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Abstract. 
It is shown how Einstein's equation can account for the evolution of the universe without an initial singularity and can explain the inflation epoch as a momentum dominated era in which energy from matter and radiation drove extremely accelerated expansion of space. It is shown how an object with momentum loses energy to the expanding universe and how this energy can contribute to accelerated spatial expansion more effectively than vacuum energy, because virtual particles, the source of vacuum energy, can have negative energy, which can cancel any positive energy from the vacuum. Radiation and matter with momentum have positive but decreasing energy in the expanding universe, and the energy lost by them can contribute to accelerated spatial expansion between galactic clusters, making dark energy a classical effect that can be explained by general relativity without quantum mechanics, and, as (13) and (15) show, without an initial singularity or a big bang. This role of momentum, which was overlooked in the Standard Cosmological Model, is the basis of a simpler model which agrees with what is correct in the old model and corrects what is wrong with it.


1. Introduction
The Standard Cosmological Model entails a space-time metric with line element [1–4]
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are spherical coordinates of a spatially flat (Euclidean) 3-space. A particle of proper mass
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has the Hamiltonian [5, 6]
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					showing how a particle with momentum loses energy to the expanding Universe [5].
A logical question, then, is where does that energy go? A logical answer is that it goes to the Hamiltonian of the Universe, which, in a one-dimensional minisuperspace model, can be expressed in geometrized units as the conserved quantity [7]
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.  The second term gives exponentially accelerated expansion of a vacuum dominated Universe, with 
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However, 
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 is defective, because the Standard Cosmological Model is defective. 
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. This deficiency is corrected here by revising 
	
		
			

				ℋ
			

		
	
 to the form
						
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			
				𝑃
				𝐾
				(
				𝑃
				,
				𝑥
				,
				𝑝
				)
				=
			

			

				2
			

			
				
			
			
				+
				
				2
				𝑀
			

			

				𝑛
			

			

				
			

			
				
			
			

				𝑚
			

			
				2
				𝑛
			

			
				+
				𝑝
			

			
				2
				𝑛
			

			
				
			
			

				𝑎
			

			

				2
			

			
				−
				3
				𝑀
				Λ
				𝑥
			

			

				2
			

			
				
			
			
				8
				,
			

		
	

					where 
	
		
			

				𝑎
			

			

				2
			

			
				=
				𝛼
			

			
				2
				/
				3
			

			

				𝑥
			

			
				4
				/
				3
			

		
	
 in terms of the cosmic coordinate 
	
		
			

				𝑥
			

		
	
, thereby conserving 
	
		
			

				𝐾
			

		
	
 by making 
	
		
			
				𝜕
				𝐾
				/
				𝜕
				𝑡
				=
				0
			

		
	
. The sum over 
	
		
			

				𝑛
			

		
	
 is taken over all objects 
	
		
			

				𝑚
			

			

				𝑛
			

		
	
, whose momenta 
	
		
			

				𝑝
			

			

				𝑛
			

		
	
  create an interaction with the Universe [7], so they are no longer treated like test particles. 
	
		
			

				𝑝
			

		
	
 denotes all the 
	
		
			

				𝑝
			

			

				𝑛
			

		
	
, which remain constant because 
	
		
			

				𝐾
			

		
	
 is independent of the radial coordinates 
	
		
			

				𝑟
			

			

				𝑛
			

		
	
.
2. Canonical Equations
Hamiltonian (6) is an example of scientific induction [8], from which rigorous mathematical deduction, in the form of Hamilton’s equations, gives the coordinate velocities
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3. Momentum Dominated Epoch
Momentum domination occurs when
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is assumed to be so large that the motion of the receding object approximates that of a massless particle moving at luminal speed during this era.  In this respect, it is like a radiation era but with repulsive radiation, rather than the attractive radiation of Hamiltonian (4).  But the end result is the same, as the Universe expands and matter domination sets in.
4. Matter and Vacuum Dominated Epochs
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, which occurs naturally in Einstein’s equation, is a classical property of the vacuum, whose quantum fluctuations are not invoked here because virtual particle-antiparticle pairs created spontaneously from the vacuum can have positive or negative energy [9], making it uncertain whether such vacuum fluctuations can explain
	
		
			

				Λ
			

		
	
, since their contributions to positive and negative
	
		
			

				Λ
			

		
	
may be canceled.
5. Conclusions
The initial singularity of the Standard Model comes from neglecting the conserved momenta
	
		
			

				𝑝
			

			

				𝑛
			

		
	
in the relativistic mass terms of Hamiltonian (6). When the
	
		
			

				𝑝
			

			

				𝑛
			

		
	
are included, Einstein’s equation forbids a singularity, thereby disproving the singularity theorems [1, 3, 10]. This    quantum leap in cosmology is achieved within the framework of general relativity, through the classical mechanism of momentum, without quantization or any non-Einsteinian effects. It does not improve on Einstein’s theory, but proves that Einstein’s theory is much better than it was thought to be. Other models based on a nonsingular bounce followed by expansion are not strictly Einsteinian, because they invoke other mechanisms [11]  in lieu of the
	
		
			

				𝑝
			

			

				𝑛
			

		
	
, whereas this galactic momentum is the essential mechanism of nonsingular Einsteinian cosmology.
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