

f yð Þj j dy <∞,

ð1
0
r f rð Þj j dr <∞:

ð100Þ

For examples, the solution for (90) is positivity-preserving
if the potential V is of the following form:

(i) jxj−a with 0 ≤ a < 2 if N ≥ 3, in particular the
Coulomb potential jxj−1 when N = 3

(ii) jxj−2jlog jxjj−b with b > 1 if N ≥ 3
(iii) ∑i<j1/jxi − xjj on ℝ3N with xi ∈ℝ3 for i = 1,⋯,N ,

the N-body Hamiltonian

At the borderline LN/2⊄KN , however, by using the Sobo-
lev estimates, we can obtain the positivity-preserving of (90)
with potentials in LN/2.

Example 9. We assume E = LpðℝNÞ, 3 ≤N ∈ℤ+, 1 ≤ p <N/2
and α ∈ ð0, 1Þ. Let A and B be defined as in Example 8 with
V ∈ LN/2ðℝNÞ and VðxÞ ≥ 0 for all x ∈ℝN . We will show that
B satisfies (89). Let Vn be the truncation of V :

Vn xð Þ =
V xð Þ, if V xð Þj j ≤ n,
0, otherwise:

(
ð101Þ

By Hölder’s inequality, we have for every f ∈ C∞
0 ðℝNÞ,

Vfk kp ≤ V − Vnð Þfk kp + Vnfk kp ≤ V − Vnk kN/2 fk kr + Vnk k∞ fk kp,
ð102Þ

where 2/N + 1/r = 1/p and p < r; furthermore, by Sobolev’s
inequality,

fk kr ≤ C Δfk kp, ∀f ∈ C∞
0 ℝN� �

: ð103Þ

Thus, we obtain

Vfk kp ≤ C V − Vnk kN/2 Δfk kp + Vnk k∞ fk kp, ∀f ∈ C∞
0 ℝN� �

:

ð104Þ

Taking n large enough, one gets (89). Thus, A + B ∈Aα
+.
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