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Atrial fibrillation is the most common arrhythmia and is associated with high morbidity and mortality from stroke, heart failure,
myocardial infarction, and cerebral thrombosis. Effective and rapid detection of atrial fibrillation is critical to reducingmorbidity and
mortality in patients. Screening atrial fibrillation quickly and efficiently remains a challenging task. In this paper, we propose SS-SWT
and SI-CNN: an atrial fibrillation detection framework for the time-frequency ECG signal. First, specific-scale stationary wavelet
transform (SS-SWT) is used to decompose a 5-s ECG signal into 8 scales. We select specific scales of coefficients as valid time-
frequency features and abandon the other coefficients.,e selected coefficients are fed to the scale-independent convolutional neural
network (SI-CNN) as a two-dimensional (2D) matrix. In SI-CNN, a convolution kernel specifically for the time-frequency
characteristics of ECG signals is designed. During the convolution process, the independence between each scale of coefficient is
preserved, and the time domain and the frequency domain characteristics of the ECG signal are effectively extracted, and finally the
atrial fibrillation signal is quickly and accurately identified. In this study, experiments are performed using the MIT-BIH AFDB data
in 5-s data segments. We achieve 99.03% sensitivity, 99.35% specificity, and 99.23% overall accuracy. ,e SS-SWTand SI-CNN we
propose simplify the feature extraction step, effectively extracts the features of ECG, and reduces the feature redundancy that may be
caused by wavelet transform. ,e results shows that the method can effectively detect atrial fibrillation signals and has potential in
clinical application.

1. Introduction

Atrial fibrillation (AF) is the most common arrhythmia. ,e
estimated number of individuals with atrial fibrillation
globally in 2010 was 33.5 million [1]. More than one-third of
the patients diagnosed with atrial fibrillation are asymp-
tomatic [2, 3]. In other words, they are usually diagnosed
until visiting a hospital. Although atrial fibrillation does not
represent a fatal disease itself, the presence of atrial fibril-
lation increases the risk of strokes and death [4], posing a
burden on social public health services [5–8]. Screening for
atrial fibrillation in asymptomatic patients has been sug-
gested as an effective method to reduce the risk of this
disease; however, the early detection of atrial fibrillation

remains problematic. For example, paroxysmal atrial fi-
brillation usually only lasts for a few heartbeats which makes
it time consuming for manually reading ECGwaveforms [9].
,erefore, the early detection of patients with asymptomatic
atrial fibrillation through the AF screening and preventive
anticoagulant therapy is of considerable significance to re-
duce the risk of cardiovascular events in the case of a stroke
[10].

In this paper, we combine the time-frequency features of
ECG signals with the convolutional neural network using the
specific-scale stationary wavelet transform (SS-SWT) we
propose. By designing SI-CNN: an atrial fibrillation detec-
tion framework for the time-frequency ECG signal, we ef-
fectively achieve the rapid and automatic detection of atrial
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fibrillation signals. ,e main contents of this paper are
summarized as follows:

(i) In this paper, we propose a method for extracting
time-frequency features of ECG signals for con-
volutional neural networks, which we call “specific-
scale SWT (SS-SWT).” It is different from the time-
frequency feature extraction in common deep
learning fields. After the ECG signal is decomposed
using a stationary wavelet transform (SWT), the
approximation coefficients of specific scales are se-
lected as valid information and converted into a 2D
time-frequency coefficient matrix for the input of the
CNN.,e decomposed scales and selected scales are
determined according to the characteristics of the
ECG signal. As SS-SWT simplifies the step of signal
feature extraction, there is no need to perform
denoising, debaseline drift, and other operations. At
the same time, on the basis of retaining the effective
information of the ECG signals, SS-SWTreduces the
amount of data and data redundancy.

(ii) In conjunction with SS-SWT, we design the scale-
independent convolutional neural network (SI-
CNN) specifically for the 2D time-frequency coef-
ficient matrix of ECG signals. Unlike a square or
rectangular convolution kernel used in common
CNN, a strip convolution kernel with height 1 is used
in this paper, which preserves the frequency domain
independence between each scale after SS-SWT,
fusing the time domain features. Compared with
other algorithms in the same field, SI-CNN is more
in line with the characteristics of the coefficient
matrix generated from the specific-scale stationary
wavelet transform (SS-SWT). ,e proposed method
has provided technical support for real-time mon-
itoring of atrial fibrillation.

,e rest of this paper is divided into four sections.
Section 2 introduces the research status of AF recognition in
related fields. In Section 3, the details of the proposed SS-
SWT and SI-CNN in this paper are introduced. Section 4
introduces the experiment results and then compares the
automatic detection framework of atrial fibrillation pro-
posed in this paper with other algorithms. Finally, Section 5
summarizes the full text and looks forward to future work.

2. Related Work

Atrial fibrillation is characterized by the rapid and irregular
movement of the atria. ,ere are two main manifestations
on the electrocardiogram: one is that the P-wave disappears
and is replaced by an irregular and high-frequency f-wave
(up to 350–600Hz) [11]; the other is the distance between
the R-wave peaks of the adjacent ECG signals (RR interval)
changes irregularly [12]. ,erefore, the current ECG rec-
ognition technology for atrial fibrillation by ECG is mainly
divided into the following two categories: analysis based on
atrial activity and analysis based on ventricular activity. ,e
method based on P-wave characteristics relies heavily on the
accurate detection of P-waves and f-waves. Henriksson et al.

proposed a newmethod for assessing the signal quality index
(SQI) for atrial fibrillation detection, which facilitates the
analysis of atrial fibrillation signals in noisy ECG signals [13].
Tang et al. developed a hybrid Taguchi-genetic algorithm
(HTGA) that facilitates Gaussian decomposition of ECG
signals and extracted P-wave morphological features to
detect atrial fibrillation [14]. However, the low signal-to-
noise ratio characteristic of low-amplitude f-waves makes
atrial activity analysis error prone. ,is problem is alleviated
in an analysis based on ventricular activity by the easy-
detecting high amplitude of the ECG QRS complex.
,erefore, methods based on irregular RR interval features
are widely used in atrial fibrillation detection. Lian et al.
proposed an atrial fibrillation detection algorithm based on
the variation of the RR interval [15]. Zhao et al. measured
atrial fibrillation entropy for atrial fibrillation detection in
the time window of a short RR time series [16]. Peimankar
and Puthusserypady used a random forest classification
algorithm based on the RRI, RMSSD, nRMSSD, and other
features extracted from the RR interval to achieve an ac-
curacy rate of 97.86% in 300 heartbeats [17]. However, many
methods based on ventricular activity require long pieces of
data to identify long AF events (20-s) and are limited in
dealing with very short AF events [18]. At the same time, the
performance of these algorithms highly depends on the
detection of P-wave or R-wave peaks. If the relevant peak is
detected incorrectly or erroneously, its accuracy may
decrease.

In recent years, some atrial fibrillation detection algo-
rithms based on handcrafted features have been proposed.
Zhou et al. designed a recursive algorithm for real-time
automatic detection of atrial fibrillation based on nonlinear/
linear integer filters, symbol dynamics, and Shannon en-
tropy extracted by RR intervals [19]. Asgari et al. used
stationary wavelet transform to extract features in ECG
signals and support vector machines to detect atrial fibril-
lation. ,is method does not require the location of P-wave
or R-wave peaks [20]. Garćıa et al. introduced a method of
detecting atrial fibrillation in ECG signals of various lengths
based on relative wavelet energy (RWE) [21]. ,ough many
handcrafted features rely on expert knowledge, they may not
represent the best characteristics of the ECG signal. In
addition, due to the specificity of the handcrafted features,
the accuracy and efficiency of these methods under different
datasets may vary greatly, so these methods fail to be used
widely clinically.

A deep neural network is an artificial neural network
[22], which has been applied to image recognition [23], drug
discovery [24], medical image analysis [25], and other fields.
In addition, deep learning is widely used in the field of
bioinformatics [26]. ,ey produce results that are compa-
rable to human experts and, in some cases, superior to
human experts [27]. Deep learning extracts abstract features
from ECG signals, frees up the reliance on handcrafted
features, and does not require expert knowledge. Andersen
et al. combined CNN with LSTM and used the RR interval
extracted from 30 heartbeat lengths to achieve an accuracy of
97.80% under the MIT-BIH atrial fibrillation database [28].
Furthermore, deep learning is used in many studies to
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extract abstract features from ECG signals and to get rid of
the dependence on handcrafted features. Yildirim et al.
employed the MIT-BIH arrhythmia database segmented
into 10-s ECG signals and used a one-dimensional con-
volutional neural network to classify 17 diseases including
atrial fibrillation [29]. Pourbabaee et al. designed a five-layer
convolutional neural network to identify five-minute ECG
data, achieving good results under the PAF database [30, 31].

In order to better extract the characteristics of ECG
signals, many atrial fibrillation detection methods combined
time-frequency features with deep learning have been
proposed. ,ere are many common time-frequency
methods, such as short-time Fourier transform [32], con-
tinuous wavelet transform (CWT) [33], modified frequency
slice wavelet transform (MFSWT) [34], and stationary
wavelet transform (SWT) [32]. ,ese methods convert 1D
ECG timing signals into 2D time-frequency features and
feed these features to the classifier. Xu et al. proposed an
automatic AF beat detection framework, combining a
modified frequency slice wavelet transform (MFSWT) and a
convolution neural network [34]. He et al. developed a
method combining continuous wavelet transform (CWT)
and 2D convolutional neural network for atrial fibrillation
detection [33].

Using time-frequency features of ECG signals is a very
effective way to extract the characteristics of ECG signals.
However, there are also some problems in the current
research. First, the frequency domain interval of each
ECG signal waveform is limited. After the time-frequency
transform, some of the frequency band information is
redundant. Keeping the redundancy parts increases the
complexity of the system, poses a higher calculation
burden, and also reduces the robustness of the algorithm.
Meanwhile, most of these methods that combine time-
frequency characteristics with deep learning use the time-
frequency transform to convert ECG signals into images
and then identify them with the idea of image recognition.
On the one hand, directly converting the signal into a
three-channel RGB time-frequency image increases the
amount of data, thereby greatly increasing the amount of
neural network operations. On the other hand, this
combination is simply a splicing of the two methods and
does not make good use of the characteristics of both
time-frequency features and deep neural networks.
Among them, Xia et al. went one step further and directly
regarded the coefficient matrix of the ECG signal after
stationary wave transform as a gray-scale “image” and
sent it to the neural network they proposed [32]. ,ey
obtained better results than the direct time-frequency
transform from ECG signals to pictures for classification.
Inspired by this article, we improve the existing deep
learning methods based on time-frequency features and
design a deep learning framework for the time-frequency
characteristics of AF signals. ,e framework achieves
good results in identifying AF signals in 5-s ECG
segments.

3. Methods

Figure 1 shows the flowchart of the atrial fibrillation de-
tection framework proposed in this paper.,is framework is
mainly divided into three parts, namely, signal pre-
processing, feature extraction “SS-SWT,” and AF signal
classification “SI-CNN.” ,e preprocessing section cuts the
original ECG signals into fixed-length segments and nor-
malize them to prepare for feature extraction. In the second
stage of feature extraction, each ECG signal segment is
converted into a two-dimensional coefficient matrix using a
stationary wavelet transform (SWT), and a specific scale
coefficient is selected as valid information to feed into the
next stage. ,e third stage is the classification of the signals.
,e SI-CNN model proposed in this paper is used to train
the data to complete the classification of the AF signals.

3.1.DataPreprocessing. ,e incoming ECG signal is first cut
into 5-s segments. In order to improve the effectiveness of
feature extraction and the robustness of the network, we
normalize each ECG signal after cutting and transform it
between − 1 and 1. ,is study focuses mainly on the iden-
tification and detection of atrial fibrillation signals. ,ere-
fore, the signals are classified into two types: AF signals and
non-AF signals. A threshold parameter P is used to deter-
mine the classification to which each segment of the signal
belongs [9]: if the atrial fibrillation signal contained in a
segment reached the value of p or more, the segment is
classified as an atrial fibrillation signal. ,e p value selected
in this study is 0.5.

In addition, in the next step of feature extraction, the
stationary wavelet transform of the signal requires a specific
number of signal sampling points. For instance, a j-scale
SWTof a signal requires the signal length to be a multiple of
2j. In this paper, the zero-padding process is performed
before the SWT is performed.

3.2. Feature Extraction. Feature extraction is crucial in deep
learning and is the basis of deep neural networks. A good
feature extraction process should minimize the data com-
plexity on the basis of retaining the effective features of the
data because a smaller input data can achieve a higher
calculation speed. In this paper, we propose an effective
feature extraction method for ECG signals, and we call it
specific-scale stationary wavelet transform (SS-SWT). It uses
the stationary wavelet transform (SWT) to convert a time-
series ECG signal into a 2D coefficient matrix, selects the
specific scales of parameter, and feeds the matrix into the
proposed CNN.

Wavelet transform’s good spatial-and-frequency-do-
main localization characteristics make it possible to analyse
the signal in both the time domain and the frequency do-
main and effectively extract the information in the signal.
,e basic definition of the wavelet transform is as follows:
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WTf(a, τ)≤f(t),

ψa,τ(t)≥
1
��
a

√ 
R
f(t)ψ(t − τ)dt,

(1)

where a is the scale factor and τ is the translation factor.
Furthermore, ψa,τ(t) is the wavelet basis function, as shown
below:

ψa,τ(t) � a
− (1/2)ψ

t − τ
a

 a> 0, τ ∈ R. (2)

Wavelet transform is divided into continuous wavelet
transform (CWT), discrete wavelet transform (DWT), and
stationary wavelet transform (SWT). When a and τ are
continuous values, it is a continuous wavelet transform
(CWT). However, because of the continuity of the con-
tinuous wavelet transform scale, the delay is high and there
is a considerable amount of redundancy during the cal-
culation. At the same time, most signals are given in a
discrete setting (e.g., ECG signals used in this work), a
discrete wavelet transform (DWT), or a stationary wavelet
transform (SWT) is sufficient for these signals. A discrete
wavelet transform (DWT) samples the signal in different
resolution when it is decomposed. It produces different
length of wavelet coefficients in each scale. A stationary
wavelet transform (SWT) does not downsample the signal
at each scale, and the time resolution of each scale is the
same, retaining most of the valid information of the signal.
,e wavelet transform decomposition produces a matrix of
coefficients, which is very suitable as the input of a CNN. In
this study, a stationary wavelet transform is used to process
the signal. For the stationary wavelet decomposition, each
scale bisects the frequency domain of the signal and pro-
duces a detail coefficient (D) and an approximation co-
efficient (A). At the next scale, the approximation
coefficient produced by the previous scale is used, and the
decomposition is performed again. ,e coefficients of each
scale include the energy-scale information of the scale
corresponding to the frequency-domain window. Since the
detail coefficients of each stage are decomposed from the
approximation coefficients of the previous stage, after
performing a j-scale wavelet transform, it is only necessary
to reconstruct all the detail coefficients and the approxi-
mation coefficients of the last stage to recover all the in-
formation of the original signal.

Figure 2 shows the data processing of the SS-SWT we
propose. ,e raw ECG signal shown in Figure 2 is trans-
formed into 1 approximation coefficient and 8 detail coef-
ficients after an eight-scale stationary wavelet
decomposition. We choose db5 as our wavelet basis
function.

,e different scales of coefficients of the ECG signal after
SWT represent its different frequency domain characteris-
tics. Moreover, the effective features of ECG signals are
mainly included in several specific scales. ,erefore, in this
paper, we use SS-SWTto extract the features of the signals, in
other words, after wavelet decomposition of the signal, only
certain scales of coefficients are selected and send to the next
neural network. According to the Nyquist sampling theo-
rem, the frequency domain of the ECG signal with a
sampling rate of 250Hz is 0–125Hz. In this paper, we use the
8-scale stationary wavelet transform to decompose the
original ECG signal to obtain 9 groups of wavelet coeffi-
cients, which represent the following 9 frequency bands:
62.5–125Hz, 31.25–62.5Hz, 15.63–31.25Hz, 7.81–15.63Hz,
3.91–7.81Hz, 1.95–3.91Hz, 0.98–1.95Hz, 0.49–0.98Hz, and
0–0.49Hz. In these frequency bands, the effective infor-
mation of the ECG signal is mainly concentrated in
0.5∼40Hz, and the remaining frequency intervals are mainly
interference information such as baseline drift and noise. It
can be seen that the coefficients on the D2–D8 scale included
the frequency domain interval in which the valid infor-
mation of the ECG signal is located, so we choose the wavelet
coefficients on the seven scales of D2–D8, and the signals on
the remaining two scales, D1 and A8, are discarded. ,e 8-
scale wavelet decomposition is chosen because it can ef-
fectively isolate these valid information. ,e low-scale de-
composition cannot separate the baseline drift interference
(0–0.5Hz), while the higher-scale decomposition is not
necessary. In order to better show the effective information
contained in the selected scale, in Figure 3, we show the
signal obtained by reconstructing specific scales of the co-
efficients generated by the ECG signal after SWT, where 3(a)
is the original ECG signal, 3(b) is the reconstructed signal
generated by D1–D8 coefficients, and it can be seen that the
baseline drift of the signal in 3(b) is removed, and 3(c) is the
signal reconstructed by the D2–D8 scales of the coefficients.
It can be seen that the signal contains valid information in
the original signal, and most of the high-frequency noise and
baseline drift interference are removed. It can be seen that

Original ECG signal

5-s segments

Normalization

SS-SWT
AF

Non-AF

SI-CNN

Data preprocessing Feature extraction AF classification

Figure 1: Flowchart of the proposed framework.
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SS-SWT retains the valid features in the ECG signal and
removes the invalid information.

3.3. Architecture of the Proposed SI-CNN. After SS-SWT
mentioned above, a wavelet coefficient matrix at specific
scales containing valid information is passed to the network

for learning. Table 1 gives the structure and parameters of
the neural network proposed in this paper in detail. As can
be seen from the table, the network designed in this paper
consists of 5 groups of similarly structured layers. Each
group contains two consecutive convolutional layers, a
maximum pooling layer, a batch normalization layer, and a
dropout layer. After this 5 sets of layers, we use a global

A8

D8

D7

D6
D5
D4
D3

D2

D1
0 2 4 6 8 10

Original ECG 
signal
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matrix

Figure 2: Flowchart of SS-SWT.
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Figure 3: Comparison of signals obtained by reconstructing information at different scales of coefficients. (a) Original ECG signal.
(b) Reconstructed signal by coefficients of D1–D8. (c) Reconstructed signal by coefficients of D1–D8.
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average pooling layer instead of the common fully connected
layer. After that it is a fully connected layer and finally a
softmax layer to output the results. ,e batch normalization
layer and the dropout layer are used for reducing overfitting,
improving gradient propagation, and increasing learning
speed, while the global average pooling layer is used instead
of the traditional fully connected layer because the global
average pooling layer does not require a lot of training and
tuning parameters like the fully connected layer, and re-
ducing the spatial parameters will make the model more
robust and the anti-overfitting effect is better.

A classical CNN is consisted of alternating superimposed
convolutional layers and max-pooling layers. In the con-
volutional layer, the features and their associated weights
were extracted by means of local connections. ,e weight of
each layer of the convolution kernel parameters is trained
using a backpropagation error algorithm. ,e larger the
number of convolutional layers, the larger the number of
relevant features are extracted. ,e sigmoid or tanh non-
linear activation function is then applied to the convolution
feature. ,e nonlinear activation function is calculated as
follows:

y
k
i � σ W

k
xi + b

k
 , (3)

where Wk and bk are the weights and the offsets of the kth

convolutional feature map, respectively; xi is the input to the
kth convolutional layer; and yk

i is the output of the kth

convolutional layer. In this study, the ECG signal after the
stationary wavelet transform become a coefficient matrix,
which can be approximated as a gray-scale “image” and feed
in a 2D CNN. However, unlike ordinary images, for the
coefficient matrix in this study, the data of each line were the
wavelet coefficient of the ECG signal at a certain scale, and
the wavelet coefficients of each scale are independent from
each other between the rows. Unlike in a normal image, the
convolution between rows in the convolutional layer is
obviously not in line with the actual situation. ,erefore, we
use a convolution kernel with a height of 1 to fuse only the
data in the row direction. In the convolution, each line still
maintained its data independence. ,e same pooling op-
eration is also performed in the pooling layer.,is operation
better fused the features after the stationary wavelet trans-
form, conforms to the characteristics of the wavelet trans-
form coefficient matrix, and does not cause aliasing of
effective information, and we call it scale-independent CNN
(SI-CNN).

In this study, two consecutive convolutional layer
stacking methods using 1× 3 convolution kernels are used in
the convolution strategy. Compared to a single-layer con-
volution kernel, two consecutive 1× 3 convolution kernels
have the same receptive field as a 1× 5 convolution kernel as
shown in Figure 4, and the continuously stacked convolu-
tion layer increases the depth of the network. At the same
time, the continuous 1× 3 convolution layers have more
nonlinearity than a 1× 5 convolution, making the decision
function more decisive.

4. Results and Discussion

4.1. Experimental Setup. ,e SI-CNN model proposed in
this paper is run under the Keras platform based on the
Tensorflow1.8 framework. ,e device is a Razer PC running
Windows 10. ,e device has an i7 7700HQ CPU and 16GB
memory. To shorten the training time for deep learning, the
device also has an NVIDIA GForce 1060 graphics card and
6GB video memory. ,e average time required to train a
single period of the model is approximately 50 s. ,e initial
experiments show that the model converged after 35–50
training periods; therefore, 50 periods are used in this study
to ensure the complete convergence of the model and limit
the chances of overfitting.

4.2. Experimental Data. ,e dataset used in this experiment
is from the MIT-BIH AFDB [35, 36]. ,ere are 25 sets of
two-lead ECG records in the MIT-BIH AFDB, each with a
duration of 10 hours and 15 minutes and a sampling rate of
250Hz. We use this database to classify the atrial fibrillation
signals in this study. ,e original data of “00735” and
“03554” cannot be obtained. In the remaining dataset, there
are 605 segments containing four types of ECG segments, of
which 291 segments are atrial fibrillation signals, 14 seg-
ments are atrial flutter signals, 12 segments are junctional
rhythm, and 288 segments are other rhythms.

According to the preprocessing method above, we cut
each record in AFDB into 5-s fixed-length segments, and

Table 1: ,e detailed architecture of the proposed SI-CNN.

CNN parameters Volume
1st convolutional layer kernel size 1× 3× 32
2nd convolutional layer kernel size 1× 3× 32
1st max-pooling layer kernel size 1× 3× 32
1st batch normalization layer —
1st dropout layer rate 0.25
3rd convolutional layer kernel size 1× 3× 32
4th convolutional layer kernel size 1× 3× 32
2nd max-pooling layer kernel size 1× 3× 32
2nd batch normalization layer —
2nd dropout layer rate 0.25
5th convolutional layer kernel size 1× 3× 64
6th convolutional layer kernel size 1× 3× 64
3rd max-pooling layer kernel size 1× 3× 64
3rd batch normalization layer —
3rd dropout layer rate 0.25
7th convolutional layer kernel size 1× 3× 64
8th convolutional layer kernel size 1× 3× 64
4th max-pooling layer kernel size 1× 3× 64
4th batch normalization layer —
4th dropout layer rate 0.25
9th convolutional layer kernel size 1× 3×128
10th convolutional layer kernel size 1× 3×128
5th max-pooling layer kernel size 1× 3×128
5th batch normalization layer —
5th dropout layer rate 0.25
Global average pooling layer —
6th dropout layer rate 0.25
,e number of neurons in the fully connected layer 128
7th dropout layer rate 0.25
,e number of neurons in the softmax layer 2
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168667 ECG data are cut out, of which 67243 are atrial
fibrillation signals and 101424 are non-AF signals. ,e non-
AF signals include the atrial flutter signals, junctional
rhythm, and other rhythms. Figure 5 shows our division of
the training set, validation set, and test set. According to the
ratio of 7 :1 : 2, we divide the training set, validation set, and
test set, and the data proportion in each dataset remains the
same.

4.3. Evaluation Index. For the experiment results of this
study and comparison with other experiments, we first
calculate true positives (TP), false negatives (FN), true
negatives (TN), and false positives (FP). On the basis of these
four parameters, the sensitivity (Se), specificity (Sp), and
overall accuracy (Acc) are calculated to evaluate the results
of this study. ,ese metrics are calculated as follows:

Se �
TP

TP + FN
× 100%,

Sp �
TN

TN + FP
× 100%,

Acc �
TP + TN

TP + FP + TN + FN
× 100%.

(4)

In this study, the adaptive estimation, also known as the
Adam optimization algorithm, is used to optimize the
model. Adam is different from the traditional stochastic
gradient descent (SGD).,e stochastic gradient descent uses
a single learning rate to update the total weight during the
training process. It is crucial to set the appropriate learning
rate as it does not change during the entire training process.
However, selecting the right learning rate is increasingly
difficult. In detail, a very small learning rate leads to slow
convergence, while a very high learning speed may hinder
convergence and cause the loss function to fluctuate at a
minimum. In addition, if the model falls into the saddle
point, the gradient of the model in all dimensions will be
zero, so SGDmay be difficult to escape.,e Adam algorithm
has considerable advantages over the other types of random
optimization algorithms. ,erefore, the Adam algorithm
was used to optimize the model.

Overfitting is a common problem in machine learning.
,e deep learning model has a high degree of complexity,
which not only fits the relationship between the input signal
and the category label, but also fits the random error and
signal noise. To prevent overfitting, we introduce dropout
layers into the CNN model we propose. ,e principle of
dropout can be simply understood as discarding some

neurons with probability x while training. To alleviate
overfitting, we add dropout layers to the CNN network
structure. In order to test the best performance against
overfitting, the dropout rate from 0.1 to 0.4 is tested sepa-
rately. ,e test result is shown below. Figure 6 shows the
convergence of training and verification when the dropout
rate is set to 0.1, 0.2, 0.25, 0.3, and 0.4. It can be seen from the
figure that when the dropout is selected to be 0.1, the model
shows obvious overfitting, that is, the verification loss has
risen significantly after reaching the lowest point. When
dropout is set to 0.4, the accuracy of themodel is poor.When
the dropout is set to 0.2, 0.25, and 0.3, the performance of the
model is not much different. However, it can be seen that
when the dropout is set to 0.25, both the loss and accuracy
achieve good performance, thus we set the dropout in the
model for 0.25.

At the same time, we also compare the impact of dif-
ferent batch sizes on network performance, as given in
Table 2. In this article, we finally select a batch size of 128 to
obtain the best network effect. In addition, the initial
learning rate used in this study is 0.001, and β1 and β2 of the
Adam optimization algorithm are set to 0.9 and 0.999, re-
spectively. ,e other parameters in the network are given in
Table 3.

5. Results

Figure 7 shows the convergence performance of the method
used in this study. Figure 7(a) shows the convergence
performance of the proposed method. Figure 7(b) shows the
loss performance of the proposed method. It can be seen that
although the result of the training set is slightly better than
that of the test set, the model has converged and achieves
high accuracy in 50 batches. ,ere is no typical overfitting
phenomenon; for instance, the performance of the training
continues to increase, and the performance of the test set
stagnates (or worsens).

In order to better evaluate the performance of the
proposed algorithm, we presented a comparison of the
proposed algorithm with other algorithms from the same
field using AFDB, as given in Table 4. In this study, we select
the following five parameters of atrial fibrillation signals:
signal length, methodology, sensitivity (Se), specificity (Sp),
and overall accuracy (Acc). ,e table shows a comparison of
the results obtained in this study with those reported in other
papers from the same field.

,e confusion matrix results of this study are shown
Figure 8. As shown in Figures 7 and 8, the sensitivity (Se),
specificity (Sp), and overall accuracy (Acc) of the atrial

Conv 1

Conv 2

Figure 4: Receptive field of continuous conv layers.

Journal of Healthcare Engineering 7



fibrillation recognition algorithm based on the specific-scale
stationary wavelet transform (SS-SWT) and the scale-in-
dependent convolutional neural network (SI-CNN) pro-
posed in this paper reaches 99.03%, 99.35%, and 99.23%,
respectively.

Although the methods used by Tateno and Glass [37],
Dash et al. [9], Babaeizadeh et al. [38], Huang et al. [39],

Ladavich and Ghoraani. [40], and Garćıa et al. [21], are
different, they all need to detect the R-wave of the ECG
signal. ,e accuracy of these algorithms is highly dependent
on the accuracy of the R wave detection algorithm.When the

Validation data
16,867

Training data: 118,066 Testing data: 33,734

MIT-BIH AFDB: 168,667

Non-AF: 101,424 AF: 67,243

Non-AF:
10,143

AF: 
6,724

Non-AF:
20,285

AF: 
13,449

Non-AF: 
70,996

AF: 
13,449

Figure 5: Partitioning of training, validation, and test datasets in this article.
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Figure 6: Comparison of signals obtained by reconstructing information at different scales of coefficients. Structural optimization. (a) Train
and validation accuracy on different dropout rates. (b) Train and validation loss on different dropout rates.

Table 2: SI-CNN training results under different batch sizes.

Batch size Se (%) Sp (%) Acc (%)
64 98.76 99.40 99.15
128 99.03 99.35 99.23
256 99.38 99.57 99.08
512 98.92 99.00 98.97
1024 97.99 99.54 98.92

Table 3: Optimal CNN parameter set for AF detection.

,e CNN optimization parameter Value
Batch size 128
Epochs 50
Optimizer Adam
β1 0.9
β2 0.99
Initial learning rate 0.001
Dropout 0.25
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performance of the waveform detection algorithm is not
ideal, these methods find it difficult to achieve better per-
formance. In addition, these methods require a longer signal
length.

He et al. [33] used a continuous wavelet transform
(CWT) to extract the time-frequency feature of the signal,
but the method also relied on the detection of the R wave
peak. ,e peak annotations in the AFDB were used directly
to obtain the RR interval information. In the work by Xia
et al. [32], the method using a stationary wavelet transform

(SWT) achieved a higher result. Different from our work, the
proposed algorithm performs an elliptical bandpass filter to
remove the baseline drift before performing the stationary
wavelet transform. All approximation coefficients and detail
coefficients are used simultaneously in the convolution
process which in our opinion is not necessary.

,is paper has made corresponding improvements to
the above points and proposed SS-SWT and SI-CNN: an
atrial fibrillation detection frame for the time-frequency
ECG signal.

During the SS-SWT, the coefficients at specific scales
were selected as valid information, so that we do not need a
denoise process. At the same time, the SI-CNN specifically
for the ECG signal coefficient matrix also better combines
the advantages of SWT and CNN.

In summary, the SS-SWT and SI-CNN proposed in this
paper are not dependent on waveform detection and they
achieve a high accuracy. At the same time, compared with
the same type of time-frequency feature extraction algo-
rithm, the SS-SWT and SI-CNN combine the effective
features of SWT and CNN and better preserve the original
features of ECG signals. Furthermore, the independence
among the various scales of the coefficient matrix is more in
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Figure 7: Results obtained in this study. (a) Train and validation accuracy iters. (b) Train and validation loss iters.

Table 4: Comparison of the performances of AF classification algorithms.

Algorithm Signal lengths Methodology Se (%) Sp (%) Acc (%)
Tateno and Glass [37] 50 s RR interval irregular 94.4 97.2 —
Dash et al. [9] 128 beats RR interval irregular 94.4 95.1 —
Babaeizadeh et al. [38] >60 s RR interval irregular 92 95.5 —
Huang et al. [39] 101 beats RR interval irregular 96.1 98.1 —
Asgari et al. [20] 9.8 s SWT+ SVM 97 97.1 97.1
Ladavich and Ghoraani [40] 7 beats P-wave absence (PWA) 98.09 91.66 93.12
Garćıa et al. [21] 7 beats SWT 91.21 94.63 93.32
He et al. [33] 5 beats SWT 99.41 98.91 99.23
Xia et al. [32] 5 s SFWT 98.34 98.24 98.29
Xia et al. [32] 5 s SWT 98.6 97.17 97.74
Proposed framework 5 s SWT 99.03 99.35 99.23
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Figure 8: Confusion matrix in this study.
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line with the characteristics of the ECG signal. From the
results, the method of this paper has better performance.

6. Conclusion

,is paper proposes SS-SWT and SI-CNN: an atrial fibril-
lation detection framework for the time-frequency ECG
signal. In order to better match the input of CNN, we use a
stationary wavelet transform to convert the 5-s ECG signal
into a time-frequency coefficient matrix. ,en, we design a
convolutional neural network and a convolution kernel
structure for the time-frequency characteristics of ECG
signals and effectively extract the time-frequency charac-
teristics of ECG signals to achieve fast and accurate detection
of AF signals. ,e validity and efficiency of the proposed
method are verified on the MIT-BIH AFDB dataset.
Compared with the existing methods, our method has
achieves better results with simpler operation steps and
deeper network layers.,erefore, the proposedmethod has a
high clinical potential, and it is the focus of our future work.
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