Research Article

Tip-Over Stability Analysis of a Pelvic Support Walking Robot

Yawei Han,1 Shuai Guo,1 Leigang Zhang,1 Fengfeng (Jeff) Xi,2 and Weiwei Lu3

1Department of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
2Department of Aerospace Engineering, Ryerson University, Toronto, Canada
3Shanghai Testing & Inspection Institute for Medical Devices, Shanghai, China

Correspondence should be addressed to Shuai Guo; guoshuai@shu.edu.cn

Received 12 August 2019; Revised 21 November 2019; Accepted 23 December 2019; Published 7 February 2020

Guest Editor: Ludovico Minati

Copyright © 2020 Yawei Han et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Discussed in this paper is the tip-over stability analysis of a pelvic support walking robot. To improve the activities of daily living (ADL) in hemiplegic patients, a pelvic support walking robot is proposed to help patients facilitating their rehabilitation. During the gait training with the robot, the abnormal man-machine interaction forces may lead to the tip-over of the robot, which is not beneficial to the rehabilitation process. A new method is proposed to predict the possibility of tipping over and evaluate the stability of the robot based on statics model, dynamics model, and zero-moment point (ZMP) theory. Through the interaction forces and moments analysis with static case, the safe point (ZMP) is studied, and the influence factors of force/moment are analyzed by dynamics case. An optimization algorithm based on the genetic algorithm (GA) is proposed to reduce the risk of tipping over. The simulation results show that the optimization algorithm can keep the robot from tipping over when the interaction forces exceed the safety threshold.

1. Introduction

As a result of the acceleration of population aging, the World Health Organization reported over 17 million confirmed cases of stroke in 2016 [1]. Most stroke patients suffer from lower-extremity motor dysfunction after surgery, which severely affects the ADL of the patient. However, ~70–80% of patients can benefit from the timely and effective rehabilitation process and can restore the motor function and balance function. During the gait training, the fall prevention and safe training environment are important. It is necessary to analyze the safety of the robot by the tip-over stability analysis.

In recent years, many universities, research institutes, and hospitals have developed mechanical equipment that can help the patients with the gait training. The Lokomat [2] is a highly automated suspension lower-limb rehabilitation robot that connects the lower-extremity exoskeleton system to the suspension weight reduction device through a four-bar mechanism. The robot is stationary and has little possibility of tipping over. The Andago [3] assisted rehabilitation robot developed by HOCOMA in Switzerland reduces the load on the lower limbs during the gait training by suspending weight loss on the pelvis. This suspension weight loss has a great influence on the coordinated movement of the upper and lower limbs. The designers avoid the tip-over by adding counterweight to the moving platform. The KineAssist [4] robot uses a pelvic support device with a moving platform to realize the movement of the patient, but the rotation center of the chassis is not on the same vertical line with the rotation center of the human body, directly affecting the patient’s steering comfort. Carleton University developed a mobile limb training robot called GaitEnable [5]. This robot is smaller and lighter than KineAssist. It is a combination of a mobile lower-limb training robot and a walking robot. GaitEnable step trainer is omnidirectional. The device controls the support polygon of the robot, the position of the pelvis, and the posture of the robot. The GaitEnable and KineAssist are equipped with universal wheels to maintain stability via the change of the center of mass.
During the gait training, the man-machine interaction forces may exceed the normal values. There is a risk that the robot will tip over because the forces acting on the robot are beyond the safety threshold, causing potential harm to the patients. Based on this concerning, the tip-over stability of the robot should be analyzed to study the threshold of the interaction forces and the effective ways to stabilize the robot.

In this paper, the tip-over stability of a pelvic support walking robot, as shown in Figure 1, is analyzed: (1) the analysis of the safe range of interaction forces; (2) the analysis of the influence factors of tipping over; (3) the study of the optimization algorithm based on ZMP and GA.

2. System Description

The mechanical structure diagram of the robot is shown in Figure 2. Combining the revolute pair and the prismatic pair, the robot can realize the six degrees of freedom of motion in space: flexion and extension in the sagittal plane; adduction and abduction in the coronal plane; internal rotation and external rotation on the horizontal plane; and movement of the front, back, left, and right, and up and down. According the range of motion of healthy people [6, 7], the workspace of the robot is designed to be larger than the healthy people’s need. Also, the rotation center of the robot should coincide with the people’s rotation center to make the people more comfortable during the gait training.

The function of the robot is to provide the patients with pelvic support and help them during the gait training. This function is realized through the mobile platform (MP), the body weight support (BWS), and the pelvic-assisted mechanism (PAM). The PAM can support the patient and help them to realize the movement in cross section and the rotation around the sagittal axis, the vertical axis, and the coronal axis. The BWS can lift the pelvic support mechanism and patient to realize the movement in the vertical direction: the pelvis moves periodically along the vertical axis. With the help of the MP, the motion range of the patient can be extended throughout the environment.

As shown in Figure 2, the MP has two driving wheels installed on the rear to drive the mobile platform, and two universal wheels are installed at the front. With the differential motion of the two driving wheels, the robot can realize turning motion on the ground. And the robot can rotate around the center of two drive wheels’ connection (around the Z-axis).

The BWS consists of a ball screw and a slider. The PAM is fixed at the slider, and the slider can move along the ball screw with low friction. The PAM can move along the Z-axis to adapt the motion of the pelvis.

The PAM provides support to the pelvis and can realize the motion of the pelvis. And the signals that needed to control the robot or evaluate the patient’s movement are detected in this part.

The movement along the X-axis and Y-axis on the horizontal plane is realized by a four-bar mechanism as shown in Figure 2(b). The four-bar mechanism consists of four links. The rotation of J_1 will produce the movement of J_3 on the horizontal plane. A potentiometer is installed on J_2 to detect θ_2. The movement of J_3 can be calculated: $X = l_2 \cos \theta_2$, $Y = l_2 \sin \theta_2$. In order to provide elasticity in the direction of X-axis and Y-axis, a spring damping mechanism is installed between the four links. The forces will overcome the movement along the X-axis and Y-axis and make the patient know whether their pelvis center deviates from the normal position. The elasticity also can be adjusted according to different patients’ needs. The rotation of J_4 realizes the rotation around the X-axis (the sagittal axis (α)). Springs are placed between J_4 and the fixed base of the pelvic support mechanism to provide elasticity around the X-axis. θ_4 can be detected by the potentiometer installed on J_5. P_5 and P_6 are prismatic pairs. When P_5 moves forward and P_6 moves backward, the patient will realize the rotation around the Z-axis (the vertical axis (γ)). The sliders of P_5 and P_6 are located between springs to provide elasticity along the Z-axis. The pressure sensors detect the force from patient’s rotation acting on the spring. By analyzing the forces, the direction of the rotation along the Z-axis can be studied. Also, the movement of P_5 and P_6 can be calculated through the force F and spring stiffness k: $s = F/k$. And θ_4 can be calculated as: $\theta_4 = (S_5 - S_6)/D$ when θ_4 is small enough. Two universal joints are fixed at P_5 and P_6 to realize the rotation around the Y-axis (coronal axis (β)).

3. System Modeling and ZMP Theory

3.1. Statics Modeling. As shown in Figure 2, the robot coordinate system $(O_xO_yO_z)$ is fixed at the center of the connection of two driving wheels. The end-effector of the robot is the pelvis of patient, the $O_pO_xO_yO_z$ is attached. $O_x O_y O_z$ $(i = 1, 2, \ldots, 5)$ is the joint coordinate system. The rotation center of the pelvis has to be consistent with the rotation center of the mechanism: $l_0 = l_1 + l_2 + l_3 + l_4$; During the gait training, the parameter Z_1 will change accordingly to realize the displacement in the Z-axis direction. The parallel four-bar mechanism composed of joints J_2 and J_3 realizes the X-axis and the displacement in the Y-axis direction: $X = l_1 \cos \theta_1$, $Y = l_2 \sin \theta_2$ (relative to the coordinate system $\Sigma 2$). The establishment of the positive solution matrix equation is based on the recursive formula proposed by Xi et al., which is as follows [8]:

$$p_i = p_0 + \sum_{i=1}^{n} R_i p'_i$$

$$R_i = \prod_{j=1}^{i} R_{m_j}$$

where

(i) p_i is the position of each joint relative to the world coordinate system;

(ii) p'_i is the position vector;

(iii) R_i is the rotation transformation matrix;
(iv) R_{ij} is the coordinate transformation of the adjacent coordinate system;

(v) R_{mj} is the rotation around the current coordinate system, according to the mechanism diagram:
where
\[C_2 = \cos \theta_2, \quad S_2 = \sin \theta_2, \quad \text{and so on;} \quad T_1 = l_0 - l_1 - l_3 - l_2C_2 - l_1; \quad T_2 = S_2S_0 + C_4S_2C_6; \quad T_3 = C_4S_2S_0 - S_4C_6; \quad T_4 = C_6S_4S_2 + C_4S_6; \quad T_5 = C_4C_6 + S_2S_5. \]

(i) \(p_{ci} \) is the vector of the mechanism, which hugs the pelvis.

The center of mass of the link can be viewed as at the center of figure of the link. The vector of the \(i \)th link centroid position in the \(\Sigma 0 \)
\[p_{ci} = p_{c,i-1} + \frac{1}{2} p_i = R_i p_{c,i}. \]

The centroid velocity of the \(i \)th link \(\dot{p}_{ci} \) can be got by derivation on both sides of the equation:
\[\dot{p}_{ci} = \ddot{R}_i p_{c,i} + R_i \dot{p}_{c,i} = \omega_i \times p_{ci} + R_i \dot{p}_c. \]

The centroid acceleration of the \(i \)th link \(\ddot{p}_{ci} \) can be got by derivation on both sides of equation (5):
\[\ddot{p}_{ci} = \dddot{R}_i p_{c,i} + 2 \omega_i \times (\omega_i \times p_{ci}) + \ddot{R}_i R_i p_{c,i} + R_i \ddot{p}_c. \]

where
(i) \(\omega_i \) is the joint angular velocity of \(i \)th link;
(ii) \(p_{ci} \) is the vector of the \(i \)th link centroid position in the \(\Sigma 0 \);
(iii) \(R_i \) is the transformation from \(\Sigma 0 \) to \(\Sigma i \).

3.2. Dynamics Modeling. As the movement of the pelvis has great influence on the robot’s tip-over stability, it is necessary to establish a dynamics model to research the motion parameters’ effect on the robot’s risk of tipping over.

According to Xi et al., the force and moment acting on the \(i \)th joint:
\[w_i = M_i \ddot{q}_i + B_i + H_{ii+1} w_{i+1}, \]
where
(i) \(w_i = [F_i, M_i] \) consists of the force and moment of the \(i \)th joint;
(ii) \(M_i = \begin{bmatrix} m_{i,1} \bar{p}_{i,1}^T \quad m_{i,2} \end{bmatrix} \) is the generalized mass matrix of the \(i \)th link;
(iii) \(\bar{p}_{i} \) is the skew symmetric matrix of centroid vector of the \(i \)th joint;
(iv) \(I_i \) is the inertia tensor of each link;
(v) \(\ddot{q}_i \) is the acceleration of the \(i \)th link;
(vi) \(\bar{B}_i = \begin{bmatrix} m_i \omega_i \times (\omega_i \times p_i) \end{bmatrix} \) consists of the centrifugal force and gyro moment;
(vii) \(\omega_i \) is the angular velocity of the \(i \)th joint;
(viii) \(p_i \) is the vector pointing from the center of the \(i \)th link to the \(i \)th joint;
(ix) \(p_{j} \) is the vector pointing from joint \(i \) to the tip;
(x) \(p_{c,i} \) is the antisymmetric matrix of \(p_i \).

All the forces and moments acting on the machine converted to joint \(i \) can be written as:
\[w_i = M_i \ddot{q}_i + \sum_{k=i+1}^{5} \left(\prod_{j=k+1}^{i} H_{j-1,j} \right) M_{ik} \ddot{q}_k + B_i + \sum_{k=i+1}^{5} \left(\prod_{j=k+1}^{i} H_{j-1,j} \right) B_k + \left(\prod_{j=i+1}^{5} H_{j-1,j} \right) w_p, \]

where \(\omega_p \) is the forces and moments between patient and robot.

3.3. ZMP Theory. The zero-moment point theory [9] is used to evaluate the tip-over stability by comparing the relative positional relationship between the ZMP and the support polygon. The component of the man-machine interaction forces and moments in the horizontal plane needs to be balanced by the friction and the friction torque:
\[\overrightarrow{(OP \times R)}^H + \overrightarrow{OG} \times m_i g + M_A^H + \left(\overrightarrow{OA} \times F_A \right)^H = 0, \]

where
(i) \(\overrightarrow{OP} \) is the vector from the \(\Sigma 0 \) to the acting point of the friction force;
(ii) \(R \) is the friction force from the ground and can be calculated from equation (9);
(iii) \(G \) is the center of gravity of the robot.

The force \(F_A \) and moment \(M_A \) equals to the forces and moments above the \(\Sigma 0 \).
The position of the point \(P (P_x, P_y) \) (zero-moment point) can be calculated as:

\[
P_x = \frac{\left(\overrightarrow{OG} \times m_i \mathbf{g} + \mathbf{M}_A^H + \left(\overrightarrow{OA} \times \mathbf{F}_A \right)^H \right)_y}{R_z},
\]

\[
P_y = \frac{\left(\overrightarrow{OG} \times m_i \mathbf{g} + \mathbf{M}_A^H + \left(\overrightarrow{OA} \times \mathbf{F}_A \right)^H \right)_x}{R_z}, \quad R_z = -(F_{Ay} + m_i g_y),
\]

\[
R_x = -(F_{Ax} + m_i g_x),
\]

\[
R_z = -(F_{Az} + m_i g_z).
\]

The support polygon is made up of a rectangle. Once the \(P \) is out of the rectangle, the robot will lose dynamic equilibrium and tip over.

4. System Simulation and Optimization

The simulations are carried out to analyze the possibility of tipping over of the robot. The input is man-machine interaction forces. These forces can be measured and calculated:

- \(F_x \) is the force generated by the movement of the patient along the \(X \)-axis. \(F_x \) can be measured by the pressure sensors as shown in Figure 2(b).

- \(F_y \) is the force generated by the movement of the patient along the \(Y \)-axis. \(F_y \) can be calculated as follows:

\[
F_y = \Delta y K_{23},
\]

where \(\Delta y \) is the movement along the \(Y \)-axis, \(K_{23} \) is the spring damping stiffness between joint2 and joint3. \(K_{23} \) can be calculated through experiment. In this robot, \(K_{23} = 3.9 \text{ N/mm} \).

- \(F_z \) is the force generated by the movement of the patient along the \(Z \)-axis. \(F_z \) can be measured and calculated by the torque sensors as shown in Figure 2(b).

\[
F_z = \frac{T}{d},
\]

where \(T \) is the torque measured by the torque sensors. \(d \) is the distance between the torque sensors and the center of the pelvis.

The support polygon is a rectangle: \(L \times W \) (1.03 * 0.7 m). The coinciding of the round reaction force acting point (\(P \)) with the center of the rectangle can be seen as the safest condition of the robot. Evaluation function \(Q \) can describe the relation between the two points. If \(P \) coincides with the center of the support polygon, the function \(Q \) is 1. When \(Q \) is closer to 1, the robot is safer and less likely to tip over. When \(Q \) is closer to 0, the robot is more likely to tip over. If \(P \) exceeds the support polygon boundary, the function \(Q \) will be negative.

4.1. Static Simulation. An experiment is designed to study the range of \(F_x, F_y, \) and \(F_z \), when the subject falls over and leans on the machine. As shown in Figure 3, there are four cases when the subject leans on the robot and the 8 subjects involved with different height and weight. The result is shown in Table 1. The static calculation model can be got by making \(\omega = 0, \beta = 0, \) and \(\alpha = 0 \) in the dynamic model.

And so on, \(B_i = 0 \) and \(\dot{t}_{ij} = \left[\begin{array}{c} -g \\ 0 \end{array} \right] \). The force and moment acting on the \(i \)th joint in the static model can be written as:

\[
w_i = M_i \dot{f}_{ij} + \sum_{k=i+1}^{5} \left(\prod_{j=k}^{5} H_{j-1,j} \right) M_i \dot{k}_{kl} + \left(\prod_{j=i}^{5} H_{j-1,j} \right) w_p,
\]

(16)

In the statics model, the parameter \(Z_0 \) is the height of the pelvis, and the range of \(Z_1 \) is from 0.55 m to 1.1 m. The simulations with different \(Z_1 \) are carried out. The results in Figure 4 show that the higher the \(Z_1 \) is, the more risk the robot with the same interaction force.

In order to analyze the safe range of the input forces, make \(F_x: \sim 450 \text{N} \sim 300 \text{N}, F_y: \sim 200 \text{N} \sim 300 \text{N}, F_z: \sim 350 \text{N} \sim 350 \text{N} \). Within the range of forces set, calculate \(Q \) with each force synthesized by \(F_x, F_y, \) and \(F_z \), and \(Z_1 = 1.1 \text{ m} \). The calculation result is shown in Figure 5, and the force safety range: \(F_{XYZ} = [F_X, F_Y, F_Z]^T \) is as follows:

\[
F_{XYZ} = \begin{cases}
F_Z \leq 3.1 F_Y + 320, F_Z \leq 1.2 F_X + 180 \\
\text{s.t.} \ 0 \leq F_Y \leq 200, 0 \leq F_X \leq 140,
\end{cases}
\]

(17)

The points with light color means that with the effect of the forces the point represents, the ZMP: \(P \) is within the
4.2. Dynamic Simulation. The simulation with dynamic model considers the effect from the ω_i (joint angular velocity) on the analysis of robot. The consideration of ω_i makes \mathbf{I}_i (the inertia tensor of ith link) become an important influencing factor:

$$
\mathbf{B}_i = \begin{bmatrix}
 m_i \mathbf{\omega}_i \times (\mathbf{\omega}_i \times \mathbf{p}_{ic}) \\
 \mathbf{\omega}_i \times (\mathbf{I}_i \mathbf{\omega}_i)
\end{bmatrix},
$$

(18)

$$
\mathbf{M}_i \ddot{\mathbf{t}}_{ij} = \begin{bmatrix}
 m_i \mathbf{1}_i \\
 m_i \mathbf{p}_{ic} \\
 \mathbf{I}_i
\end{bmatrix} \mathbf{\ddot{p}}_{ic} - \mathbf{g} + \mathbf{\alpha}_i.
$$

(19)

As can be seen from equations (18) and (19), the larger the \mathbf{I}_i and $\mathbf{\omega}_i$ are, the larger the \mathbf{B}_i is. According to the quality of each link and the motion pattern of each joint, ω_3 and ω_4 may have great influence on the tip-over stability of the robot. The results of the simulation about ω_2 and ω_4 are shown in Figures 6 and 7. Although the variation range of ω_3 and ω_4 is four times than the normal value, the results show that ω_2 and ω_4 have little influence on the forces and moments of last joint.

4.3. Optimization. According to the analysis above, the height of the pelvis: Z_1 has great influence on the tip-over stability of the robot. And other parameters such as ω_2 and ω_4 have little influence on the robot. Based on this, in the progress of the optimization, Z_1 and the movement along X-axis: ΔX will be adjusted to look for the best combination of Z_1 and ΔX to make Q nearest to 1.

The range of interaction force: $\mathbf{F}_{xyz} = [F_{nx}, F_{ny}, F_{nz}]$ when healthy people walks with the robot normally can be obtained from the study by Ji et al. [12].

According to the analysis in the static simulation, the safe range of the interaction force: \mathbf{F}_X, \mathbf{F}_Y, and \mathbf{F}_Z is studied. Also, when the patient loses support and falls over, the interaction force: $\mathbf{F}_{xyz} = [F_x, F_y, F_z]$ is beyond the safe range. In order to make sure the robot is safer during using, safety factor H is proposed to calculate the safety threshold of the interaction force:

$$
\mathbf{F}_{XYZ} > \mathbf{F}_{ssxyz} = \frac{\mathbf{F}_{XYZ}}{H} > \mathbf{F}_{nxyz}.
$$

(20)

An optimization algorithm based on genetic algorithm (GA) is proposed to prevent the robot from tipping over and make the evaluation function Q nearest to 1. The control flow chart is shown in Figure 8. When the interaction force is beyond \mathbf{F}_{ssxyz}, GA will calculate the optimal ΔZ_1 and ΔX. GA calculates the Q with different combinations of Z_1 and ΔX, and chooses Z_{Q1} and ΔX_Q as the best combination when Q is the maximum. And the signals will be sent to the motors to adjust the height of the pelvic and the position of the support polygon.

$$
\begin{array}{l}
\text{Maximize} \\
G\text{A}(Z_1, \Delta X, Q) \\
\text{s.t.} \\
0.55 \leq Z_1 \leq 1.1, \\
-0.3 \leq \Delta X \leq 0.3
\end{array}
$$

(21)
4.4. Simulation. In order to ensure the safety of the subject, a simulation is carried to instead of an experiment. The results are shown in Figures 9 and 10. In Figure 9, without the optimization algorithm, the distribution of the zero-moment points: P is throughout the support polygon. And in Figure 10, with the optimization, all the points are distributed around the center of the support polygon.

Figure 4: The relationship between the tip-over stability of the robot and the height of the pelvis: Z_1. Each point represents an interaction force: F_{xyz}. The points with light color mean the robot will not tip over, and the points with blue color mean the robot will tip over. (a) The number of the safe points is 1898 with the $Z_1 = 0.55$ m. (b) The number of the safe points is 1225 with the $Z_1 = 1.1$ m.

Figure 5: The safe range of F_{XYZ} with $Z_1 = 1.1$ m.

Figure 6: The influence of w_4 on the forces: F_{Ax}, F_{Ay} and F_{Az} and the moments: M_{Ax}, M_{Ay} and M_{Az}.

Figure 7: The influence of w_2 on the forces: F_{Ax}, F_{Ay} and F_{Az} and the moments: M_{Ax}, M_{Ay} and M_{Az}.

Figure 8: The control flow of the optimization algorithm.
optimization based on the GA and the influence factors: Z_1 and ΔX is proven to be effective in Figures 9 and 10. In Figure 9, without the optimization algorithm, the $P(ZMP)$ is distributed throughout the support polygon. Some points’ Q is close to 0.3, and the position is close to the boundary of the support polygon. With the interaction forces, these dangerous points represent the robot is likely to tip over. In Figure 10, the Q of these points is from 0.76 to 1, and the distribution of these points is limited to a rectangle: $x: -0.58 \sim -0.48; y: -0.16 \sim 0.16$. It means that with the optimization algorithm, the points whose interaction forces are beyond the safe range: F_x, y, z are focused around the center of the support polygon with the adjustments of Z_1 and ΔX.

5. Conclusions

The tip-over stability analysis of a pelvic support walking robot was introduced in this paper, and an optimization algorithm was proposed to optimize the tip-over stability of the robot. The influence of the height of the pelvis and the safe range of the interaction forces were studied through the simulation with statics model. With the dynamics model, it was proven that the joint angular velocity such as ω_2 and ω_4 have little influence on the forces and moments of the last joint. An optimization algorithm based on the dynamics model and the GA was proposed to optimize the tip-over stability when the interaction forces are beyond the safe range. Simulations were carried to verify the effectiveness of the optimization system. The follow-up work will be concentrated on the improvement of the optimization algorithm to reduce the running time of the algorithm. Also, the counterweight of the robot can be optimized to improve the tip-over stability.

Appendix

Rotation Matrix

The rotation matrix referred in 3.1 kinematics modeling is shown as:

$$
\begin{align*}
R_{p0} &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \\
R_{s0} &= \begin{bmatrix} -l_0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}; \\
R_{a1} &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \\
R_{a2} &= \begin{bmatrix} l_2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \\
R_{a3} &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}; \\
R_{a4} &= \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}; \\
R_{a5} &= \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}.
\end{align*}
$$
Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors indicated no potential conflicts of interest.

Acknowledgments

This work was supported by the National Key R&D Program of China (Grant No: 2018YFC2001600) and National Natural Science Foundation of China (Grant No: 61973205).

References