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ABSTRACT
Various filtering strategies have been adopted and investigated to suppress the cardiopulmonary
resuscitation (CPR) artifact. In this article, two types of artifact removal methods are reviewed:
one is the method that removes CPR artifact using only ECG signals, and the other is the method
with additional reference signals, such as acceleration, compression depth and transthoracic
impedance. After filtering, the signal-to-noise ratio is improved from 0 dB to greater than 2.8 dB,
the sensitivity is increased to > 90% as recommended by the American Heart Association,
whereas the specificity was far from the recommended 95%, which is considered to be the major
drawback of the available artifact removal methods. The overall performance of the adaptive
filtering methods with additional reference signal outperforms the methods using only ECG
signals. Further research should focus on the refinement of artifact filtering methods and the
improvement of shock advice algorithms with the presence of CPR.

Keywords: cardiac arrest, cardiopulmonary resuscitation, chest compression, ECG, artifact
filtering 

1. INTRODUCTION
Cardiac arrest, represented by a sudden loss of cardiac function, remains to be a major
public health problem and a leading cause of death in many parts of the world [1–3].
Most of cardiac arrest events result from unexpected ventricular fibrillation (VF) along
with underlying coronary artery diseases and myocardial ischemia [4]. Immediate
bystander cardiopulmonary resuscitation (CPR) and early electrical defibrillation
are the recommended treatments for VF. Survival rate decreases 3%–4% for each
minute of defibrillation delay if bystander CPR is provided [5, 6]. If CPR is not
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provided, the decrease in survival rate will reach 7%–10% per minute [7]. CPR
improves the victim’s chance of survival by providing heart and brain circulation.
Thus, the latest guidelines from the American Heart Association (AHA) and the
European Resuscitation Council (ERC) emphasize the importance of early,
uninterrupted chest compression combined with early defibrillation for a successful
resuscitation after cardiac arrest [8, 9].

However, when CPR is performed, the mechanical activity associated with
thoracic compressions and ventilation introduces artifact components into the
electrocardiogram (ECG) signals. These artifacts can condition the shock/non-shock
decision of an automated external defibrillator (AED) [10]. In order to perform a
reliable ECG signal analysis and provide appropriate defibrillation to patients, CPR
is mandated to be interrupted during current resuscitation effort. According to
Snyder et al. [11], the average time interval required for rhythm analysis was
between 5.2 to 28.4 seconds for commercial AEDs, and only one AED could detect
a shockable rhythm within 10 seconds. Therefore, both chest compression and
ventilation must be interrupted up to 30 seconds to determine whether a
disorganized, shockable rhythm has developed for the current commercial AEDs
[11]. However, the duration of these “hands-off” intervals adversely affects the rate
of restoration of spontaneous circulation (ROSC) [12]. In experimental animals, a 20
seconds conventional “hands-off” interruption of chest compression reduced the
likelihood of successful resuscitation by as much as 50% [13]. Significantly better
outcomes were reported if the hands-off intervals were minimized or totally avoided
[14]. In a recent multicenter clinical study, Cheskes et al. [15] proved that longer
pre-shock and post-shock pauses were independently associated with a decrease in
survival to hospital discharge for patients suffering from cardiac arrest and
displaying a shockable rhythm. Therefore, the 2010 AHA Guidelines emphasize the
minimization of the hands-off interval between the compression and the shock
[16,17]. If the ECG waveform analysis algorithms (designed to detect a shockable
rhythm, predict the likelihood of successful defibrillation, and evaluate the
effectiveness of chest compression in current AEDs) can perform well during
ongoing chest compression, they may significantly improve the survival rate
compared with standard analysis techniques which work during “hands-off”
intervals [18–20]. However, reliable and accurate ECG waveform analysis is a
difficult task, especially with the presence of CPR artifact, since the frequency of the
human ECG signal is largely overlapped with the characteristic frequency of CPR
artifact [21]. Meanwhile, the rates and amplitudes of chest compressions and the
ventilations vary with time and therefore, the waveform of the ECG signal corrupted
by CPR artifact changes with time, which also increases the complexity of rhythm
analysis during CPR. Thus, ECG analysis during CPR is a delicate signal processing
problem and needs sophisticated adaptive algorithms.

So far, many digital signal processing techniques have been developed to address the
problem of cardiac rhythm analysis during uninterrupted CPR, with two major solutions
reported in recent studies. One of them features suppressing/eliminating the artifact and
reconstruct the fundamental ECG signal using filtering techniques [22–27]. The other
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searches the identifiable components directly in the corrupted ECG signals for cardiac
rhythm recognition by advanced algorithms, such as the study by Li et al. [13].

This article reviews the techniques developed for ECG artifact filtering during
uninterrupted CPR. The purpose of this study is to compare the advantages of different
methods and their efficacies for artifact removal in out-of-hospital cardiac arrest
patients.

We organize this paper as follows. Section 2 presents the publication sources and the
searched results. Section 3 introduces the characteristics of artifact and the data models
used to evaluate the algorithms. Section 4 summarizes the proposed methods designed
for artifact filtering during CPR. Section 5 describes the performances and efficacies of
different artifact removal methods reported in the literature. In Discussion (section 6),
the advantages and disadvantages of different methods are compared. In Limitation
(section 7), potential disadvantages of comparison among different datasets and
evaluation criterion are addressed. In Conclusion (section 8), a brief outlook of future
research direction in this important field is proposed.

2. METHOD OF LITERATURE SEARCH
For a systematic review of all the methods developed for CPR artifact removal, we
searched different databases, such as NCBI, EBSCOhost, Embase, Medline,
SpringerLink, ScienceDirect, Web of Science and IEEEXplore, with the keywords of
artifact filter/filtering/removing and cardiopulmonary resuscitation. A total of 122
publications were collected. Table 1 shows the databases and number of publications
searched. Two criteria were used to select these references: the artifact removal
algorithms developed for CPR artifact filtering, and the experimental or clinical
performance of different algorithms applied to human ECG data. Among these
publications, 56 engineering and medical papers were used as references according to
the criteria. Finally, 8 papers from ScienceDirect, Web of Science and IEEEXplore about
Kalman filter [28, 29], independent component analysis (ICA) [30], coherent line
removal [31] and adaptive filter [25, 32–34] were described, compared and discussed
according to different artifact removal strategies.
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Table 1. Databases and number of related publications (selected/total references)

Database Number of publications

NCBI 5/16
EBSCOhost 10/22
Embase 7/8
Medline 2/3
Springer Link 1/5
Science Direct 11/35
Web of Science 12/17
IEEEXplore 8/16



3. ARTIFACT CHARACTERISTICS AND TESTING DATA MODEL
3.1. Artifact Characteristics
The source of CPR-related artifact during chest compression has not yet been well
addressed. According to Fitzgibbon et al. [21], the artifact was predominantly from the
electrode-skin interface. The corrupted ECG might also include signals generated by
direct impact of the compressions on chest wall and signals generated by the contraction
of thoracic muscles. In addition, both the static electricity and equalizing currents
between the ECG amplifier and the patient might contribute to the artifact signals that
obfuscated ECG rhythm interpretation [35].

Characteristics of CPR-related artifact feature relative high amplitude and large
frequency overlap within the frequency bands of the artifact-free ECG. Figure 1
illustrates the ECG tracing and the time frequency representation of the three common
cardiac rhythms. The data were existing AED data, recorded from patients who
experienced cardiac arrest and CPR, by the investigators in such a manner that subjects
cannot be identified directly or through identifiers linked to the subjects. For asystole
(Figure 1-A) that represents the state of no contractions of the myocardium and no
electrical activity of the heart, a waveless flat line is recorded in the ECG. The signals
recorded during compressions can be regarded as the pure artifact produced by CPR.
The energy of the artifact is concentrated around the harmonics of the fundamental
frequency near 2 Hz with a bandwidth of approximately 0–20 Hz. For VF signal that
represents the uncoordinated contraction of the cardiac muscle of the ventricles,
disorganized signal without identifiable QRS complexes is recorded in the ECG, as
shown in Figure 1-B. The energy of VF signal lies in the frequency band of 0–18 Hz,
which is totally covered by the artifact. For pulseless electrical activity (PEA) (Figure
1-C) that represents a cardiac arrest situation in which a typical QRS complex is at a
relative low heart rate, the time-frequency representation shows that a wider bandwidth
(0–40 Hz) QRS complex is overlapped with a continuous-time noise with bandwidth of
0–20 Hz when the chest is being compressed.

3.2. Data Model for Testing
The data used to test the performance of each artifact removal algorithm is usually
generated by the superposition of pure CPR artifact and clean ECG signal. As shown in
Figure 2, the CPR artifacts collected during asystole are added to human ECG signals
recorded from out-of-hospital cardiac arrest patient without compression at a preset
signal-to-noise ratio (SNR) level [35]. These artifact-free ECG signals are generally
collected during the hands-off interval of CPR, which can be identified by the
synchronized recorded reference signals such as acceleration, compression depth or
transthoracic impedance [13]. The combined signals with known SNR are filtered by
artifact removal algorithms to suppress the CPR artifacts. The processed signals are then
evaluated by the restored SNR or validated by a shock/non-shock decision algorithm.

Another reported data model is to feed the uncorrupted human ECG signals into the
heart of the animal with preset amplitude, and to record the corrupted ECG signals from
the thorax of the animal during CPR [36].
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Figure 1. Waveforms of 20 seconds human ECG and the time frequency
representation of (a) asystole, (b) ventricular fibrillation, and (c) pulseless
electrical activity.



4. ALGORITHMS FOR ARTIFACT FILTERING DURING CPR
In this section, we review the reported algorithms for artifact filtering during CPR.
These methods are summarized as the following two categories: 1) methods using only
the ECG signals, such as Kalman filter and coherent line removal method using single
channel ECG, or ICA that uses multichannel ECGs; 2) methods with additional
reference signals besides ECG waveform, such as adaptive filter [33] with single
channel reference or MC-RAMP [25] which uses multichannel references.

4.1. Methods using only ECG Signals
4.1.1. Kalman Filter
The Kalman filter estimates the state of a linear dynamic system in time domain. It is
assumed that system state sn in time n is determined by the previous state sn–1 and the
controlling vector un, and affected by random noise vn:

(1)

where An is the state transition matrix, Bn is the matrix specifying the control input, and
vn is the process noise of Gaussian distribution with zero mean.

The observation zn of the current system state sn is distorted by noise wn:

(2)

where Mn is the matrix describing the linear operation of taking the observation, and wn

is assumed to be Gaussian distribution with zero mean. The current system state can be
estimated recursively by the previous state information [37].

In the application of CPR artifact suppression, the CPR artifact presents an almost
periodic waveform during chest compressions. Kalman method is appropriate for CPR
artifact removal because the recursions provide a numerically fast and adaptive way to
estimate CPR artifact from the CPR-corrupted ECG signal.

Rheinberger et al. [29] proposed a Kalman state-space method for removing CPR
artifacts in ECG signals. This approach represented the CPR-corrupted signal by a
seasonal state-space model, which allowed for a stochastically changing shape of the
periodic signal and also coped with time dependent periods. The CPR filtered ECG
signals were used to identify the residuals of the Kalman estimation. In this method, the

zn n n nM s w= +

sn n n n n nA s B u v= + +−1
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transition and observation matrices, as parts of the structural state-space model [38],
were updated by reduced maximum likelihood estimation for given observations to
reach their optimal values.

Ruiz et al. [28] designed a new CPR suppression method based on Kalman filter, in
which the artifact was modeled using the fundamental frequency of the compressions.
The frequency of the compression and the relative power content of the artifact were first
estimated from the corrupted ECG signal. If the estimated power of the artifact value was
lower than a threshold, asystole was excluded and the Kalman filter was used to
eliminate the artifact. Then the ECG was fed to the shock/non-shock decision algorithm.

The artifact model is composed of two harmonically related sinusoids:

(3)

where Ω0 is the discrete frequency corresponding to the compression frequency, and K
is a binary coefficient used to select the second harmonic. Finally, the time-varying
amplitudes C0(n), C1(n), and phases of the sinusoidal components φ0, φ1, are
recursively estimated as the state variables of a four-state Kalman filter.

4.1.2. Independent Component Analysis
ICA is a statistical and computational technique used to decompose a multichannel
mixed signal into independent components [39–42]. It can be represented by a model:

(4)

where x = {x1, x2,..., xn} is the measured signal from n channels, D is the mixing matrix,
and s = {s1, s2,..., sn} is the signal source which is assumed to be statistically independent.
If the mixing matrix D is known, the independent components can be obtained by:

(5)

In the application of CPR artifacts suppression, ECG signals and CPR artifacts are
assumed to come from independent sources. Therefore, if the demixing matrix D–1 is
known, CPR artifacts and artifact-free ECG signals can be separated.

Granegger et al. [30] applied ICA to the CPR-corrupted human ECG signals to
reconstruct the ECG signals. In this study, eight channels of human ECG signals were
simultaneously recorded in an animal model [36]. In this model, observed signal x
collected from eight channels was a mixture of human ECG signals and CPR artifacts.
The corrupted signals were assumed to come from independent sources of s. These
mixed signals were used to compute the inverse matrix in equation (5), which could
separate the ECG signals from corrupted signals.

4.1.3. Coherent Line Removal
Coherent line removal algorithm removes the periodic signals with sufficiently coupled
harmonics [43]. For the reduction of CPR-related artifacts in VF, Amann et al. [31]

s D x= −1

x Ds=

v n C n n n KC n nCPR ( ) ( ) cos( ( )) ( ) cos(= + + +0 0 0 1 02Ω Ωφ φφ1( ))n
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adopted the time-frequency method of coherent line removal algorithm to the specific
situations by optimizing its parameters.

In coherent line removal algorithm, the coherent part a(n) of x(n) = s(n) + a(n) is
described as

(6)

where the over bar denotes complex conjugation and αk are appropriate coefficients,
and m(n) is a nearly monochromatic signal,

(7)

with slowly varying amplitude r(n) and frequency of compression f0(n), and .
If no CPR artifacts are presented in a time window, αk is set to 0 for all harmonics,
where k = 1, 2,...,M.

4.2. Methods with Additional Reference Signals
Adaptive filter is a classical algorithm which needs additional references to filter input
signals by adjusting the transfer function according to an optimization algorithm driven
by an error signal [44, 45]. Basically, two types of optimization procedures have been
employed to adjust the filter coefficients: Least Mean Squares (LMS) and Recursive
Least Squares (RLS).

The block diagram of LMS method is shown in Figure 3. In this application, the aim
is to estimate the real ECG signal s(n) from the corrupted ECG signal x(n):

(8)

where a(n) is the CPR artifact related noise.
The output of error signal ŝ(n) is used to update the adaptive filter coefficient

h(n):

x n s n a n( ) ( ) ( )= +

i = −1

m n r n if n( ) ( ) exp[ ( )]= 2 0π

a n m n m nk
k

k
k

k

M

( ) ( ) ( )= +
=

∑ α α
1
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(9)

where u denotes the step factor. If the reference signal v(n) is related to CPR artifact in
the corrupted ECG signal, the output error signal ŝ(n) is considered to be the estimation
of designed ECG signals.

Irusta et al. [32] estimated the CPR artifact using the frequency of the compressions
as the additional reference. In this application, the CPR artifact was assumed to be
periodic signal with the frequency of the compression as the fundamental frequency.
The time-varying frequency of the compressions was estimated by determining the
negative peaks of the compression depth signal. Based on the frequency of the
compressions, the CPR artifact was modeled through its Fourier series representation,
using harmonics of time-varying amplitude and phases.

During compressions, the artifact is modeled as:

(10)

where Ck(n) and φ (n) are the amplitude and phase of each harmonic. Based on LMS,
φ (n) is used as the reference input, and the output error ŝ(n) is used as the feedback to
update coefficients Ak(n) and Bk(n). The output error ŝ(n) is the estimation of designed
ECG signals, as shown in Figure 3.

Tan et al. [33] introduced a digital filter which was termed as artifact reduction and
tolerant filtering algorithm (ART). In this application, CPR artifact-correlated signals of
compression acceleration were collected by the sensor placed beneath the rescuer’s
hand. These signals were served as the input reference to estimate the real ECG signal
by adaptive noise canceller.

Husoy et al. [34] developed a Multichannel Recursive Adaptive Matching Pursuit
(MC-RAMP) approach for practical real-time removal of CPR artifact from human
ECG signals. The MC-RAMP [46] was an extension of adaptive filter algorithm using
multichannel reference signals. In this method, four reference signals including
acceleration, compression depth, ECG common and transthoracic impedance were used
as reference inputs of adaptive filter. The objective was to find â(n) as the best possible
estimate of the artifact part of corrupted signal x(n), so that it could be removed by
subtracting â(n) from x(n). A common solution for adaptive noise canceller is to find
the filter coefficients (K is the number of reference signals),
at each time t which approaches the minimum of the objective function:

(12)J n x n a n
i n L

n L

( ) [ ( ) ˆ( )]= −
= −

+

∑ 2

2

1
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over a rectangular window of size determined through the selection of L1 and L2,
denoting that L1 = 0 and that L1 = L – 1 for convenience.

5. RESULTS
The purpose of filtering artifact from CPR-corrupted ECG signals during resuscitation
is to enable rhythm analysis during continuous chest compression, thereby increasing
the resuscitation success rate by shortening the pre-shock and post-shock pauses of
CPR. In order to evaluate the performance of these methods, a large patient dataset is
needed and two types of criteria are commonly employed: the restored SNR for
corrupted ECG signals constructed by the superposition of artifact-free ECG signals
and CPR artifacts, and the improvement of sensitivity and specificity of shock/non-
shock decision of an AED for signals recorded from out-of-hospital patients during
CPR. The sensitivity was expected to be above 90% for VF rhythms, and the specificity
was expected to be above 95% for non-shockable rhythms, according to the desired
performance goals for arrhythmia analysis algorithms recommended by the AHA task
force on AEDs [47]. In this section, we describe the performances of the methods in
three segments: (1) performances of algorithms using only the ECG signals, (2)
performances of algorithms with additional reference signals, (3) a study to compare
different artifact removal methods with the same database and criterion. Table 2 lists the
performances of different CPR artifact filtering algorithms presented in the previous
section.

5.1. Algorithms Using only the ECG Signal
For Kalman filter, Rheinberger et al. [29] used restored SNR to evaluate the
performance of the proposed state-space method. Seven porcine asystole ECG signals
representing CPR artifacts and seven human artifact-free VF signals were added
pairwise with specific SNR. For each of the 49 mixed signals, the restored SNR
improved at all SNR settings. Ruiz et al. [28] used the shock/non-shock decision of an
AED to evaluate the performance of the proposed four-state Kalman filter. A dataset
consisting of 131 shockable and 347 non-shockable episodes was processed by the
proposed filtering method. The sensitivity improved from 59% to 90% for the detection
of a shockable VF, while the specificity decreased from 91% to 80% for the detection
of a non-shockable rhythm.

For ICA method, Granegger et al. [30] collected 918 corrupted ECG multichannel
signals to test the performance of their method. The corrupted signals were obtained by
a special animal model. In this model, a catheter was placed in the esophagus, and
human ECG signals were fed in close to the dead pig’s heart. The corrupted ECG
signals were recorded on the thorax during ongoing chest compressions. The sensitivity
of the AED’s shock/non-shock decision increased from 93.5% to 99.8%, and the
specificity increased from 50.5% to 83.2%.

For coherent line removal, Amann et al. [31] generated the corrupted ECG signals
by mixing 14 human VF signals with 12 CPR artifacts recorded in an animal during
asystole with different SNR levels. The performance of the algorithm was tested
through 168 episode pairs. For corrupted signals with SNRs of –20 dB, –15 dB, –10 dB,
–5 dB, and 0 dB, the restored SNRs were 9.3 ± 2.4 dB, 9.4 ± 2.4 dB, 9.5 ± 2.5 dB,
9.3 ± 2.5 dB, and 8.0 ± 2.7 dB after filtering, respectively.
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5.2. Algorithms with Additional Reference
5.2.1. Signals Generated by Mixing Artifact-free Human ECG with Animal CPR Artifact
To evaluate the performance of the adaptive filter with additional references, signals
generated by combining artifact-free human ECG with animal CPR artifact are used.
Husoy at el. [34] used transthoracic impedance, compression depth, ECG common and
acceleration as the multiple input reference signals to remove artifact by the proposed
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Table 2. Performances of different CPR artifact filtering algorithms (restored
signal to noise ratio (SNR) is given in the form of mean ± std.)

Data source Author Year Method Dataset Results

Out-of-hospital Ruiz, 2008 Four-state 131 shockable and Sensitivity 
cardiac arrest et al. [28] Kalman filter 347 non-shockable 91%
patients episodes Specificity 

80%
Irusta, 2009 Compression 89 shockable and Sensitivity 
et al. [32] frequency 292 non-shockable 95.6%

based Adaptive Specificity 
filter 86.4%

Eilevstjonn, 2004 MC-RAMP 92 shockable Sensitivity 
et al. [25] and  174 non 96.7%

-shockable Specificity 
episodes 79.9%

Tan, 2008 ART 114 shockable Sensitivity 
et al. [33] and 4155 non- 92.1%

shockable Specificity 
episodes 90.5%

Animal CPR Rheinberger, 2005 Kalman 7 Porcine CPR Restored SNR 
artifact et al. [29] State-space artifacts mixed from 0 dB to 
mixed  with method with 7 human VF 2.8 ± 1.4 dB
human ECG

Granegger, 2011 ICA 437 shockable Sensitivity 
et al. [30] and  417 non- 99.8%

shockable human Specificity 
ECG corrupted by 83.2%
animal CPR 
artifacts

Husoy, 2002 MC-RAMP 24 Animal CPR Restored SNR 
et al. [34] artifacts mixed from  0 dB to

with 200 human 7.38 ± 1.78 dB
VF and 71 
human VT

Amann, 2010 coherent line 12 Animal CPR Restored SNR
et al. [31] removal artifacts mixed with from 0 dB to 

14 human VF 8.0 ± 2.7 dB



MC-RAMP. To simulate CPR artifact in corrupted ECG signals, 24 records of animal
asystole ECG signals with CPR artifacts were added to 200 records of human VF
signals and 71 records of human ventricular tachycardia signals. For signals with SNR
of 0 dB, the restored SNRs were ranged from 5.5 dB to 7.4 dB with different
combinations of these four types of reference signals.

5.2.2. Signals Recorded from Out-of-hospital Patients
To validate the clinical performance of adaptive filter with additional reference, Irusta et al.
[32] used the compression frequency as reference to suppress the CPR artifact. The
algorithm was tested through 89 shockable and 292 non-shockable ECG samples recorded
from out-of-hospital cardiac arrest patients, and the performance was validated using the
shock advice algorithm of a commercial AED. The sensitivity and specificity were 97.8%
and 99.0% with artifact-free ECG signals, respectively, and decreased to 58.4% and 90.8%
when ECG signals were corrupted by the CPR artifact. After filtering, the sensitivity
improved to 95.6%, while the specificity decreased to 86.4%, by using LMS filter.

Tan et al. [33] used compression acceleration as a reference to filter the CPR
artifacts. The algorithm was evaluated through 114 shockable and 4,155 non-shockable
ECG samples recorded from out-of-hospital patients. Figure 4 and Figure 5 illustrate
the waveforms of corrupted, filtered ECG and acceleration signals using the ART filter.
For both VF and PEA signals, the CPR artifacts were well suppressed after processing.
As a result, a sensitivity of 92.1% and a specificity of 90.5% were achieved.

To validate the algorithm of MC-RAMP through the performance of shock/non-
shock decision, the reference signals including acceleration, compression depth, ECG
common and transthoracic impedance were synchronized and recorded through a
modified AED prototype in real resuscitation scenarios by Eilevstjonn et al. [25]. For a
patient dataset consisting of 92 shockable and 174 non-shockable episodes, a sensitivity
of 96.7% and a specificity of 79.9% were achieved, with an increase of approximately
15.0% and 13.0%, respectively, compared with the unfiltered data.
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ECG signal with CPR artifact ECG signal without CPR artifact

Figure 4. An example of filtering for ventricular fibrillation. The upper trace is the
measured ECG signal with/without CPR artifact. The middle trace is the
filtered signal. The lower trace is CPR acceleration signal (Reprinted
with permission from Tan et al. [33]). 



5.3. A Study on Comparison of Different Artifact Removal Methods
To evaluate the efficiency of different artifact removal methods with the same dataset
and identical criterion, Werther et al. [48] compared the performance of four different
algorithms with signals generated from 395 human artifact-free ECG signals and 13 pure
CPR artifacts with corresponding blood pressure serving as reference channels. The
human ECG signals were combined with CPR artifacts at different SNR levels ranging
from –10 dB to +10 dB. After filtering, CPR artifacts were suppressed and the
improvements were significant for all of the four following algorithms: the adaptive
matching pursuit algorithm (AF), the regression Kalman state-space model (KF), the
motion artifact reduction system using noise cancellation (NC), and the Gabor multiplier
(GM). The sensitivity improved from 76.0% to 100.0%, 100.0%, 99.0%, and 96.2% (all
above the 90% requirement for shockable rhythm detection). The specificity, however,
was 84.0%, 86.8%, 83.6%, and 89.7% for AF, KF, NC and GM, respectively, without
significant improvement compared with the 89.3% specificity for the unfiltered data.

6. DISCUSSION
Accurate and prompt detection of shockable rhythms is of vital importance in AEDs.
However, reliable detection of ECG rhythms is still a difficult task, especially in the
presence of artifacts, such as in the scenario of CPR.

As the Kalman filter estimates CPR artifact from the corrupted ECG signal
directly without additional information of reference signals, it can be easily
incorporated without additional hardware structure of AED. But Kalman filter
requires a priori knowledge of the artifact to evaluate the result recursively [49].
Therefore, the CPR signal is assumed to be a periodic or quasi-periodic signal.
However, in practice, CPR artifact may not be a periodic or quasi-periodic signal due
to the electrode movement.

Compared with Kalman filter, adaptive filter with a related reference signal needs
no a priori statistical knowledge of the CPR artifact [50–52]. It requires one or more
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Figure 5. An example of filtering for pulseless electrical activity. The upper trace
is the measured ECG signal with CPR artifact. The middle trace is the
filtered signal. The lower trace is CPR acceleration signal (Reprinted
with permission from Tan et al. [33]).



additional channels to collect reference signals which would increase the complexity
of algorithm as well as the structure of AED. When the reference signal comes from
another channel that is independent of the ECG signal but correlated with the CPR
artifact, the CPR artifact can be suppressed as the reference signal contains useful
information about the CPR artifact. Thus, the correlation between reference signal and
artifact determines the performance of the filter. However, choosing the appropriate
reference signals to suppress CPR artifact is still a challenge that limits the performance
of adaptive filter. Even though multichannel references are used in some methods, the
improvement is not significant.

The method of ICA can decompose the mixed statistical independent signals, but it
needs multichannel signals containing different information of the ECG sources and
artifact sources to form up the mixing matrix. When mixed sources are separated, the
source of ECG must be identified. However, correctly identifying ECG sources is still
a challenge. Besides, ICA is not capable of dealing with asystolic signals, since
asystolic ECG signals do not represent an identifiable source if electrical heart activity
ceases. When asystole occurs, ICA would fail to correctly reconstruct the signals and
could also misclassify the extracted component.

The performance of these methods showed that the sensitivity increased to more than
90%, above the 90% level recommended by AHA Task Force on AED, while the
specificity ranged from 79.9% to 90.5%, far below the recommended 95%. Compared
with the published results of sensitivity, ICA method outperformed others, with a value
of 99.8%. In terms of specificity, the adaptive filter proposed by Tan et al. performed
better than other methods, with a value of 90.5%.

These results show that although the sensitivity of the shock advice algorithm is
greatly improved, the specificity is still below the recommended level especially for
PEA and asystole, perhaps due to the electrical activity in the heart and thorax muscle
or the movement of the electrode pads during compression [53, 54]. Therefore, the
filtered signals may still contain residual components of artifact, as shown in figure 5,
which lies in the same frequency band as VF signal (Figure 1-B and Figure 1-C). These
residual artifact components lead to an inappropriate analysis and reduce the specificity
of AED. Besides, lack of artifact-related components in the reference signal for the
adaptive filter and/or limitation of shock advice algorithms may also result in
insufficient specificity. Although some algorithms have been successfully incoporated
in commercial AEDs and can display filtered ECG signals during CPR, the result can
only serve as a reference to help physicians in making a decision, and the filtering
technique has not been employed for automate rhythm analysis. Insufficient specificity
may cause inappropriate shock delivery to patients with non-shockable rhythms, which
may be the major reason why the clinical use of filtering devices for rhythm analysis
during CPR has not been supported and accepted [55].

7. LIMITATIONS
Different datasets were used to test the algorithms summarized in this review. Some are
generated by the linear superposition of animal CPR artifact and human artifact-free
ECG signal, whereas the others were recorded from the out-of-hospital patients. The
use of different datasets would reduce the reliability of comparison among different
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methods. In addition, using different criteria for evaluation in different papers is another
limitation. The criterion of restored SNR is an engineering standard which is calculated
as the ratio of the signal and noise powers. The sensitivity and specificity are clinical
standards mainly concerning the output of an AED. Whether a great improvement in
SNR would achieve high values of sensitivity and specificity has not been established.
Moreover, the shock advice algorithms used in these methods are different, which also
reduce the reliability of direct comparison among different methods based on sensitivity
and specificity.

8. CONCLUSION
Removal of CPR-related artifact from corrupted ECG signals could enable continuous
detection of rhythm changes and estimation of the probability of defibrillation success.
This would avoid the “hands-off” analysis intervals which diminish the cardiac
perfusion and thus lower the chance for a successful defibrillation attempt. The artifact
filtering techniques proposed for ECG rhythm analysis during CPR are promising but
still facing challenges, especially for the non-shockable rhythms. Filtering methods
with reference signals outperform those methods without references if the reference
signals are well correlated with artifacts. Further studies are therefore recommended to
improve the performance of adaptive filters by choosing appropriate reference signals,
and analyzing the interaction between the filtering method and shock advice algorithm
of AED to improve the accuracy of non-shock decision. Investigations should also
focus on both the refinement of artifact filtering algorithms and the improvement of
shock advice algorithms with the presence of CPR [56].
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