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We study the existence of solutions for a newly configured model of a double-order integrodifferential equation including φ-Caputo
double-order φ-integral boundary conditions. In this way, we use the Krasnoselskii and Leray-Schauder fixed point results. Also, we
invoke the Banach contraction principle to confirm the uniqueness of the existing solutions. Finally, we provide three examples to
illustrate our analytical findings.

1. Introduction

An arbitrary order calculus, specifically the fractional order
calculus, has been one of the most important subbranches
of mathematics in other existing computational and applied
sciences. This amount of applicability is for the sake of the
high ability of the relations and operators formulated in the
mentioned theory. For this reason, most researchers have uti-
lized numerous applied fractional operators in the past years
to model various forms of natural processes that occurred in
the world. The applicability and diversity of mentioned frac-
tional operators in modeling can be observed in many litera-
tures including [1–16]. In addition, since by making the
model on the basis of fractional operators, we obtain more
accurate computational results than existing usual models
on the basis of integer order operators; thus, this subject
motivates all researchers to construct new generalizations of
these fractional operators. In other words, some generalized
formulations of these operators have been defined to com-

bine the previous operators effectively to avoid confusion
when using existing fractional operators (see [17–20]).

In 2017, an extension of the usual Caputo operator enti-
tled φ-Caputo derivative (φ-CapFr) is introduced by Almeida
([21]) in which the kernel of mentioned operator depends on
an increasing function φ. The most applied advantage of the
φ-CapFr derivative is its flexibility to combine all fractional
derivatives introduced before. This extended operator pos-
sesses the semigroup property which is vital to obtain the
structure of solutions. Hence, φ-CapFr derivative is regarded
as a generalized construction of arbitrary order derivatives.
By invoking the newly defined φ-CapFr operator and its
other generalizations, several limited studies have been done
which we refer the reader to those including [22–27].

To review several previous research notes implemented
in terms of φ-CapFr operators, we point out a study discussed
by Belmor et al. ([28]). In the mentioned article, the authors
configured a φ-fractional differential inclusion endowed with
φ-integral conditions as
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CD
σ∗ ;φ
0+ ϖ∗ zð Þ ∈ ~P z, ϖ∗ zð Þð Þ,

ϖ∗ 0ð Þ − ρ∗φϖ
∗ 0ð Þ =m∗RL

1 I
ζ1;φ
0+
eℏ1∗ c1, ϖ∗ c1ð Þð Þ,

ϖ∗ kð Þ − ρ∗φϖ
∗ kð Þ =m∗RL

2 I
ζ2;φ
0+
eℏ2∗ c2, ϖ∗ c2ð Þð Þ,

8>>>><>>>>:
ð1Þ

where z ∈ ½0, k�, σ∗ ∈ ð1, 2Þ, c1, c2 ∈ ½0, k�, andm∗
1 ,m∗

2 are cho-
sen as arbitrary constants and ~P : ½0, k� ×ℝ→P ðℝÞ intro-
duces a multifunction and eℏ1∗, eℏ2∗ : ½0, k� ×ℝ→ℝ are
continuous along with ρ∗φ = ð1/φ′ðzÞÞðd/dzÞ. The authors
deduced the required criteria for the existence by the aid of
an endpoint concept on the category of the ψ-weak contrac-
tions ([28]).

In the same year, Wahash et al. ([29]) turned to a struc-
ture involving the generalized φ-Caputo equation subject to
integral conditions as

CD
σ∗ ;φ
0+ ϖ∗ zð Þ = eℏ∗ z, ϖ∗ zð Þð Þ,

ϖ∗ 0ð Þ =m∗
ð1
0
ξ qð Þu qð Þ dq + ν, respectively:

8><>: ð2Þ

where z ∈ ½0, 1�, σ∗ ∈ ð0, 1Þ, m∗ ≥ 0, and ν ∈ℝ+, and fur-
ther, ℏ∗ : ½0, 1� ×ℝ+ →ℝ+ illustrates a continuous func-
tion along with ξ ∈ L1ℝ+

ð½0, 1�Þ. The upper-lower solution
is the method utilized in this work by authors in which
the authors invoke a fixed point result on cones. In addi-
tion to this, an upper-lower control maps are built with
respect to the nonlinear term without a specific mono-
tone condition ([29]).

We can find many works in the literature for describ-
ing different phenomena or physical meanings of fractional
integrodifferential equations. But, some generalizations of
fractional notions have no physical meaning at this time
and maybe it will find some new physical interpretations
for those in the future. Our results satisfy this second
version. There are many works which apply different frac-
tional derivatives such as Caputo-Fabrizio (see for exam-
ple, [4, 30–33]) and discuss different views on applied
mathematical modelings (see for example, [34–39]).

Inspired by the above-implemented works, we intend
to formulate and generalize a new category of the nonlin-
ear fractional double-order integrodifferential equation in
the generalized fractional φ-operators settings given by

furnished with double-order integral boundary conditions in
the φ-Riemann-Liouville frame

so that z ∈ ½s0, T� with s0 ≥ 0 and T ∈ℝ+. Moreover, let σ∗,
ρ∗ ∈ ð1, 2Þ so that σ∗ − ρ∗ > 1 and δ∗1 , δ∗2 ∈ ð0, 1Þ, θ∗1 , θ∗2 > 0,
m∗

1 ,m∗
2 ∈ ð0, 1�, and p1, p2 ∈ℝ+. Both real-valued functions

ĥ∗, f̂ ∗ : ½s0, T� ×ℝ→ℝ are supposed to be continuous. The
notation CDη;φ

s0
represents the φ-Caputo derivative (φ-CapFr

derivative) of arbitrary order η ∈ fσ∗, ρ∗g, and RLI ρ;φ
s0

illus-

trates the φ-Riemann-Liouville integral (φ-RLFr integral) of
arbitrary order ρ ∈ fδ∗1 , δ∗2 , θ∗1 , θ∗2g.

It is necessary that all researchers pay attention to this
subject that the proposed double-order double-φ-CapFr-
integrodifferential equation has a novel and unique structure.
In other words, the formulated structure for the given frac-
tional double-φ-CapFr-integrodifferential problem (3)-(4)

includes two φ-CapFr-derivatives and also four φ-RLFr-inte-
grals with different orders. This combined boundary value
problem (BoVaPr) covers many different special cases of var-
ious nonlinear integrodifferential equations. Therefore, we
emphasize that this kind of the nonlinear double-φ-CapFr-
integro-differential BoVaPr has not been investigated in
any literature so far. In this direction, we apply well-known
analytical techniques to derive desired criteria which guaran-
tee the existence aspects of desired solutions for the proposed
double-order φ-CapFr-integrodifferential BoVaPr (3)-(4).

The organization of the contents of the current manu-
script is as follows. In the next section, some required notions
in the context of the generalized φ-calculus are assembled.
Section 3 is devoted to establish the main theorems in which

m∗
1
C
Dσ∗ ;φ

s0
+ 1 −m∗

1ð ÞCDρ∗ ;φ
s0

h i
ϖ∗ zð Þ = p1

ðz
s0

φ′ qð Þ φ zð Þ − φ qð Þð Þδ∗1−1
Γ δ∗1ð Þ ĥ∗ q, ϖ∗ qð Þð Þdq + p2

ðz
s0

φ′ qð Þ φ zð Þ − φ qð Þð Þδ∗2−1
Γ δ∗2ð Þ f̂ ∗ q, ϖ∗ qð Þð Þdq,

(
ð3Þ

ϖ∗ s0ð Þ = 0,

m∗
2

ðT
s0

φ′ qð Þ φ Tð Þ − φ qð Þð Þθ∗1−1
Γ θ∗1ð Þ ϖ∗ qð Þ dq + 1 −m∗

2ð Þ
ðT
s0

φ′ qð Þ φ Tð Þ − φ qð Þð Þθ∗2−1
Γ θ∗2ð Þ ϖ∗ qð Þ dq = 0,

8><>: ð4Þ
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the existence criteria can be obtained under some required
conditions. In Section 4, we present three simulative exam-
ples to confirm the validity of our analytical findings.

2. Fundamental Preliminaries

In the current section, we collect and review some fundamen-
tal and auxiliary notions in the framework of our analytical
methods applied in this paper. As you know, the concept of
the Riemann-Liouville integral of order σ∗ > 0 for a function
ϖ∗ : ½0,+∞Þ→ℝ is defined as

RLI σ∗

0 ϖ∗ zð Þ =
ðz
0

z − qð Þσ∗−1
Γ σ∗ð Þ ϖ∗ qð Þ dq, ð5Þ

provided that the value of the integral is finite [40, 41]. In this
position, let us assume that σ∗ ∈ ðn − 1, nÞ so that n = 1 + ½σ∗�.
For a continuous function ϖ∗ : ½0,+∞Þ→ℝ, the Riemann-
Liouville derivative of order ρ∗ is given by

RLDσ∗

0 ϖ∗ zð Þ = d
dz

� �nðz
0

z − qð Þn−σ∗−1
Γ n − σ∗ð Þ ϖ∗ qð Þdq, ð6Þ

provided that the value of the integral is finite [40, 41]. In the

next step, for an absolutely continuous function ϖ∗ ∈AC
ðnÞ
ℝ

ð½0,+∞ÞÞ, the fractional derivative of Caputo type is given by

CDσ∗

0 ϖ∗ zð Þ =
ðz
0

z − qð Þn−σ∗−1
Γ n − σ∗ð Þ ϖ∗ nð Þ

qð Þdq, ð7Þ

provided that the integral is finite-valued [40, 41].

Definition 1 ([41–43]). Let φ ∈Cnð½s0, b�,ℝÞ be an increas-
ing function so that φ′ðzÞ > 0 for any z ∈ ½s0, b�. Then, the
φ-Riemann-Liouville integral of order σ∗ for an integrable
function ϖ∗ : ½s0, b�→ℝ with respect to another increasing
function φ is defined as

RLI σ∗ ;φ
s0

ϖ∗ zð Þ = 1
Γ σ∗ð Þ

ðz
s0

φ′ qð Þ φ zð Þ − φ qð Þð Þσ∗−1ϖ∗ qð Þdq,

ð8Þ
provided that the R.H.S. of above equality is finite-valued.

It is to be noted that if φðzÞ = z and s0 = 0, then clearly the
φ-RLFr integral (8) reduces to the standard Riemann-
Liouville integral (5).

Definition 2 ([41–43]). For φ ∈Cnð½s0, b�,ℝÞ as above and for
a continuous function ϖ∗ : ½s0,+∞Þ→ℝ, the φ-Riemann-
Liouville derivative of order σ∗ is given by

RLDσ∗ ;φ
s0

ϖ∗ zð Þ = 1
Γ n − σ∗ð Þ

1
φ′ zð Þ

d
dz

 !nðz
s0

φ′ qð Þ

� φ zð Þ − φ qð Þð Þn−σ∗−1ϖ∗ qð Þdq,
ð9Þ

provided that the R.H.S. of the above equality is finite-valued
and n = 1 + ½σ∗�.

In a manner, if φðzÞ = z and s0 = 0, then it is obvious that
the φ-RLFr derivative (9) reduces to the standard Riemann-
Liouville derivative (6). Inspired by these operators, Almeida
presented a new φ-version of the Caputo derivative as the fol-
lowing formulation.

Definition 3 ([21]). For ϖ∗ ∈Cnð½s0, b�Þ, φ-version of the
Caputo derivative is illustrated as

CDσ∗ ;φ
s0

ϖ∗ zð Þ = 1
Γ n − σ∗ð Þ

ðz
s0

φ′ qð Þ φ zð Þð

− φ qð ÞÞn−σ∗−1 1
φ′ qð Þ

d
dq

 !n

ϖ∗ qð Þ dq,
ð10Þ

provided that the R.H.S. of the above equality is finite-valued
and n = 1 + ½σ∗�.

It is notable that if φðzÞ = z, then it is obvious that the
φ-CapFr derivative (10) reduces to the standard Caputo
derivative (7). In the following, some important properties
of the φ-Caputo and φ-Riemann-Liouville fractional oper-
ators can be seen in the following lemmas.

Lemma 4 ([21, 41–43]). Assume that σ∗ > 0, ρ∗ > 0, and β∗

> 0, and φ ∈Cnð½s0, b�,ℝÞ is an increasing function so that
φ′ðzÞ > 0 for any z ∈ ½s0, b�. Then, the following statements
hold:

(i1) RLI σ∗ ;φ
s0

ðRLI ρ∗ ;φ
s0

ϖ∗ÞðzÞ = ðRLI σ∗+ρ∗ ;φ
s0

ϖ∗ÞðzÞ

(i2) RLI σ∗ ;φ
s0

ðφðzÞ − φðs0ÞÞβ
∗ðyÞ = ððΓðβ∗ + 1ÞÞ/ðΓðσ∗

+ β∗ + 1ÞÞÞðφðyÞ − φðs0ÞÞσ
∗+β∗

(i3) CDσ∗ ;φ
s0

ðφðzÞ − φðs0ÞÞβ
∗ðyÞ = ððΓðβ∗ + 1ÞÞ/ðΓðβ∗ −

σ∗ + 1ÞÞÞðφðyÞ − φðs0ÞÞβ
∗−σ∗ , ðβ∗>−1Þ

(i4) RLDσ∗ ;φ
s0

ðRLI ρ∗ ;φ
s0

ϖ∗ÞðzÞ = ðRLI ρ∗−σ∗ ;φ
s0

ϖ∗ÞðzÞ,
ðσ∗ < ρ∗Þ

For instance, in Figures 1 and 2, we plot the graphs
of the φ-CapFr derivative of two arbitrary functions ϖ
ðzÞ = z6 and ϖðzÞ = z5/32 for φðzÞ = z2 + 1 and φðzÞ = z/
2, respectively.

Lemma 5 ([21]). Let n − 1 < σ∗ < n and φ ∈Cnð½s0, b�,ℝÞ be
an increasing function so that φ′ðzÞ > 0 for any z ∈ ½a, b�.
Then, for every ϖ∗ ∈Cn−1ð½s0, b�,ℝÞ, we have

RLI σ∗ ;φ
s0

CDσ∗ ;φ
s0

ϖ∗
� �

zð Þ

= ϖ∗ zð Þ − 〠
n−1

j=0

ρφ

� �j
ϖ∗ s0ð Þ
j!

φ zð Þ − φ s0ð Þð Þ j, ρφ =
1

φ′ zð Þ
d
dz

 !
:

ð11Þ
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In view of the above lemma, it is verified that the general
solution of the homogeneous equation ðCDσ∗ ;φ

s0
ϖ∗ÞðzÞ = 0 is

given by

ϖ∗ zð Þ = 〠
n−1

j=0
c∗j φ zð Þ − φ s0ð Þð Þj = c∗0 + c∗1 φ zð Þ − φ s0ð Þð Þ

+ c∗2 φ zð Þ − φ s0ð Þð Þ2+⋯+c∗n−1 φ zð Þ − φ s0ð Þð Þn−1,
ð12Þ

where n − 1 < σ∗ < n and c∗0 , c∗1 ,⋯, c∗n−1 ∈ℝ ([21]). Both next
theorems required analytical tools to derive the desired
criteria in the direction of our goals. The first theorem is
attributed to Krasnosel’skii and the second one is due to
Leray-Schauder.

Theorem 6 [44]. The setB∗ is assumed to be a nonempty, con-
vex, bounded, and closed subset of a given Banach spaceE. Let
ĥ∗, f̂ ∗ : B∗ →E be so that ĥ∗ω + f̂ ∗ν ∈ B

∗ for any ω, ν ∈ B∗,
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Figure 1: The CapFr-derivative of ϖðzÞ = z6 for φðzÞ = z2 + 1:
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Figure 2: The CapFr-derivative of ϖðzÞ = z5/32 for φðzÞ = z/2:
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where ĥ∗ is regarded as a compact and continuous mapping
and f̂ ∗ a contraction. Then, an element υ ∈ B∗ exists so that
υ = ĥ∗υ + f̂ ∗υ.

Theorem 7 [45]. Assume that B∗ is a subset of a Banach space
E with convexity and closeness property andG is an open sub-
set of B∗ such that 0 ∈G. Then, a compact continuous func-
tion Â∗ : �G→B∗ possesses a fixed point in �G or there is a
g ∈ ∂G and 0 < σ < 1 such that g = σÂ∗ðgÞ, where ∂G stands
for the boundary of G in B∗.

3. Main Analytical Results

Suppose that E =Cð½s0, T�,ℝÞ stands for the collection of all
functions given on ½s0, T�with continuity property. In this case,
one can simply verify that E is a Banach space together with

ϖ∗k k = sup
z∈ s0,T½ �

ϖ∗ zð Þj j, ϖ∗ ∈E: ð13Þ

We start with the next lemma which will be required in the
subsequent sections.

Lemma 8. Take h∗ ∈Cð½s0, T�,ℝÞ and

Y ≔
m∗

2 φ Tð Þ − φ s0ð Þð Þ1+θ∗1
Γ 2 + θ∗1ð Þ + 1 −m∗

2ð Þ φ Tð Þ − φ s0ð Þð Þ1+θ∗2
Γ 2 + θ∗2ð Þ ≠ 0:

ð14Þ
Then, ϖ∗ satisfies the nonlinear double-order differential

boundary problem of the fractional type

m∗
1
C
Dσ∗;φ

s0
+ 1 −m∗

1ð ÞCDρ∗ ;φ
s0

� �
ϖ∗ zð Þ = h∗ zð Þ,

ϖ∗ s0ð Þ = 0,m∗
2
RL

I θ∗1 ;φ
s0

ϖ∗ Tð Þ + 1 −m∗
2ð ÞRL

I θ∗2 ;φ
s0

ϖ∗ Tð Þ = 0,

8<:
ð15Þ

iff ϖ∗ satisfies the fractional nonlinear double-order integral
equation

ϖ∗ zð Þ = m∗
1 − 1

m∗
1Γ σ∗ − ρ∗ð Þ

ðz
s0

φ′ qð Þ φ zð Þ − φ qð Þð Þσ∗−ρ∗−1ϖ∗ qð Þ dq

+ 1
m∗

1Γ σ∗ð Þ
ðz
s0

φ′ qð Þ φ zð Þ − φ qð Þð Þσ∗−1h∗ qð Þ dq

+ φ zð Þ − φ s0ð Þ
Y

"
−

m∗
2 m∗

1 − 1ð Þ
m∗

1Γ σ∗ − ρ∗ + θ∗1ð Þ
ðT
s0

φ′ qð Þ

� φ Tð Þ − φ qð Þð Þσ∗−ρ∗+θ∗1−1ϖ∗ qð Þ dq − m∗
2

m∗
1Γ σ∗ + θ∗1ð Þ

�
ðT
s0

φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+θ∗1−1h∗ qð Þdq − 1 −m∗
2ð Þ m∗

1 − 1ð Þ
m∗

1Γ σ∗ − ρ∗ + θ∗2ð Þ

�
ðT
s0

φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗−ρ∗+θ∗2−1ϖ∗ qð Þ dq − 1 −m∗
2ð Þ

m∗
1Γ σ∗ + θ∗2ð Þ

�
ðT
s0

φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+θ∗2−1h∗ qð Þdq
#
:

ð16Þ

Proof. To start the proof, assume that ϖ∗ satisfies the nonlin-
ear double-order differential equation (15). We have

CDσ∗ ;φ
s0

ϖ∗ zð Þ = m∗
1 − 1ð Þ
m∗

1

C

Dρ∗ ;φ
s0

ϖ∗ zð Þ + 1
m∗

1
h∗ zð Þ: ð17Þ

By fractional integrating in the Riemann-Liouville setting
of order σ∗, we get

ϖ∗ zð Þ = m∗
1 − 1ð Þ
m∗

1

RL

I σ∗ ;φ
s0

C
Dρ∗ ;φ

s0
ϖ∗ zð Þ

+ 1
m∗

1

RL

I σ∗ ;φ
s0

h∗ zð Þ + c∗0 + c∗1 φ zð Þ − φ s0ð Þð Þ

= m∗
1 − 1

m∗
1Γ σ∗ − ρ∗ð Þ

ðz
s0

φ′ qð Þ φ zð Þ − φ qð Þð Þσ∗−ρ∗−1ϖ∗ qð Þ dq

+ 1
m∗

1Γ σ∗ð Þ
ðz
s0

φ′ qð Þ φ zð Þ − φ qð Þð Þσ∗−1h∗ qð Þ dq

+ c∗0 + c∗1 φ zð Þ − φ s0ð Þð Þ,
ð18Þ

where c∗0 , c∗1 ∈ℝ are arbitrary constants. By using the first
boundary condition, we get c∗0 = 0 and so

ϖ∗ zð Þ = m∗
1 − 1

m∗
1Γ σ∗ − ρ∗ð Þ

ðz
s0

φ′ qð Þ φ zð Þ − φ qð Þð Þσ∗−ρ∗−1ϖ∗ qð Þ dq

+ 1
m∗

1Γ σ∗ð Þ
ðz
s0

φ′ qð Þ φ zð Þ − φ qð Þð Þσ∗−1h∗ qð Þ dq

+ c1 φ zð Þ − φ s0ð Þð Þ:
ð19Þ

On the other hand, if we take η∗ ∈ fθ∗1 , θ∗2g, then we have

RLI η∗ ;φ
s0

ϖ∗ zð Þ = m∗
1 − 1

m∗
1Γ σ∗ − ρ∗ + η∗ð Þ

ðz
s0

φ′ qð Þ

� φ zð Þ − φ qð Þð Þσ∗−ρ∗+η∗−1ϖ∗ qð Þ dq
+ 1
m∗

1Γ σ∗ + η∗ð Þ
ðz
s0

φ′ qð Þ

� φ zð Þ − φ qð Þð Þσ∗+η∗−1h∗ qð Þ dq
+ c1

1
Γ 2 + η∗ð Þ φ zð Þ − φ s0ð Þð Þη∗+1:

ð20Þ

Now, by utilizing the second condition, we have

0 = m∗
2 m∗

1 − 1ð Þ
m∗

1Γ σ∗ − ρ∗ + θ∗1ð Þ
ðT
s0

φ′ qð Þ φ Tð Þ − φ s0ð Þð Þσ∗−ρ∗+θ∗1−1ϖ∗ qð Þ dq

+ m∗
2

m∗
1Γ σ∗ + θ∗1ð Þ

ðT
s0

φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+θ∗1−1h∗ qð Þdq

+ c1
m∗

2
Γ 2 + θ∗1ð Þ φ Tð Þ − φ s0ð Þð Þ1+θ∗1 + 1 −m∗

2ð Þ m∗
1 − 1ð Þ

m∗
1Γ σ∗ − ρ∗ + θ∗2ð Þ
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�
ðT
s0

φ′ qð Þ φ Tð Þ − φ s0ð Þð Þσ∗−ρ∗+θ∗2−1ϖ∗ qð Þ dq + 1 −m∗
2ð Þ

m∗
1Γ σ∗ + θ∗2ð Þ

�
ðT
s0

φ′ qð Þ φ Tð Þ − φ s0ð Þð Þσ∗+θ∗2−1h∗ qð Þdq

+ c1
1 −m∗

2ð Þ
Γ 2 + θ∗2ð Þ φ Tð Þ − φ s0ð Þð Þ1+θ∗2 : ð21Þ

By solving the above equation with respect to c1, we get

c∗1 =
1
Y

"
−

m∗
2 m∗

1 − 1ð Þ
m∗

1Γ σ∗ − ρ∗ + θ∗1ð Þ
ðT
s0

φ′ qð Þ

� φ Tð Þ − φ qð Þð Þσ∗−ρ∗+θ∗1−1ϖ∗ qð Þ dq

−
m∗

2
m∗

1Γ σ∗ + θ∗1ð Þ
ðT
s0

φ′ qð Þ

� φ Tð Þ − φ qð Þð Þσ∗+θ∗1−1h∗ qð Þdq

−
1 −m∗

2ð Þ m∗
1 − 1ð Þ

m∗
1Γ σ∗ − ρ∗ + θ∗2ð Þ

ðT
s0

φ′ qð Þ

� φ Tð Þ − φ qð Þð Þσ∗−ρ∗+θ∗2−1ϖ∗ qð Þ dq

−
1 −m∗

2ð Þ
m∗

1Γ σ∗ + θ∗2ð Þ
ðT
s0

φ′ qð Þ

� φ Tð Þ − φ qð Þð Þσ∗+θ∗2−1h∗ qð Þdq
#
,

ð22Þ

where Y is illustrated in (14). Inserting the obtained value for
c∗1 into (19), we obtain the double-order integral equation
illustrated by (16). On the other hand, clearly, ϖ∗ satisfies
the nonlinear fractional double-order differential equation
(15) whenever it satisfies the double-order integral equation
(16) and this ends the proof.

Keeping in view of the nonlinear double-integrodifferential
problem (3) and (4) and by Lemma 8, we introduce a single-
valued operator Q : E→E as

Qϖ∗ zð Þ = m∗
1 − 1

m∗
1Γ σ∗ − ρ∗ð Þ

ðz
s0

φ′ qð Þ

� φ zð Þ − φ qð Þð Þσ∗−ρ∗−1ϖ∗ qð Þ dq
+ p1
m∗

1Γ σ∗ + δ∗1ð Þ
ðz
s0

φ′ qð Þ

� φ zð Þ − φ qð Þð Þσ∗+δ∗1−1ĥ∗ q, ϖ∗ qð Þð Þ dq
+ p2
m∗

1Γ σ∗ + δ∗2ð Þ
ðz
s0

φ′ qð Þ

� φ zð Þ − φ qð Þð Þσ∗+δ∗2−1 f̂ ∗ q, ϖ∗ qð Þð Þ dq

+ φ zð Þ − φ s0ð Þ
Y

"
−

m∗
2 m∗

1 − 1ð Þ
m∗

1Γ σ∗ − ρ∗ + θ∗1ð Þ
ðT
s0

φ′ qð Þ

� φ Tð Þ − φ qð Þð Þσ∗−ρ∗+θ∗1−1ϖ∗ qð Þ dq

−
p1m

∗
2

m∗
1Γ σ∗ + θ∗1 + δ∗1ð Þ

ðT
s0

φ′ qð Þ

� φ Tð Þ − φ qð Þð Þσ∗+θ∗1 +δ∗1−1ĥ∗ q, ϖ∗ qð Þð Þdq

−
p2m

∗
2

m∗
1Γ σ∗ + θ∗1 + δ∗2ð Þ

ðT
s0

φ′ qð Þ

� φ Tð Þ − φ qð Þð Þσ∗+θ∗1 +δ∗2−1 f̂ ∗ q, ϖ∗ qð Þð Þdq

−
1 −m∗

2ð Þ m∗
1 − 1ð Þ

m∗
1Γ σ∗ − ρ∗ + θ∗2ð Þ

ðT
s0

φ′ qð Þ

� φ Tð Þ − φ qð Þð Þσ∗−ρ∗+θ∗2−1ϖ∗ qð Þ dq

−
p1 1 −m∗

2ð Þ
m∗

1Γ σ∗ + θ∗2 + δ∗1ð Þ
ðT
s0

φ′ qð Þ

� φ Tð Þ − φ qð Þð Þσ∗+δ∗1 +θ∗2−1ĥ∗ q, ϖ∗ qð Þð Þ

� dq p2 1 −m∗
2ð Þ

m∗
1Γ σ∗ + θ∗2 + δ∗2ð Þ

ðT
s0

φ′ qð Þ

� φ Tð Þ − φ qð Þð Þσ∗+θ∗2 +δ∗2−1 f̂ ∗ q, ϖ∗ qð Þð Þdq
#
, ð23Þ

where ϖ∗ ∈E and z ∈ ½s0, T�. From now on, we set

Λ0 =
φ Tð Þ − φ s0ð Þð Þσ∗−ρ∗ m∗

1 − 1j j
m∗

1Γ σ∗ − ρ∗ + 1ð Þ

+ φ Tð Þ − φ s0ð Þð Þσ∗−ρ∗+θ∗1 +1m∗
2 m∗

1 − 1j j
Yj jm∗

1Γ σ∗ − ρ∗ + θ∗1 + 1ð Þ

+ φ Tð Þ − φ s0ð Þð Þσ∗−ρ∗+θ∗2 +1 1 −m∗
2ð Þ m∗

1 − 1ð Þj j
Yj jm∗

1Γ σ∗ − ρ∗ + θ∗2 + 1ð Þ ,

Λ1 =
φ Tð Þ − φ s0ð Þð Þσ∗+δ∗1 p1
m∗

1Γ σ∗ + δ∗1 + 1ð Þ + φ Tð Þ − φ s0ð Þð Þσ∗+θ∗1 +δ∗1 +1p1m∗
2

Yj jm∗
1Γ σ∗ + θ∗1 + δ∗1 + 1ð Þ

+ φ Tð Þ − φ s0ð Þð Þσ∗+θ∗2 +δ∗1 +1p1 1 −m∗
2ð Þ

Yj jm∗
1Γ σ∗ + θ∗2 + δ∗1 + 1ð Þ ,

Λ2 =
φ Tð Þ − φ s0ð Þð Þσ∗+δ∗2 p2
m∗

1Γ σ∗ + δ∗2 + 1ð Þ + φ Tð Þ − φ s0ð Þð Þσ∗+θ∗1 +δ∗2 +1p2m∗
2

∣Y ∣m∗
1Γ σ∗ + θ∗1 + δ∗2 + 1ð Þ

+ φ Tð Þ − φ s0ð Þð Þσ∗+θ∗2 +δ∗2 +1p2 1 −m∗
2ð Þ

Yj jm∗
1Γ σ∗ + θ∗2 + δ∗2 + 1ð Þ :

ð24Þ
We now derive the first criterion to confirm the existence

of solutions for the proposed double-order integrodifferential
problem (3)–(4). This purpose is achieved by utilizing Theo-
rem 6 attributed to Krasnosel’skii.

Theorem 9. Both functions ĥ∗, f̂ ∗ : ½s0, T� ×ℝ→ℝ are sup-
posed to be continuous having the following assertions:

(H1) There is a constantN
∗ > 0 so that we have the follow-

ing inequality for any ϖ∗
1 , ϖ∗

2 ∈E,

ĥ∗ z, ϖ∗
1 zð Þð Þ − ĥ∗ z, ϖ∗

2 zð Þð Þ
��� ��� <N∗ ϖ∗

1 zð Þ − ϖ∗
2 zð Þj j, z ∈ s0, T½ �ð Þ

ð25Þ
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(H2) For any ϖ
∗ ∈E, a continuous function μ∗ exists on

½s0, T� such that

f̂ ∗ z, ϖ∗ zð Þð Þ
��� ��� < μ∗ zð Þ, z ∈ s0, T½ �ð Þ: ð26Þ

Then, by assuming Λ0 +N∗Λ1 < 1, at least one solution
exists on ½s0, T� for the nonlinear double-integrodifferential
equation (3) furnished with double-order integral conditions
(4), where Λ0 and Λ1 are illustrated by (24).

Proof. To start the proof, let kμ∗k = sup
z∈½s0,T�

jμ∗ðzÞj. Define B∗
ε

≔ fϖ∗ ∈E : kϖ∗k ≤ εg with

ε ≥
μ∗k kΛ2 +K∗Λ1

1 − Λ0 +N∗Λ1ð Þ , ð27Þ

so that K∗ ≔ sup
z∈½s0,T�

jĥ∗ðz, 0Þj and Λ0 and Λ1 are given by

(24). Obviously, nonempty ball B∗
ε is a convex, bounded,

and closed set contained in the Banach space E. Besides, let
us assume the Q : E→E is as in (23). It is an evident fact
that all fixed points ofQ will be all solutions of the proposed
double-order double-integrodifferential BoVaPr (3)–(4)
according to Lemma 8. Now, for each z ∈ ½s0, T�, we split Q
into Q1,Q2 : B

∗
ε →E by

Q1ϖ
∗ zð Þ = m∗

1 − 1
m∗

1Γ σ∗ − ρ∗ð Þ
ðz
s0

φ′ qð Þ φ zð Þð

− φ qð ÞÞσ∗−ρ∗−1ϖ∗ qð Þ dq + p1
m∗

1Γ σ∗ + δ∗1ð Þ
ðz
s0

φ′ qð Þ

� φ zð Þ − φ qð Þð Þσ∗+δ∗1−1ĥ∗ q, ϖ∗ qð Þð Þdq

+ φ zð Þ − φ s0ð Þ
Y

"
−

m∗
2 m∗

1 − 1ð Þ
m∗

1Γ σ∗ − ρ∗ + θ∗1ð Þ
ðT
s0

φ′ qð Þ

� φ Tð Þ − φ qð Þð Þσ∗−ρ∗+θ∗1−1ϖ∗ qð Þdq

−
p1m

∗
2

m∗
1Γ σ∗ + θ∗1 + δ∗1ð Þ

ðT
s0

φ′ qð Þ φ Tð Þð

− φ qð ÞÞσ∗+θ∗1 +δ∗1−1ĥ∗ q, ϖ∗ qð Þð Þdq

−
1 −m∗

2ð Þ m∗
1 − 1ð Þ

m∗
1Γ σ∗ − ρ∗ + θ∗2ð Þ

ðT
s0

φ′ qð Þ φ Tð Þð

− φ qð ÞÞσ∗−ρ∗+θ∗2−1ϖ∗ qð Þ dq

−
p1 1 −m∗

2ð Þ
m∗

1Γ σ∗ + θ∗2 + δ∗1ð Þ
ðT
s0

φ′ qð Þ φ Tð Þð

− φ qð ÞÞσ∗+δ∗1 +θ∗2−1ĥ∗ q, ϖ∗ qð Þð Þdq
#
,

Q2ϖ
∗ zð Þ = p2

m∗
1Γ σ∗ + δ∗2ð Þ

ðz
s0

φ′ qð Þ φ zð Þð

− φ qð ÞÞσ∗+δ∗2−1 f̂ ∗ q, ϖ∗ qð Þð Þ dq + φ zð Þ − φ s0ð Þ
Y

×
"
−

p2m
∗
2

m∗
1Γ σ∗ + θ∗1 + δ∗2ð Þ

ðT
s0

φ′ qð Þ φ Tð Þð

− φ qð ÞÞσ∗+θ∗1 +δ∗2−1 f̂ ∗ q, ϖ∗ qð Þð Þdq

−
p2 1 −m∗

2ð Þ
m∗

1Γ σ∗ + θ∗2 + δ∗2ð Þ
ðT
s0

φ′ qð Þ φ Tð Þð

− φ qð ÞÞσ∗+θ∗2 +δ∗2−1 f̂ ∗ q, ϖ∗ qð Þð Þdq
#
:

ð28Þ

By the condition ðH1Þ, we have

ĥ∗ z, ϖ∗ zð Þð Þ
��� ��� ≤ ĥ∗ z, ϖ∗ zð Þð Þ − ĥ∗ z, 0ð Þ

��� ��� + ĥ∗ z, 0ð Þ
��� ���

≤N∗ ϖ∗k k +K∗ ≤N∗ε +K∗
ð29Þ

for each ϖ∗ ∈E and z ∈ ½s0, T�. In consequence, for both ϖ∗
1 ,

ϖ∗
2 ∈ B

∗
ε and z ∈ ½s0, T� and in view of (24) and (27), we get

∣Q1ϖ
∗
1 zð Þ +Q2ϖ

∗
2 zð Þ∣

≤
φ Tð Þ − φ s0ð Þð Þσ∗−ρ∗ ∣m∗

1 − 1 ∣
m∗

1Γ σ∗ − ρ∗ + 1ð Þ ∥ϖ∗∥

+ φ Tð Þ − φ s0ð Þð Þσ∗+δ∗1 p1
m∗

1Γ σ∗ + δ∗1 + 1ð Þ N∗∥ϖ∗∥+K∗ð Þ

+ φ Tð Þ − φ s0ð Þð Þσ∗−ρ∗+θ∗1 +1m∗
2 ∣m∗

1 − 1 ∣
∣Y ∣m∗

1Γ σ∗ − ρ∗ + θ∗1 + 1ð Þ ∥ϖ∗∥

+ φ Tð Þ − φ s0ð Þð Þσ∗+θ∗1 +δ∗1 +1p1m∗
2

∣Y ∣m∗
1Γ σ∗ + θ∗1 + δ∗1 + 1ð Þ N∗∥ϖ∗∥+K∗ð Þ

+ φ Tð Þ − φ s0ð Þð Þσ∗−ρ∗+θ∗2 +1 1 −m∗
2ð Þ ∣ m∗

1 − 1ð Þ ∣
∣Y ∣m∗

1Γ σ∗ − ρ∗ + θ∗2 + 1ð Þ ∥ϖ∗∥

+ φ Tð Þ − φ s0ð Þð Þσ∗+θ∗2 +δ∗1 +1p1 1 −m∗
2ð Þ

∣Y ∣m∗
1Γ σ∗ + θ∗2 + δ∗1 + 1ð Þ N∗∥ϖ∗∥+K∗ð Þ

+ φ Tð Þ − φ s0ð Þð Þσ∗+δ∗2 p2
m∗

1Γ σ∗ + δ∗2 + 1ð Þ ∥μ∗∥

+ φ Tð Þ − φ s0ð Þð Þσ∗+θ∗1 +δ∗2 +1p2m∗
2

∣Y ∣m∗
1Γ σ∗ + θ∗1 + δ∗2 + 1ð Þ ∥μ∗∥

+ φ Tð Þ − φ s0ð Þð Þσ∗+θ∗2 +δ∗2 +1p2 1 −m∗
2ð Þ

∣Y ∣m∗
1Γ σ∗ + θ∗2 + δ∗2 + 1ð Þ ∥μ∗∥

=
"

φ Tð Þ − φ s0ð Þð Þσ∗−ρ∗ ∣m∗
1 − 1 ∣

m∗
1Γ σ∗ − ρ∗ + 1ð Þ

+ φ Tð Þ − φ s0ð Þð Þσ∗−ρ∗+θ∗1 +1m∗
2 ∣m∗

1 − 1 ∣
∣Y ∣m∗

1Γ σ∗ − ρ∗ + θ∗1 + 1ð Þ

+ φ Tð Þ − φ s0ð Þð Þσ∗−ρ∗+θ∗2 +1 1 −m∗
2ð Þ ∣ m∗

1 − 1ð Þ ∣
∣Y ∣m∗

1Γ σ∗ − ρ∗ + θ∗2 + 1ð Þ

#
∥ϖ∗∥
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+
"

φ Tð Þ − φ s0ð Þð Þσ∗+δ∗1 p1
m∗

1Γ σ∗ + δ∗1 + 1ð Þ + φ Tð Þ − φ s0ð Þð Þσ∗+θ∗1 +δ∗1 +1p1m∗
2

∣Y ∣m∗
1Γ σ∗ + θ∗1 + δ∗1 + 1ð Þ

+ φ Tð Þ − φ s0ð Þð Þσ∗+θ∗2 +δ∗1 +1p1 1 −m∗
2ð Þ

∣Y ∣m∗
1Γ σ∗ + θ∗2 + δ∗1 + 1ð Þ

#
N∗∥ϖ∗∥+K∗ð Þ

+
"

φ Tð Þ − φ s0ð Þð Þσ∗+δ∗2 p2
m∗

1Γ σ∗ + δ∗2 + 1ð Þ + φ Tð Þ − φ s0ð Þð Þσ∗+θ∗1 +δ∗2 +1p2m∗
2

∣Y ∣m∗
1Γ σ∗ + θ∗1 + δ∗2 + 1ð Þ

+ φ Tð Þ − φ s0ð Þð Þσ∗+θ∗2 +δ∗2 +1p2 1 −m∗
2ð Þ

∣Y ∣m∗
1Γ σ∗ + θ∗2 + δ∗2 + 1ð Þ

#
∥μ∗∥

=Λ0∥ϖ
∗∥+Λ1 N∗∥ϖ∗∥+K∗ð Þ +Λ2∥μ

∗∥

≤ Λ0 +N∗Λ1ð Þε +Λ1K
∗ +Λ2∥μ

∗∥ ≤ ε, ð30Þ

which implies ∥Q1ϖ
∗
1 +Q2ϖ

∗
2 ∥≤ε and so ðQ1ϖ

∗
1 ðzÞ +Q2

ϖ∗
2 ðzÞÞ ∈ B∗

ε for all ϖ∗
1 , ϖ∗

2 ∈ Bε. Now, we prove that Q2 is
continuous. A sequence fϖ∗

ng in B∗
ε is assumed to be con-

vergent provided that ϖ∗
n → ϖ∗. Then, for any element z

∈ ½s0, T�, one may write

Q2ϖ
∗
n zð Þ −Q2ϖ

∗ zð Þj j

≤
φ Tð Þ − φ s0ð Þð Þσ∗+δ∗2 p2
m∗

1Γ σ∗ + δ∗2 + 1ð Þ f̂ ∗ q, ϖ∗
n qð Þð Þ − f̂ ∗ q, ϖ∗ qð Þð Þ

��� ���
+ φ Tð Þ − φ s0ð Þð Þσ∗+θ∗1 +δ∗2 +1p2m∗

2
Yj jm∗

1Γ σ∗ + θ∗1 + δ∗2 + 1ð Þ
� f̂ ∗ q, ϖ∗

n qð Þð Þ − f̂ ∗ q, ϖ∗ qð Þð Þ
��� ���

+ φ Tð Þ − φ s0ð Þð Þσ∗+θ∗2 +δ∗2 +1p2 1 −m∗
2ð Þ

Yj jm∗
1Γ σ∗ + θ∗2 + δ∗2 + 1ð Þ

� f̂ ∗ q, ϖ∗
n qð Þð Þ − f̂ ∗ q, ϖ∗ qð Þð Þ

��� ���:
ð31Þ

Since f̂ ∗ is continuous, we get kQ2ϖ
∗
n −Q2ϖ

∗k→ 0 as
ϖ∗
n → ϖ∗. From this, we realize that Q2 is continuous on

B∗
ε . In the sequel, to verify that Q2 is compact, we have

to prove that Q2 has the uniform boundedness property.
For every ϖ∗ ∈ B∗

ε and all z ∈ ½s0, T�, the following estimate
for Q2 holds

∣Q2ϖ
∗ zð Þ∣ = ∣

p2
m∗

1Γ σ∗ + δ∗2ð Þ
ðz
s0

φ′ qð Þ

� φ zð Þ − φ qð Þð Þσ∗+δ∗2−1 f̂ ∗ q, ϖ∗ qð Þð Þ dq

+ φ zð Þ − φ s0ð Þ
Y

"
−

p2m
∗
2

m∗
1Γ σ∗ + θ∗1 + δ∗2ð Þ

ðT
s0

φ′ qð Þ

� φ Tð Þ − φ qð Þð Þσ∗+θ∗1 +δ∗2−1 f̂ ∗ q, ϖ∗ qð Þð Þdq

−
p2 1 −m∗

2ð Þ
m∗

1Γ σ∗ + θ∗2 + δ∗2ð Þ
ðT
s0

φ′ qð Þ

� φ Tð Þ − φ qð Þð Þσ∗+θ∗2 +δ∗2−1 f̂ ∗ q, ϖ∗ qð Þð Þdq
#
∣

≤
φ Tð Þ − φ s0ð Þð Þσ∗+δ∗2 p2
m∗

1Γ σ∗ + δ∗2 + 1ð Þ ∣ f̂ ∗ q, ϖ∗ qð Þð Þ∣

+ φ Tð Þ − φ s0ð Þð Þσ∗+θ∗1 +δ∗2 +1p2m∗
2

∣Y ∣m∗
1Γ σ∗ + θ∗1 + δ∗2 + 1ð Þ ∣ f̂ ∗ q, ϖ∗ qð Þð Þ∣

+ φ Tð Þ − φ s0ð Þð Þσ∗+θ∗2 +δ∗2 +1p2 1 −m∗
2ð Þ

∣Y ∣m∗
1Γ σ∗ + θ∗2 + δ∗2 + 1ð Þ ∣ f̂ ∗ q, ϖ∗ qð Þð Þ∣

≤ ∥μ∗∥

"
φ Tð Þ − φ s0ð Þð Þσ∗+δ∗2 p2
m∗

1Γ σ∗ + δ∗2 + 1ð Þ

+ φ Tð Þ − φ s0ð Þð Þσ∗+θ∗1 +δ∗2 +1p2m∗
2

∣Y ∣m∗
1Γ σ∗ + θ∗1 + δ∗2 + 1ð Þ

+ φ Tð Þ − φ s0ð Þð Þσ∗+θ∗2 +δ∗2 +1p2 1 −m∗
2ð Þ

∣Y ∣m∗
1Γ σ∗ + θ∗2 + δ∗2 + 1ð Þ

#
= ∥μ∗∥Λ2,

ð32Þ

which implies that ∥Q2ϖ
∗∥≤∥μ∗∥Λ2. In order to confirm

the equicontinuity of Q2, suppose that z1, z2 ∈ ½s0, T� such
that z2 > z1. We investigate that Q2 corresponds bounded
sets to equicontinuous sets. To guarantee this claim, for
any ϖ∗ðzÞ ∈ B∗

ε , we obtain

Q2ϖ
∗ z2ð Þ −Q2ϖ

∗ z1ð Þj j
≤

p2∥μ
∗∥

m∗
1Γ σ∗ + δ∗2 + 1ð Þ

h
φ z1ð Þ − φ s0ð Þð Þσ∗+δ∗2

− φ z2ð Þ − φ s0ð Þð Þσ∗+δ∗2
i
+ ∥μ∗∥p2 φ z2ð Þ − φ z1ð Þð Þ

∣Y ∣

�
"
m∗

2 φ Tð Þ − φ s0ð Þð Þσ∗+θ∗1 +δ∗2
m∗

1Γ σ∗ + θ∗1 + δ∗2 + 1ð Þ

+ 1 −m∗
2ð Þ φ Tð Þ − φ s0ð Þð Þσ∗+θ∗2 +δ∗2

m∗
1Γ σ∗ + θ∗2 + δ∗2 + 1ð Þ

#
:

ð33Þ

It is to be notice that the R.H.S of (33) is not dependent
to ϖ∗ ∈ B∗

ε and also goes to 0 by assuming z1 → z2. This
describes that Q2 is equicontinuous. Hence, Q2 has the rel-
ative compactness property on B∗

ε , and thus, application of
the Arzelá-Ascoli result gives the complete continuity of Q2
, and eventually on B∗

ε , we reach the compactness of Q2.
At last, we intend to conclude that Q1 is a contraction.
For any ϖ∗

1 , ϖ∗
2 ∈ B

∗
ε , and z ∈ ½s0, T�, we get

∣Q1ϖ
∗
1 zð Þ −Q1ϖ

∗
2 zð Þ∣

≤
φ Tð Þ − φ s0ð Þð Þσ∗−ρ∗ ∣m∗

1 − 1 ∣
m∗

1Γ σ∗ − ρ∗ + 1ð Þ ∣ϖ∗
1 zð Þ − ϖ∗

2 zð Þ∣

+ φ Tð Þ − φ s0ð Þð Þσ∗+δ∗1 +1p1
m∗

1Γ σ∗ + δ∗1 + 1ð Þ N∗∣ϖ∗
1 zð Þ − ϖ∗

2 zð Þ∣

+ φ Tð Þ − φ s0ð Þð Þσ∗−ρ∗+θ∗1 +1m∗
2 ∣ m∗

1 − 1ð Þ ∣
∣Y ∣m∗

1Γ σ∗ − ρ∗ + θ∗1 + 1ð Þ ∣ϖ∗
1 zð Þ − ϖ∗

2 zð Þ∣

+ φ Tð Þ − φ s0ð Þð Þσ∗+θ∗1 +δ∗1 +1p1m∗
2

∣Y ∣m∗
1Γ σ∗ + θ∗1 + δ∗1 + 1ð Þ N∗∣ϖ∗

1 zð Þ − ϖ∗
2 zð Þ∣
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+ φ Tð Þ − φ s0ð Þð Þσ∗−ρ∗+θ∗2 +1 1 −m∗
2ð Þ m∗

1 − 1ð Þ
∣Y ∣m∗

1Γ σ∗ − ρ∗ + θ∗2 + 1ð Þ ∣ϖ∗
1 zð Þ − ϖ∗

2 zð Þ∣

+ φ Tð Þ − φ s0ð Þð Þσ∗+θ∗2 +δ∗1 +1p1 1 −m∗
2ð Þ

∣Y ∣m∗
1Γ σ∗ + θ∗2 + δ∗1 + 1ð Þ N∗∣ϖ∗

1 zð Þ − ϖ∗
2 zð Þ∣

≤ Λ0 +N∗Λ1ð Þ∥ϖ∗
1 − ϖ∗

2 ∥: ð34Þ

Hence,

∥Q1ϖ
∗
1 −Q1ϖ

∗
2 ∥ ≤ Λ0 +N∗Λ1ð Þ∥ϖ∗

1 − ϖ∗
2 ∥: ð35Þ

Since Λ0 +N∗Λ1 < 1, Q1 is a contraction. Thus, all the
conditions of Theorem 6 are verified. Thus, the double-φ
-integrodifferential-BoVaPr (3) with double-order φ-RLFr
integral boundary conditions (4) possesses at least one solu-
tion in ½s0, T� and the proof is completed.

In the next result, we prove the existence of a solution for
the double-order double-φ-integrodifferential-BoVaPr (3)–(4)
with the help of the Leray-Schauder nonlinear alternative.

Theorem 10. Consider ĥ∗, f̂ ∗ : ½s0, T� ×ℝ→ℝ as continuous
mappings having the following assertions:

(C3) There exist continuouctions η1, η2 : ½s0, T�→ℝ+ and
functions γ1, γ2 ∈Cð½s0, T�,ℝ+Þ such that ∣ĥ∗ðz, ϖ∗Þ ∣ ≤γ1ðzÞ
η1ð∣ϖ∗ ∣ Þ and ∣ f̂ ∗ðz, ϖ∗Þ ∣ ≤γ2ðzÞη2ð∣ϖ∗ ∣ Þ for each ðz, ϖ∗Þ ∈
½s0, T� ×ℝ

(C4) There exists a constant Ω∗ > 0 such that Λ0 < 1 and

1 −Λ0ð ÞΩ∗

Λ1∥γ1∥η1 Ω∗ð Þ +Λ2∥γ2∥η2 Ω∗ð Þ > 1, ð36Þ

where Λ0,Λ1,Λ2 are given by (24).

Then, the nonlinear double-φ-CapFr-integrodifferential
equation (3) along with double-order φ-RLFr integral bound-
ary conditions (4) possesses at least one solution in ½s0, T�.

Proof.We utilize the Leray-Schauder nonlinear alternative to
prove the current result. First, we prove thatQ formulated by
(23) corresponds all bounded sets to all bounded sets in E.
Corresponding to ε > 0, build a bounded ball B∗

ε = fϖ∗ ∈E
: ∥ϖ∗∥<εg in E. Then, for z ∈ ½s0, T�, we have

∣Qϖ∗ zð Þ∣ ≤ ∣m∗
1 − 1 ∣

m∗
1Γ σ∗ − ρ∗ð Þ

ðz
s0

φ′ qð Þ φ zð Þ − φ qð Þð Þσ∗−ρ∗−1∥ϖ∗∥dq

+ p1
m∗

1Γ σ∗ + δ∗1ð Þ
ðz
s0

φ′ qð Þ φ zð Þ − φ qð Þð Þσ∗+δ∗1−1

� ∥γ1∥η1 ∥ϖ∗∥ð Þdq + p2
m∗

1Γ σ∗ + δ∗2ð Þ
ðz
s0

φ′ qð Þ

� φ zð Þ − φ qð Þð Þσ∗+δ∗2−1∥γ2∥η2 ϖ∗k kð Þdq

+ φ zð Þ − φ s0ð Þ
∣Y ∣

"
m∗

2 ∣ m∗
1 − 1ð Þ ∣

m∗
1Γ σ∗ − ρ∗ + θ∗1ð Þ

ðT
s0

φ′ qð Þ

� φ Tð Þ − φ qð Þð Þσ∗−ρ∗+θ∗1−1∥ϖ∗∥dq

+ p1m
∗
2

m∗
1Γ σ∗ + θ∗1 + δ∗1ð Þ

ðT
s0

φ′ qð Þ

� φ Tð Þ − φ qð Þð Þσ∗+θ∗1 +δ∗1−1∥γ1∥η1 ∥ϖ∗∥ð Þdq

+ p2m
∗
2

m∗
1Γ σ∗ + θ∗1 + δ∗2ð Þ

ðT
s0

φ′ qð Þ

� φ Tð Þ − φ qð Þð Þσ∗+θ∗1 +δ∗2−1∥γ2∥η2 ∥ϖ∗∥ð Þdq

+ 1 −m∗
2ð Þ ∣ m∗

1 − 1ð Þ ∣
m∗

1Γ σ∗ − ρ∗ + θ∗2ð Þ
ðT
s0

φ′ qð Þ

� φ Tð Þ − φ qð Þð Þσ∗−ρ∗+θ∗2−1∥ϖ∗∥dq

+ p1 1 −m∗
2ð Þ

m∗
1Γ σ∗ + θ∗2 + δ∗1ð Þ

ðT
s0

φ′ qð Þ

� φ Tð Þ − φ qð Þð Þσ∗+δ∗1 +θ∗2−1∥γ1∥η1 ∥ϖ∗∥ð Þdq

+ p2 1 −m∗
2ð Þ

m∗
1Γ σ∗ + θ∗2 + δ∗2ð Þ

ðT
s0

φ′ qð Þ

� φ Tð Þ − φ qð Þð Þσ∗+θ∗2 +δ∗2−1∥γ2∥η2 ∥ϖ∗∥ð Þdq

≤Λ0∥ϖ
∗∥+Λ1∥γ1∥η1 ∥ϖ∗∥ð Þ +Λ2∥γ2∥η2 ∥ϖ∗∥ð Þ

#
: ð37Þ

Consequently, we have

∥Qϖ∗∥ ≤Λ0∥ϖ
∗∥+Λ1∥γ1∥η1 ∥ϖ∗∥ð Þ +Λ2∥γ2∥η2 ∥ϖ∗∥ð Þ: ð38Þ

The obtained inequality indicates that Q is uniformly
bounded. Now, let z1, z2 ∈ ½s0, T� with z1 < z2 and ϖ∗ ∈ B∗

ε .
Then, we have

∣Qϖ∗ z2ð Þ −Qϖ∗ z1ð Þ∣
≤

ε ∣m∗
1 − 1 ∣

m∗
1Γ σ∗ − ρ∗ + 1ð Þ

h
φ z1ð Þ − φ s0ð Þð Þσ∗−ρ∗

− φ z2ð Þ − φ s0ð Þð Þσ∗−ρ∗
i
+ ∥γ1∥η1 εð Þp1
m∗

1Γ σ∗ + δ∗1 + 1ð Þ
� φ z1ð Þ − φ s0ð Þð Þσ∗+δ∗1 − φ z2ð Þ − φ s0ð Þð Þσ∗+δ∗1
h i

+ ∥γ2∥η2 εð Þp2
m∗

1Γ σ∗ + δ∗2 + 1ð Þ
h
φ z1ð Þ − φ s0ð Þð Þσ∗+δ∗2

− φ z2ð Þ − φ s0ð Þð Þσ∗+δ∗2
i
+ φ z2ð Þ − φ z1ð Þ

∣Y ∣

�
"

φ Tð Þ − φ qð Þð Þσ∗−ρ∗+θ∗1 εm∗
2 ∣m

∗
1 − 1 ∣

m∗
1Γ σ∗ − ρ∗ + θ∗1 + 1ð Þ

+ ∥γ1∥η1 εð Þ φ Tð Þ − φ qð Þð Þσ∗+θ∗1 +δ∗1 p1m∗
2

m∗
1Γ σ∗ + θ∗1 + δ∗1 + 1ð Þ

+ ∥γ2∥η2 εð Þ φ Tð Þ − φ qð Þð Þσ∗+θ∗1 +δ∗2 p2m∗
2

m∗
1Γ σ∗ + θ∗1 + δ∗2 + 1ð Þ

+ ε φ Tð Þ − φ qð Þð Þσ∗−ρ∗+θ∗2 1 −m∗
2ð Þ ∣ m∗

1 − 1ð Þ ∣
m∗

1Γ σ∗ − ρ∗ + θ∗2 + 1ð Þ
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+ ∥γ1∥η1 εð Þ φ Tð Þ − φ qð Þð Þσ∗+θ∗2 +δ∗1 p1 1 −m∗
2ð Þ

m∗
1Γ σ∗ + θ∗2 + δ∗1 + 1ð Þ

+ ∥γ2∥η2 εð Þ φ Tð Þ − φ qð Þð Þσ∗+θ∗2 +δ∗2 p2 1 −m∗
2ð Þ

m∗
1Γ σ∗ + θ∗2 + δ∗2 + 1ð Þ

#
: ð39Þ

This illustrates that ∣Qϖ∗ðz2Þ −Qϖ∗ðz1Þ ∣→ 0 when z1
→ z2 independent of ϖ∗ ∈ B∗

ε . Thus, the well-known result
attributed to Arzelá-Ascoli confirms that Q : E→E is
completely continuous. In the final stage, we intend to check
that the collection of all solutions for the equation ϖ∗ðzÞ =
ϑQϖ∗ðzÞ is bounded for ϑ ∈ ½0, 1�. For that, let ϖ∗ be a solu-
tion of ϖ∗ðzÞ = ϑQϖ∗ðzÞ for ϑ ∈ ½0, 1�. Then, for z ∈ ½s0, T�,
using the arguments given in the first step, we get that

∥ϖ∗∥ ≤Λ0∥ϖ
∗∥+Λ1∥γ1∥η1 ∥ϖ∗∥ð Þ +Λ2∥γ2∥η2 ∥ϖ∗∥ð Þ: ð40Þ

Consequently, we have

1 −Λ0ð Þ∥ϖ∗∥
Λ1∥γ1∥η1 ∥ϖ∗∥ð Þ +Λ2∥γ2∥η2 ∥ϖ∗∥ð Þ ≤ 1: ð41Þ

From condition (C4), there is a number Ω∗ > 0 so that ∥
ϖ∗∥≠Ω∗. We construct a set

∐ = ϖ∗ ∈E : ∥ϖ∗∥<Ω∗f g, ð42Þ

and notice that Q : ∐→E is continuous and completely
continuous. For such set ∐, there is not an element ϖ∗ ∈
∂∐ for which ϖ∗ = ϑQϖ∗ holds for some 0 < ϑ < 1. Hence,
in virtue of Theorem 7, it is concluded that the operator Q
possesses a fixed point in ∐ meaning that a solution exists
on ½s0, T� for the nonlinear double-φ-CapFr-integrodiffer-
ential equation (3) along with double-order φ-RLFr integral
boundary conditions (4), and in this case, the proof is
ended.

In our conclusive outcome, the uniqueness aspect of the
obtained solutions for the proposed double-φ-CapFr-inte-
grodifferential BoVaPr (3)-(4) is checked by the aid of the
standard contraction result attributed to Banach.

Theorem 11. Assume that a function ĥ∗ : ½s0, T� ×ℝ→ℝ
fulfills the presumption ðH1Þ. Additionally, presume that f̂ ∗
: ½s0, T� ×ℝ→ℝ is Lipschitz, i.e., M∗ exists so that for any
ϖ∗
1 , ϖ∗

2 ∈ℝ,

∣ f̂ ∗ z, ϖ∗
1ð Þ − f̂ ∗ z, ϖ∗

2ð Þ∣ ≤M∗ ϖ∗
1 − ϖ∗

2j j: ð43Þ

Then, the nonlinear double-φ-CapFr-integrodifferential
BoVaPr (3) with double-order φ-RLFr-integral conditions
(4) possesses a unique solution on ½s0, T�, provided that Λ0 +
N∗Λ1 +M∗Λ2 < 1, where Λ0,Λ1,Λ2 are illustrated by (24).

Proof. The argument is straightforward. In other words, by
letting supz∈½s0,T�jĥ∗ðz, 0Þj <A∗ <∞ and supz∈½s0,T�j f̂ ∗ðz, 0Þj
<S∗ <∞, we select ε > 0 with

ε ≥
A∗Λ2 +S∗Λ1

1 − Λ0 +N∗Λ1 +M∗Λ2ð Þ : ð44Þ

We claim that the inclusion QB∗
ε ⊆ B∗

ε is valid in which
B∗
ε = fϖ∗ ∈E : kϖ∗k ≤ εg. Simply, for any ϖ∗ ∈ B∗

ε , from
the previous arguments done in the proof of Theorem 9,
we get

Qϖ∗k k ≤ Λ0 +N∗Λ1 +M∗Λ2ð Þε +A∗Λ2 +S∗Λ1, ð45Þ

which illustrates that QB∗
ε ⊆ B∗

ε . For any z ∈ ½s0, T� and any
ϖ∗
1 , ϖ∗

2 ∈E, we have

∣Qϖ∗
1 zð Þ −Qϖ∗

2 zð Þ∣
≤

∣m∗
1 − 1 ∣

m∗
1Γ σ∗ − ρ∗ð Þ

ðz
s0

φ′ qð Þ φ zð Þ − φ qð Þð Þσ∗−ρ∗−1

� ∣ϖ∗
1 qð Þ − ϖ∗

2 qð Þ∣dq + p1
m∗

1Γ σ∗ + δ∗1ð Þ
ðz
s0

φ′ qð Þ

� φ zð Þ − φ qð Þð Þσ∗+δ∗1−1∣ĥ∗ q, ϖ∗
1 qð Þð Þ − ĥ∗ q, ϖ∗

2 qð Þð Þ∣ dq
+ p2
m∗

1Γ σ∗ + δ∗2ð Þ
ðz
s0

φ′ qð Þ φ zð Þ − φ qð Þð Þσ∗+δ∗2−1

� ∣ f̂ ∗ q, ϖ∗
1 qð Þð Þ − f̂ ∗ q, ϖ∗

2 qð Þð Þ∣ dq + φ Tð Þ − φ s0ð Þ
∣Y ∣

�
"

m∗
2 ∣ m∗

1 − 1ð Þ ∣
m∗

1Γ σ∗ − ρ∗ + θ∗1ð Þ
ðT
s0

φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗−ρ∗+θ∗1−1

� ∣ ϖ∗
1 qð Þ − ϖ∗

2 qð Þ ∣ dq + p1m
∗
2

m∗
1Γ σ∗ + θ∗1 + δ∗1ð Þ

ðT
s0

φ′ qð Þ

� φ Tð Þ − φ qð Þð Þσ∗+θ∗1 +δ∗1−1 ∣ ĥ∗ q, ϖ∗
1 qð Þð Þ − ĥ∗ q, ϖ∗

2 qð Þð Þ ∣ dq

+ p2m
∗
2

m∗
1Γ σ∗ + θ∗1 + δ∗2ð Þ

ðT
s0

φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+θ∗1 +δ∗2−1

� ∣ f̂ ∗ q, ϖ∗
1 qð Þð Þ − f̂ ∗ q, ϖ∗

2 qð Þð Þ ∣ dq + 1 −m∗
2ð Þ ∣ m∗

1 − 1ð Þ ∣
m∗

1Γ σ∗ − ρ∗ + θ∗2ð Þ
�
ðT
s0

φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗−ρ∗+θ∗2−1 ∣ ϖ∗
1 qð Þ − ϖ∗

2 qð Þ ∣ dq

+ p1 1 −m∗
2ð Þ

m∗
1Γ σ∗ + θ∗2 + δ∗1ð Þ

ðT
s0

φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+δ∗1 +θ∗2−1

� ∣ ĥ∗ q, ϖ∗
1 qð Þð Þ − ĥ∗ q, ϖ∗

2 qð Þð Þ ∣ dq + p2 1 −m∗
2ð Þ

m∗
1Γ σ∗ + θ∗2 + δ∗2ð Þ

�
ðT
s0

φ′ qð Þ φ Tð Þ − φ qð Þð Þσ∗+θ∗2 +δ∗2−1

� ∣ f̂ ∗ q, ϖ∗
1 qð Þð Þ − f̂ ∗ q, ϖ∗

2 qð Þð Þ ∣ dq
#
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≤
φ Tð Þ − φ s0ð Þð Þσ∗−ρ∗ ∣m∗

1 − 1 ∣
m∗

1Γ σ∗ − ρ∗ + 1ð Þ ∥ϖ∗
1 − ϖ∗

2 ∥

+ φ Tð Þ − φ s0ð Þð Þσ∗+δ∗1 p1
m∗

1Γ σ∗ + δ∗1 + 1ð Þ N∗∥ϖ∗
1 − ϖ∗

2 ∥

+ φ Tð Þ − φ s0ð Þð Þσ∗+δ∗2 p2
m∗

1Γ σ∗ + δ∗2 + 1ð Þ M∗∥ϖ∗
1 − ϖ∗

2 ∥

+ φ Tð Þ − φ s0ð Þð Þσ∗−ρ∗+θ∗1 +1m∗
2 ∣ m∗

1 − 1ð Þ ∣
∣Y ∣m∗

1Γ σ∗ − ρ∗ + θ∗1 + 1ð Þ ∥ϖ∗
1 − ϖ∗

2 ∥

+ φ Tð Þ − φ s0ð Þð Þσ∗+θ∗1 +δ∗2 +1p2m∗
2

∣Y ∣m∗
1Γ σ∗ + θ∗1 + δ∗2 + 1ð Þ M∗∥ϖ∗

1 − ϖ∗
2 ∥

+ φ Tð Þ − φ s0ð Þð Þσ∗+θ∗1 +δ∗1 +1p1m∗
2

∣Y ∣m∗
1Γ σ∗ + θ∗1 + δ∗1 + 1ð Þ N∗∥ϖ∗

1 − ϖ∗
2∥

+ φ Tð Þ − φ s0ð Þð Þσ∗−ρ∗+θ∗2 +1 1 −m∗
2ð Þ ∣ m∗

1 − 1ð Þ ∣
∣Y ∣m∗

1Γ σ∗ − ρ∗ + θ∗2 + 1ð Þ ϖ∗
1 − ϖ∗

2k k

+ φ Tð Þ − φ s0ð Þð Þσ∗+θ∗2 +δ∗1 +1p1 1 −m∗
2ð Þ

∣Y ∣m∗
1Γ σ∗ + θ∗2 + δ∗1 + 1ð Þ N∗ ϖ∗

1 − ϖ∗
2k k

+ φ Tð Þ − φ s0ð Þð Þσ∗+θ∗2 +δ∗2 +1p2 1 −m∗
2ð Þ

∣Y ∣m∗
1Γ σ∗ + θ∗2 + δ∗2 + 1ð Þ M∗∥ϖ∗

1 − ϖ∗
2 ∥

≤ Λ0 +N∗Λ1 +M∗Λ2ð Þ∥ϖ∗
1 − ϖ∗

2∥: ð46Þ

Therefore,

Qϖ∗
1 −Qϖ∗

2k k ≤ Λ0 +N∗Λ1 +M∗Λ2ð Þ ϖ∗
1 − ϖ∗

2k k: ð47Þ

As ðΛ0 +N∗Λ1 +M∗Λ2Þ < 1, thus Q is a contraction.
Therefore, in virtue of the standard contraction result
attributed to Banach, a fixed point exists uniquely for Q.
In consequence, the nonlinear double-φ-CapFr-integrodif-
ferential BoVaPr (3) along with double-order φ-RLFr-inte-
gral conditions (4) possesses a unique solution on ½s0, T�.

4. Illustrative Examples

We here design three numerical examples which simulate the
structure of the proposed nonlinear double-φ-CapFr-inte-
grodifferential BoVaPr (3) along with double-order φ-RLFr-
integral conditions (4).

Example 12. As regards the nonlinear double-φ-CapFr-inte-
grodifferential BoVaPr

0:8CD1:5; z+1ð Þ
0 + 1 − 0:8ð ÞCD1:1; z+1ð Þ

0
� �

ϖ∗ zð Þ

= 0:3RLI
0:5; z+1ð Þ
0

sin z

1 + zj j2 + 7z2ϖ∗ zð Þ
100

� �
+ 0:4RLI

0:6; z+1ð Þ
0

1
z + 3ð Þ4 1 + ϖ∗ zð Þj jð Þ ,

ð48Þ

furnished with double-order φ-RLFr-integral conditions

ϖ∗ 0ð Þ = 0, 0:7RLI
1; z+1ð Þ
0 ϖ∗ 1ð Þ

+ 1 − 0:7ð ÞRLI
2; z+1ð Þ
0 ϖ∗ 1ð Þ = 0:

ð49Þ

Here, we have taken values m∗
1 = 0:8, m∗

2 = 0:7, σ∗ = 1:5,
φðzÞ = z + 1, ρ∗ = 1:1, p1 = 0:3, δ∗1 = 0:5, p2 = 0:4, δ∗2 = 0:6,
θ∗1 = 1, θ∗2 = 2, z ∈ ½0, 1�, and ĥ∗, f̂ ∗ : ½0, 1� ×ℝ→ℝ by rules

ĥ∗ z, ϖ∗ð Þ = sin z

1 + zj j2 + 7z2ϖ∗ zð Þ
100 , f̂ ∗ z, ϖ∗ð Þ

= 1
z + 3ð Þ4 1 + ϖ∗ zð Þj jð Þ :

ð50Þ

Now for each ϖ∗
1 , ϖ∗

2 ∈ℝ, clearly, jĥ∗ðz, ϖ∗
1 Þ − ĥ∗ðz, ϖ∗

2 Þj
≤N∗jϖ∗

1 − ϖ∗
2 j with N∗ = 0:07 > 0. On the other side, we

obtain a continuous function μ∗ðzÞ = ð1/ððz + 3Þ4ÞÞ such that
j f̂ ∗ðz, ϖ∗Þj ≤ μ∗ðzÞ for all ϖ∗ ∈ℝ. Also, we have kμ∗k =
supz∈½0,1�μ∗ðzÞ ≃ 0:012. Moreover, Y ≃ 0:40 and Λ0 +N∗Λ1
≃ 0:61527 < 1. Obviously, all the presumptions of Theorem
9 are verified. Therefore, the nonlinear double-φ-CapFr-inte-
grodifferential BoVaPr (48) along with double-order φ-RLFr-
integral conditions (49) possesses a solution in ½0, 1�.

The following example illustrates Theorem 10.

Example 13. Regard the nonlinear double-φ-CapFr-integro-
differential BoVaPr

0:8CD1:5; z+1ð Þ
0 + 1 − 0:8ð ÞCD1:1; z+1ð Þ

0

� �
ϖ∗ zð Þ

= 0:3RLI
0:5; z+1ð Þ
0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4913 + z33

p 1
z + 1ð Þ2 + ϖ∗ zð Þj j

2

 !

+ 0:4RLI
0:6; z+1ð Þ
0

1
10 + z3ð Þ2

0:9347
z3 + 1ð Þ2

+ ϖ∗ zð Þ
17

 !
,

ð51Þ

furnished with double-order φ-RLFr-integral conditions

ϖ∗ 0ð Þ = 0, 0:7RLI
1; z+1ð Þ
0 ϖ∗ 1ð Þ

+ 1 − 0:7ð ÞRLI
2; z+1ð Þ
0 ϖ∗ 1ð Þ = 0:

ð52Þ

Here, we have taken values m∗
1 = 0:8, m∗

2 = 0:7, σ∗ = 1:5,
φðzÞ = z + 1, ρ∗ = 1:1, p1 = 0:3, δ∗1 = 0:5, p2 = 0:4, δ∗2 = 0:6,
θ∗1 = 1, θ∗2 = 2, z ∈ ½0, 1�, and ĥ∗, f̂ ∗ : ½0, 1� ×ℝ→ℝ by rules

ĥ∗ z, ϖ∗ð Þ = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4913 + z33

p 1
z + 1ð Þ2 + ϖ∗ zð Þj j

2

 !
,

f̂ ∗ z, ϖ∗ð Þ = 1
10 + z3ð Þ2

0:9347
z3 + 1ð Þ2

+ ϖ∗ zð Þ
17

 !
:

ð53Þ
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Clearly,

ĥ∗ z, ϖ∗ð Þ
��� ��� ≤ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4913 + z33
p 1+∥ϖ∗∥ð Þ, f̂ ∗ z, ϖ∗ð Þ

��� ���
≤

1
10 + z3ð Þ2

1+∥ϖ∗∥ð Þ,
ð54Þ

with γ1ðzÞ = 1/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4913 + z33

p
, γ2ðzÞ = 1/ð10 + z3Þ2 and η1ð∥ϖ∗∥Þ

= η2ð∥ϖ∗∥Þ = 1 + ∥ϖ∗∥. Now, ∥γ1∥≃0:0588, ∥γ2∥≃0:01, and
η1ðΩ∗Þ = η2ðΩ∗Þ = 1 +Ω∗. From the above values, we have
Y ≃ 0:4, Λ0 ≃ 0:59367, Λ1 ≃ 0:30859, and Λ2 ≃ 0:36938. By
condition (H4), we obtain Ω∗ > 0:02282. Clearly, all the pre-
sumptions of Theorem 10 are verified. Therefore, the nonlin-
ear double-φ-CapFr-integro-differential BoVaPr (51) along
with double-order φ-RLFr-integral conditions (52) possesses
a solution in ½0, 1�.

The following example illustrates Theorem 11.

Example 14. As regards the nonlinear double-φ-CapFr-inte-
grodifferential BoVaPr

0:8CD1:5; z+1ð Þ
0 + 1 − 0:8ð ÞCD1:1; z+1ð Þ

0
� �

ϖ∗ zð Þ

= 0:3RLI
0:5; z+1ð Þ
0

3z2 tan π/4ð Þzj j ϖ∗ zð Þj j
73 1 + ϖ∗ zð Þj jð Þ2 + 1

+ 0:4RLI
0:6; z+1ð Þ
0

z cot π/4ð Þzð Þ ϖ∗ zð Þj j
101 z + ϖ∗ zð Þj jð Þ2 + 2,

ð55Þ

furnished with double-order φ-RLFr-integral conditions

ϖ∗ 0ð Þ = 0, 0:7RLI
1; z+1ð Þ
0 ϖ∗ 1ð Þ

+ 1 − 0:7ð ÞRLI
2; z+1ð Þ
0 ϖ∗ 1ð Þ = 0:

ð56Þ

Here, we have taken values m∗
1 = 0:8, m∗

2 = 0:7, σ∗ = 1:5,
φðzÞ = z + 1, ρ∗ = 1:1, p1 = 0:3, δ∗1 = 0:5, p2 = 0:4, δ∗2 = 0:6,
θ∗1 = 1, θ∗2 = 2, z ∈ ½0, 1�, and ĥ∗, f̂ ∗ : ½0, 1� ×ℝ→ℝ by rules

ĥ∗ z, ϖ∗ð Þ = 3z2 tan π/4ð Þzj j ϖ∗ zð Þj j
73 1 + ϖ∗ zð Þj jð Þ2 + 1, f̂ ∗ z, ϖ∗ð Þ

= z cot π/4ð Þzð Þ ϖ∗ zð Þj j
101 z + ϖ∗ zð Þj jð Þ2 + 2:

ð57Þ

Then, N∗ ≃ 0:041 and M∗ ≃ 0:0099, since

ĥ∗ z, ϖ∗
1ð Þ − ĥ∗ z, ϖ∗

2ð Þ
��� ��� ≤ 0:0411ð Þ ϖ∗

1 − ϖ∗
2j j,

∣ f̂ ∗ z, ϖ∗
1ð Þ − f̂ ∗ z, ϖ∗

2ð Þ∣ ≤ 0:0099ð Þ ϖ∗
1 − ϖ∗

2j j:
ð58Þ

From the above-given values, we have Y ≃ 0:40 and Λ0
+N∗Λ1 +M∗Λ2 ≃ 0:61892 < 1. Clearly, all the assumptions
of Theorem 11 are verified. Thus, the nonlinear double-φ
-CapFr-integro-differential BoVaPr (55) along with double-
order φ-RLFr-integral conditions (56) possesses a solution
in ½0, 1�.

5. Concluding Notes

Fractional differential (FD) equations are used to model a
number of natural phenomena arising in science and tech-
nology. For this reason, most researchers have utilized
numerous applied fractional operators in the past years to
model various forms of natural processes that occurred in
the world. Here, we concentrate on the existence specifica-
tions of solutions in relation to a newly configured model
of a double-order integrodifferential equation in the frame-
work of the φ-CapFr derivative subject to double-order φ
-integral boundary conditions in the context of the φ-RLFr
integral. Accordingly, to arrive at this issue, we first extract
one of the existence features by making use of the fixed point
method expressed by Krasnosel’skii, and then, by using a
nonlinear alternative criterion attributed to Leray-Schauder,
another existence result of the solution is derived. In addition
to these, we invoke the Banach principle to confirm the
uniqueness of the existing solutions. Three examples are sim-
ulated to guarantee the consistency of the analytical findings.
From a mathematical view, it is important that we try to
obtain generalized notions for the existence definitions. By
using this view, the novelty of this work provides an instance
of the generalized structure. Also, the proposed structure in
this work can be extended by designing different and compli-
cated boundary conditions in the future.
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