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Objective. To perform gene set enrichment analysis (GSEA) and analysis of immune cell infiltration on non-small-cell lung cancer
(NSCLC) expression profiling microarray data based on bioinformatics, construct TICS scoring model to distinguish prognosis time,
screen key genes and cancer-related pathways for NSCLC treatment, explore differential genes in NSCLC patients, predict potential
therapeutic targets for NSCLC, and provide new directions for the treatment of NSCLC.Methods. Transcriptome data of 81 NSCLC
patients and the GEO database were used to download matching clinical data (access number: GSE120622). Form the expression of
non-small cell lung cancer (NSCLC). TICS values were calculated and grouped according to TICS values, and we used mRNA
expression profile data to perform GSEA in non-small-cell lung cancer patients. Biological process (GO) analysis and DAVID and
KOBAS were used to undertake pathway enrichment (KEGG) analysis of differential genes. Use protein interaction (PPI) to analyze
the database STRING, and construct a PPI network model of target interaction. Results.We obtained 6 significantly related immune
cells including activated B cells through the above analysis (Figure 1(b), p< 0.001). Based on the TICS values of significantly
correlated immune cells, 41 high-risk and 40 low-risk samples were obtained. TICS values and immune score values were subjected to
Pearson correlation coefficient calculation, and TICS and IMS values were found to be significantly correlated (Cor� 0.7952). Based
on non-small-cell lung cancer mRNA expression profile data, a substantial change in mRNA was found between both the high TICS
group as well as the low TICS group (FDR 0.01, FC> 2). 'e researchers discovered 730 mRNAs that were considerably upregulated
in the high TICS group and 121 mRNAs that were considerably downregulated in the low TICS group. High confidence edges
(combined score >0.7) were selected using STRING data; then, 191 mRNAs were matched to the reciprocal edges; finally, an
undirected network including 164 points and 777 edges was constructed. Important members of cellular chemokine-mediated
signaling pathways, such as CCL19, affect patient survival time. Conclusion. (1) 'e longevity of patients with non-small-cell lung
cancer was substantially connected with the presence of immature B cells, activated B cells, MDSC, effector memory CD4 T cells,
eosinophils, and regulatory T cells. (2) Immune-related genes such as CX3CR1, CXCR4, CXCR5, and CCR7, which are associated
with the survival of NSCLC, affect the prognosis of NSCLC patients by regulating the immune process.

1. Introduction

'e occurrence of tumors is not only related to the biological
characteristics of the tumor cells themselves. And the in-
teraction between cancer cells and tumor immune micro-
environment and immune system also plays a very

significance role. One of the problems that should be in-
vestigated is whether immune cell infiltration in tumor
tissues is connected to tumor treatment and prognosis.

Lung carcinoma is a major cancer that has a high risk of
morbidity and mortality, and data show that one person dies
from lung cancer every 30 s worldwide [1] Lung tumor is
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divided into 2 types: small-cell lung cancer (SCLC) and non-
small-cell lung cancer (NSCLC). Small-cell lung cancer
(SCLC) accounts for around 85% of all lung cancer cases [2].
Because of the insidious onset, diversity of clinical mani-
festations, and lack of specificity of primary lung cancer
patients, most patients are already in the middle and late
stages of the disease when they are diagnosed with lung
cancer, so whether lung cancer patients can be screened,
diagnosed, and treated early becomes a key factor in
prognosis.

'e tumor microenvironment (TME) is a bidirectional,
dynamic, and intricate network system composed of various
cells (T cells, B lymphocytes, macrophages, NK cells, etc.)
and extracellular components (cytokines, chemokines, and
receptors, etc.), and each element of this network is capable
of promoting malignant transformation and influencing
both the onset, progression, and metastasis of lung cancer,
development and metastasis, and the response to drug
therapy [3] T-cell surface programmed cell death protein 1

(PD-1) in TME has been demonstrated to bind to pro-
grammed cell death ligand-1 (PD-L1) on the surface of
cancer cells in recent years, causing T-cell dysfunction or
depletion, resulting in immune tolerance and tumor cell
response. Immune tolerance occurs, leading to immune
escape of tumor cells [4], and in the process of killing tumor
cells, the most central role in TME is played by CD8+ Tcells
[5], the quality and quantity of which are critical for im-
munotherapeutic efficacy [6]. Studies of PD-1 inhibitors for
melanoma [7] have found that the number of CD8+ T cells
correlates with efficacy. Tumor-infiltrating B cells are an
important part of the immune system’s microenvironment.
In NSCLC patients, CD4+ T lymphocytes can be seen in
tumor cells infiltrated by B cells and tumor cells with tertiary
lymphoid structure. And high density of follicular B cells is
associated with a better prognosis in NSCLC patients [8].
Bruno et al. [9] found that tumor-infiltrating B cells can
present endogenous tumor antigens to CD4+ TIL and alter
them in vitro. It has also been reported that bone marrow-
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Figure 1: (a) Heat map of immune cell infiltration with the ssGSEA algorithm. (b) Construction of immune cell map based on the Pearson
correlation.
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derived suppressor cells (MDSCs) are able to produce factors
like TGF-p and IL-10, which promotes the development of
initial CD4+ T cells into Treg cells, resulting in the increase
of Treg cells, thereby suppressing body immune response
[10]. In addition, MDSC can block the secretion of natural
killer cells (NK). IFN-NK cells in secreted substances refer to
innate immune cells that can kill cancer cells and virus-
infected cells. And IFN-NK cells can regulate the functions
of other immune cells and promote tissue growth.

Chemokines are a group of small molecules (mostly
8–10 kD in molecular weight) that are capable of che-
motactic cell movement. Chemokines can be classified into
four groups according to the number and location of
N-terminal cysteine residues: C, CC, CXC, and CX3C. For
example, CCL2 chemokine has the ability to chemoattract
monocytes, macrophages, and T lymphocytes [14]. It has
been shown that anti-CCL2 antibodies blocking the effects
of CCL2 such as reducing MDSC, increasing CD4+ and
CD8+ Tcell infiltration, and promoting IFNy secretion can
enhance the tumor immune effect of PD-1 in treating lung
cancer in mice [15]. CX3CL1 (FKN, fractalkine) is the only
member of the CX3C type chemokine family, which
possesses chemotactic functions common to chemokines
and mediates the wandering and activation of leukocytes,
especially lymphocytes and phagocytes. Li et al. [16] used
gene silencing technology to confirm the stable high ex-
pression of CX3CL1 in the hepatocellular carcinoma cell
line HepG2, which inhibited tumor angiogenesis. In breast
cancer studies, CX3CL1 was found to have a possible role in
tumor metastasis [17,18], and high CX3CL1 expression
correlates with good prognosis in breast cancer [19] and
can also be used as one of the indications for immuno-
modulatory therapy.

In summary, only a few reports have investigated the
clinic pathological significance of immune cells in recent
years, and the overall expression level and prognostic value
of immune cell infiltration, especially in NSCLC patients,
require further investigation. 'erefore, in this study, we
collected data from public databases and constructed sta-
tistical scoring models to analyze multiple datasets inde-
pendently and pooled the analysis results in order to
elucidate the prognosis-related molecular mechanisms of
NSCLC, which not only helps to further understand the
pathogenesis of NSCLC but also provides new ideas and
targets for the early diagnosis and treatment of NSCLC.

2. Materials and Methods

2.1. Preprocessing of Data. 'e transcriptome and clinical
data of NSCLC patients were obtained from the GEO da-
tabase, using the study cohort GSE1206222 (n� 81). 'e
enrolled patients’ relevant somatic mutation data were also
acquired from the aforesaid database. 'e original file was
used to apply the robust multiarray average (RMA) tech-
nique on all of the expression data. Besides, “DeEseq2” and
“affy” R packages were used to adjust the background, and
log2 conversion was performed for the results of this
analysis.

2.2. Immune Score, TICS Score, and Pearson Immune Cell
Correlation Coefficient Calculation and Immune Cell
Infiltration

(1) 'e relative abundance of 28 immune cells of tumor
infiltrating in 81 patients with non-small-cell lung
cancer was quantified using single-sample gene set
enrichment analysis (ssGSEA). 'e prognosis of 28
immune cells was assessed using Cox risk regression
analysis. 'e TICS value was calculated in terms of
the risk value of immune cells and ssGSEA’s NES
value, and the Z-score was also calculated.

(2) We conducted principal component analysis on 81
patients’ transcripts. In order to obtain genes related
to high infiltration, T-test and FDR correction were
performed. 'en, we acquired upregulated and
downregulated genes related to high infiltration and
clustered upregulated genes and sample, comparing
TICS value and immune score value and calculating
Pearson correlation coefficient.

2.3. Enrichment Analysis on Function and Path.

(1) We explored the biological process of these different
genes by GO and KEGG functional annotations. In
addition, we used the “cluster analysis software” R
package to implement the characteristic genes based
on alternative TICS. Meanwhile, the overall rela-
tionship between GO terms and immune cells was
acquired by the usage of GSEA.

(2) In order to find the relationship between GO terms,
the signal pathways related to immune infiltration
and the related genes involved were firstly used to
construct network by STRING database. Secondly,
we mined network modules and analyzed the cor-
relation between genes and the biological processes
involved.

(3) We examined and projected the survival of patients
with non-small-cell lung cancer and drew a survival
curve based on immune factor analyses.

3. Result 1: Construction of Immune
Microenvironment Map of NSCLC

One of the most important treatments for non-small-cell
lung cancer is immunotherapy (NSCLC). 'e heterogeneity
of immunemicroenvironment of patients’ tissues potentially
affects the therapeutic effect. 'erefore, the composition of
immune cells in tumor tissue must be understood. First, we
downloaded the transcriptome data and matched clinical
data of 81 patients with NSCLC from GEO database (access
number: gse120622). Based on ssGSEA algorithm, we used
mRNA expression data of each patient to construct immune
cell infiltration maps of NSCLC including 27 types of
adaptive and innate immune cells. Central memory CD8
T cell, central memory CD4 T cell, and plasmacytoid den-
dritic cells are common immune cells in NSCLC tissues,
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which all exist in 81 patients. In addition, there are some
individual specific immune cells, such as immature B cell
(Figure 1(a)). We discovered that most immune cells had a
high link with activated CD8 T cells, activated B cells, im-
mature B cells, monocytes, effector memory CD8 Tcells, and
other cells. However, there is no evident link between some
immune cells and others, such as the brilliant natural killer
cell, activated CD4 T cell, and plasmacytoid dendritic cell
(Figure 1(b)). 'is potentially indicates that there are
complex interaction patterns among immune microenvi-
ronment of NSCLC patients.

4. Result 2: Construction of TICS ScoringModel
Based on Immune Microenvironment of
NSCLC Patients

'en, we used Cox regression to analyze and explore the
relationship between 27 kinds of infiltrating immune cells
and survival time on the basis of the survival data of patients.
Meanwhile, we obtained the risk ratio and coefficient of 27
immune cells. 'e results showed that individual specific
immune cells were significantly associated with the survival
of NSCLC patients (Figure 2(a)). 'ere was a high corre-
lation between MDSC cells and other five kinds of immune
cells (Figure 2(b)). We calculated a TICS score for each
patient based on the quantity of these six tumor-infiltrating
immune cells (see procedure) and then divided patients into
high and low TICS groups based on the median TICS score.
In the high TICS group, we discovered that immature B cells,
activated B cells, MDSC effector memory CD4 T cells, eo-
sinophils, and regulatory T cells had higher ssGSEA scores
(P< 0.01) (Figure 2(c)). Various studies have found that the
overall survival of many solid tumors, including NSCLC, is
positively linked with tumor-infiltrating B cells [8, 20–26]. In
addition, tumor-infiltrating B cells and tumor-infiltrating
CD4+Tcells created three-level structures of lymphoid that
was positively correlated with the survival rate of NSCLC
[8, 26]. Furthermore, we analyzed the prognosis of NSCLC
patients in accordance with the clinical survival data. We
found a substantial difference in prognosis between the two
groups, with the high TICS group having a much better
prognosis than the low TICS group. 'is shows that the
TICS score constructed can be a reference for clinical
prognosis (Figure 2(d)).

5. Result 3: RelatedGenes of TICS Participate in
Important Immune Pathways in NSCLC

Further study on the biological progress related to TICS will
help to analyze the molecular mechanism affecting the
prognosis of NSCLC. Firstly, we used mRNA expression
data based on TICS group to conduct GSEA in patients with
NSCLC. 'e results showed that the up-regulated genes
affecting the prognosis of nonsmall cell lung cancer in the
high TICS group were significantly related to the signal
pathways of T cells and B cells (Figure 3(a)). 'is indicates
that immune regulation is an important biological process
affecting the prognosis of NSCLC, and the upregulated genes
in the high TICS group are important molecules involved in

its immune regulation. Next, we identified significantly
different mRNA (FDR <0.01, FC> 2) between high TICS
and low TICS groups based on the mRNA expression data of
NSCLC.

Finally, 730 significantly upregulated mRNAs in the high
TICS group and 121 significantly downregulated mRNAs in
the low TICS group were obtained (Figure 3(b)). In ac-
cordance with our results, the upregulated mRNA is more
likely to be associated with immune function such as
CX3CR1, which mediates the migration and adhesion of
leukocytes; CCL21 has no chemotactic effect on B cells,
macrophages, or neutrophils. In order to further analyze the
function of differential mRNA, we used DAVID tool to
enrich it. Gene Ontology (GO) results showed that the
upregulated mRNA was enriched in the top 10 biological
functions. It mainly includes some function related to im-
mune response. Similarly, the upregulated mRNA was
enriched in the top ten pathways of Kyoto Encyclopedia of
Genes and Genomes (KEGG). It mainly includes cell ad-
hesion molecules and immune and other related signaling
pathways. 'ese results fully show that genes related to
immune function can affect the prognosis of NSCLC. In
addition, we also explored whether the top 10 biological
functions (GO) are related. 'e result shows that these
biological functions are closely related and can share the
same gene set, indicating that these biological functions have
some similarities.

6. Result 4: Immune-Related Genes Are the
Key to Distinguish TICS

Next, we explored the interactions among the top 10 bi-
ologically functional related mRNAs. Firstly, we select high
reliability edge (combined score >0.7) from STRING data.
'en, 191 mRNAs were matched to the interaction edge.
Finally, an undirected network with 164 points and 777
edges is constructed (Figure. 4(a)). 'en, we used MCODE
plug-in to obtain subnetworks and selected the subnetwork
with high reliability for biological function annotation
(Figures 4(b)–44(e)). We found that there was a close
interaction among mRNA related to signaling pathway
mediated by chemokine. At the same time, we explored
whether the four subnetworks can effectively distinguish
high TICS from low TICS. We find that the four small
networks can distinguish high TICS from low TICS by
drawing the ROC curve and calculating the area under the
curve, indicating that they are potential markers to dis-
tinguish TICS (Figure 4(f )). Among them, CCL19 which is
as an important member of chemokine-mediated signaling
pathway has demonstrated that its expression level in tu-
mor FSC is related to the degree of immune cell infiltration
of CD8 +T cells and tumor accumulation (29391257). In
conclusion, the level of CCL19 expression is related to
tumor size. 'e lower the expression level, the larger the
tumor. Besides, CX3CR1 is also a marker of T cell differ-
entiation (33658501). 'ese chemokines are also signifi-
cantly associated with the survival of patients with NSCLC.
It is reported that the expression levels of CX3CR1,
CXCR4, CXCR5, and CCR7 in tumor tissues are
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significantly increased, which is able to affect the survival
time of patients. 'e 5-year DFS and 5-year OS of patients
with positive CCR7 expression are significantly higher
(32896997).

7. Discussion

Tumor cells, fibroblasts, immune cells, different signal
chemicals, and extracellular matrix make up the majority of
the tumor microenvironment. Tumor microenvironment
significantly affects diagnosis, survival, and clinical treat-
ment sensitivity of tumor. Relevant studies have shown that

immune cells of adaptive immune and innate immune
system can penetrate into tumor tissue, forming tumor
immune microenvironment and affecting tumor progres-
sion. Patients’ survival following chemotherapy is influenced
by the quantity of immune cells in the tumor. In this work,
we used non-small-cell lung cancer mRNA expression data
to create a microenvironment map of the internal immune
system of tumor tissue. Combined with the analysis on
immune cells combined with survival data of patients, it was
found that there was a significant correlation between the
survival of NSCLC patients and immature B cell, activated
B cell, MDSC, effector memory CD4 T cell, eosinophil, and
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regulatory T cell. Next, we constructed the TICS scoring
model and graded specific TICS score for patients in terms of
prognosis-related immune cell content and its relationship
with survival. TICS score can discriminate between patients
with non-small-cell lung cancer who have a favourable
prognosis and those who have a bad prognosis in terms of
survival time.

Furthermore, we identified TICS-related genes by using
prognostic markers and mRNA expression profiles. We
found that many chemokines were significantly upregulated
in the high TICS group. For example, there are CX3CR1,
CXCR4, CXCR5, and CCR7 which are commonly associated
with the survival of NSCLC. Also, high expression of
CX3CR1 and CCL19 can affect the immune differentiation
of Tcells, such as CD8+Tcells. Previous studies have shown
that C3 level in biopsy tissues of NSCLC is certainly cor-
related (24819254) with infiltrating CD4+ and
CD8+T lymphocytes. Moreover, the result of functional
enrichment showed that TICS-related genes were involved
in a variety of immune-related biological progresses and
signaling pathways, which indicates that immune-related
genes affect the prognosis of NSCLC patients by regulating
the immune process.

We established PPIs among immune genes and high-
confidence PPI network by using the top ten genes in
biological function. PPI network results show that there is
a close interaction between these genes, which indicates
that immune genes may have complex coordination and
interaction by which they can regulate the body’s immune
response. Furthermore, we explored four important
subnetworks in PPI network. By drawing the ROC curve
and calculating the area under the curve, we found that
these four subnetworks are important molecular markers
to distinguish patients from TICS. In conclusion, our
study depicts a comprehensive immune map of NSCLC
and constructs a TICS scoring model on the basis of the
content of immune cells that can effectively distinguish
the prognosis time of patients. Differential gene and
enrichment analysis explains the prognosis-related mo-
lecular mechanism of NSCLC. PPI network and subnet-
work mining effectively identified potential markers to
distinguish TICS classification. We hope that the prog-
nosis-related immune markers identified in our study will
provide guidance for clinical diagnosis, medication, and
prognosis prediction of patients.
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