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Myocardial infarction (MI) is one of the most common cardiovascular diseases threatening human life. In order to ac-
curately distinguish myocardial infarction and have a good interpretability, the classification method that combines rule
features and ventricular activity features is proposed in this paper. Specifically, according to the clinical diagnosis rule and
the pathological changes of myocardial infarction on the electrocardiogram, the local information extracted from the Q
wave, ST segment, and T wave is computed as the rule feature. All samples of the QT segment are extracted as ventricular
activity features. ,en, in order to reduce the computational complexity of the ventricular activity features, the effects of
Discrete Wavelet Transform (DWT), Principal Component Analysis (PCA), and Locality Preserving Projections (LPP) on
the extracted ventricular activity features are compared. Combining rule features and ventricular activity features, all the 12
leads features are fused as the ultimate feature vector. Finally, eXtreme Gradient Boosting (XGBoost) is used to identify
myocardial infarction, and the overall accuracy rate of 99.86% is obtained on the Physikalisch-Technische Bundesanstalt
(PTB) database. ,is method has a good medical diagnosis basis while improving the accuracy, which is very important for
clinical decision-making.

1. Introduction

MI [1] refers to a cardiovascular disease in which the cor-
onary blood supply is drastically reduced or interrupted,
causing serious and long-lasting ischemia of myocardial cells
and ultimately leading to myocardial cell damage and even
necrosis.,erefore, early detection and prevention of MI are
of great significance, which can ensure the safety of patients’
lives [2]. Myocardial enzymes usually are the main indicator
for diagnosing MI. But, in the early rescue period of acute
myocardial infarction, myocardial enzymes are often not
elevated, and it is difficult to provide early clinical warning
[3]. ECG has the advantages of celerity and low cost, so it is a
common method for diagnosing MI. ,e electrocardiogram
is a key indicator for early warning and diagnosis of MI
[4, 5].

Clinicians and ECG experts recognize MI based on
changes of ECG waveform and diagnosis experience. With
the development of computer information technology, au-
tomatic analysis of electrocardiogram has received wide-
spread attention. Applying computer-assisted intelligent
detection to the classification of MI can help doctors di-
agnose MI more accurately and reduce the burden on
doctors. In the current study, a variety of classification al-
gorithms for identifying MI have been proposed, which are
mainly divided into deep learning and feature engineering
according to the research direction. Deep learning is clas-
sified in an end-to-end manner and has high performance,
so it is widely used forMI classification. However, it does not
pay attention to data processing and is dedicated to the
performance of the classifier, so it cannot analyze the impact
of specific features on the classification performance. ,e
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classification based on feature engineering is to analyze the
ECG data, extract some useful data, or make a combination
of data and perform classification according to these data. Its
performance depends on the extracted features. ,erefore,
fully mining ECG data based on clinical medical principles
not only has good interpretability but also helps to improve
classification performance.

In this paper, the principal features based on the doctor’s
diagnosis rule [6–8] have been further calculated and ap-
plied. For the Twave and STsegment amplitude elevation or
depression standard, the doctor judges whether it is elevated
or depressed based on R wave and the baseline of the
heartbeat; and, for abnormal Q waves, the judgment con-
ditions are not limited to the amplitude. ,erefore, doctors
judge whether the patient is eligible for MI based on one or
even three of the descriptions. Figure 1 shows the different
morphological features of MI.

Although these traditional features are the key to detecting
myocardial infarction, in a general sense, myocardial infarction
is the infarction of myocardial cells in various parts of the
ventricle. ,erefore, it is necessary to consider the global ac-
tivity information of the ventricle. While extracting rule fea-
tures, this method compares the performance of three
technologies of DWT, PCA, and LPP on ventricular activity
feature compression. ,en the clinical rule features and the
compressed ventricular activity features are fused. Finally,
XGBoost is used to classify the fused features, and the tenfold
cross-validation method is used for testing. ,e proposed
method not only effectively interprets the classification basis
but also makes full use of ventricular activity information,
which improves the accuracy of myocardial infarction classi-
fication. ,e main contributions of this paper are as follows:

(1) According to the clinical diagnosis significance, it
not only maps the features of the doctor’s diagnosis
rule but also considers the information of ventricular
activity. ,erefore, the proposed ventricular fusion
rule features demonstrate myocardial infarction
information comprehensively.

(2) ,eDWTcompressionmethod not only removes the
redundant information of the ventricular activity
features but also effectively retains the detailed in-
formation. Compared with PCA and LPP, it shows
better performance in ventricular activity features.

(3) ,e XGBoost model with ventricular fusion rule
features is employed to classify myocardial infarc-
tion, health, and other diseases and can locate 8 types
of myocardial infarction, which is very important for
clinical diagnosis.

,e rest of this paper is structured as follows: Section 2
briefly introduces related work. Section 3 details the method
ofmyocardial infarction.,e experimental analysis results are
introduced in Section 4. Section 5 summarizes the full text.

2. Related Work

In recent years, with the development of artificial intelli-
gence, intelligent detection of MI has become a research

focus. Researchers have developed a variety of classification
methods, mainly including deep learning-based methods
and feature extraction-based methods.

2.1. Myocardial Infarction Classification Based on Deep
Learning. Since there is no need to manually design feature
extractors and the classification performance is significant,
deep learning is widely used in myocardial infarction de-
tection [9–16]. Acharya et al. [9] used a convolutional neural
network to detect myocardial infarction. ,is model has
high classification performance for noisy data without
feature design and obtains an accuracy of 95.22%. Lui and
Chow [10] used a model combining convolutional neural
network and cyclic neural network to classify myocardial
infarction, as well as normal and other heartbeats after
heartbeat segmentation. In order to reduce the computa-
tional complexity, some methods [10, 11] only focus on
single-lead classification but relatively reduce the accuracy.
In deep learning, researchers strive to improve the accuracy
of myocardial infarction classification through models.
,ese methods do not require medical-related prior
knowledge, and the classification accuracy is improved with
big data, but because the details of the internal selection
features are not clear, the ground of neural network clas-
sification cannot be known. ,is is a problem that cannot be
ignored for medical treatment, and feature-based detection
and classification methods have gradually become the focus
of research.

2.2. Myocardial Infarction Classification Based on Feature
Engineering. Feature-based classification of myocardial in-
farction [17–31] requires a comprehensive understanding of
the data, so that the algorithm is easy to understand and
interpret; and its classification accuracy usually depends on
the designed features. ,erefore, in order to obtain better
recognition performance, some studies not only extract
original physiological features but also use various tech-
niques to extract advanced features [18–21]. Specifically, the
RR interval [4], amplitude [22–24, 26], area [22, 27, 28], and
other original features are extracted from the electrocar-
diogram. Arif et al. [22] extracted the morphological features
such as the T wave amplitude, Q wave, and ST segment
deviation value of the heartbeat for accurate classification,
and the K-Nearest Neighbor (KNN) classifier recognized 10
types of myocardial infarction and obtained a total accuracy
of 98.3%. Dohare et al. [23] extracted the amplitude, area,
average, standard deviation, and other statistical features of
P wave, QRS wave, and T wave as the original features and,
through Principal Component Analysis dimensionality re-
duction processing, selected the most important 14 features
for classification and finally achieved a classification accu-
racy of 96.66%. At present, most of the literature uses feature
transformation and other techniques [29–33] to extract the
advanced features of the corresponding heartbeat, such as
wavelet coefficients [29, 31–33], Discrete Cosine Transform
[30], and Empirical Mode Decomposition [31]. Sharma et al.
[30] designed a new wavelet filter to extract the multiscale
ambiguity coefficient and detail coefficient of the heartbeat
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and finally used KNN formyocardial infarction classification
and obtained 99.62% classification accuracy. Acharya et al.
[31] performed three transformations on each heartbeat of
lead II and then compressed them with the LPP. Comparing
the transformation effects of Discrete Cosine Transform
(DCT), Discrete Wavelet Transform (DWT), and Empirical
Mode Decomposition (EMD), the DCTwas the best, and its
accuracy was 98.5%. Acharya et al. [31] used wavelet
transform to get scale coefficient features, and the KNN was
employed for MI classification.

Although there is so much work in the detection of
myocardial infarction [34, 35], there is still necessity for
further exploration. ,e ECG feature that reflects the status
of MI patients is not widely used, but the features composed
of the amplitude and interval of the Twave, Q wave, and ST
segment have achieved good results. Some of the above
literatures [22–26, 36, 37] have considered these features, but
the principal features based on the doctor’s diagnosis rule
[6–8] have not been further calculated and applied. For the T

wave and ST segment amplitude elevation or depression
standard, the doctor judges whether it is elevated or de-
pressed based on the baseline of the heartbeat; and, for
abnormal Q waves, the judgment conditions are not limited
to the amplitude. ,erefore, this work extracts not only the
rule features of doctors but also the ventricular activity
features which include all samples of the QTsegment.,en it
compares the compression effects of various techniques on
ventricular activity features, the purpose of which is to
remove redundant information and reduce computational
complexity. Finally, the XGBoost algorithm is used to
classify the features of ventricular fusion rule features, which
include the ventricular activity features and the rule features.
Based on the principle of myocardial infarction, this model
has a high degree of recognition of the location of myo-
cardial infarction.Whenmyocardial infarction occurs, it can
effectively help clinicians to judge and diagnose myocardial
infarction in time. ,e relevant literatures in the related
work are summarized in Table 1.
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Figure 1: Different forms of myocardial infarction. (a) ,e morphology is manifested as only abnormal Q waves. (b) ,e morphological
manifestation is STsegment elevation and Twave height. (c),emorphology is STsegment elevation, Twave inversion, and normal Qwave.
(d) ,e appearance of abnormal Q wave and T wave inversion.
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3. Methods

,is paper mainly identifies 8 different parts of myocardial
infarction, as well as health (H) and other diseases (O).,ese
8 parts are anterior (A), anterolateral (AL), anterior septum
(AS), inferior (I), inferior lateral (IL), inferior posterior (IP),
inferior posterior lateral (IPL), and posterior (P). Myocardial
infarction classification usually includes three main steps:
firstly, remove the baseline drift and high-frequency noise of
the ECG signal, and detect the QRS complex wave and T
wave according to the principle of myocardial infarction;
secondly, extract rule features and ventricular activity fea-
tures according to doctor’s diagnosis rules and myocardial
infarction pathology; finally, XGBoost algorithm is used for
the classification of myocardial infarction. Figure 2 shows
the flow of myocardial infarction classification algorithm.

3.1.ECGSignalPreprocessing. ,ehuman body’s ECG signal
is weak, and noise has a great influence on the shape and
details of the waveform, which often hinders the recognition
of diseases. Denoising is the first step in waveform location
analysis. Wavelet transform [38] is a signal time-frequency
analysis method. It has the ability to characterize the local
characteristics of the signal in both time and frequency
domains.,erefore, it is suitable for analyzing nonstationary
signals and extracting local characteristics of signals. In this
paper, wavelet transform is used to remove baseline drift and
high-frequency noise. ,e expansion of the function f(t)

under the wavelet basis function ψa,b(t) is continuous
wavelet transform, and its definition is shown in the fol-
lowing formula:

Wf(a, b) �〈f(t) · ψa,b(t)〉 �
1
��
a

√ 􏽚
+∞

−∞
f(t)ψ

t − b

a
􏼠 􏼡dt,

(1)

where a is the scale factor and b is the transformation factor;
through these two parameters, the wavelet function can be
stretched along the time axis and the wavelet coefficients can
be calculated until the end of the signal.

,e essence of denoising is to decompose the different
frequency parts of the signal into different scale spaces and
then remove the wavelet coefficients on the corresponding
scale of the noise and retain the wavelet coefficients obtained
from the useful signal; finally, the signal is reconstructed.
Figures 3 and 4 show the ECG data before and after
denoising.

For waveform segmentation, the signal is wavelet
decomposed by the Mexican hat basis function to separate
the QRS complex wave [39] in this paper. ,is technology
decomposes signals of different frequencies into different
scales, distinguishing QRS complex waves. After detecting
the QRS complex, the search window of the P wave and T
wave is defined according to the calculated RR interval and
relative to the position of the QRS complex. In order to
verify the accuracy of the extracted features, this paper
verifies on private dataset. ,e collaborative center ECG
data is our private data which is a 12-lead ECG data record.
,e subjects were men aged between 21 and 91 years and
women aged between 29 and 89 years. 128 samples/sec are
recorded for each lead for digitization. ,en each record is
resampled to 360 samples/sec. ,e signal voltage is within
5mV with 8-bit resolution. ,e doctor randomly selects
clearer data from the collected 24-hour Holter ECG records
for labeling, one hour during the day and one hour at night.
Each piece of data has approximately 1.3 million sampling
points. ,e test results are shown in Table 2. ,e detection
is shown in Figure 5.

3.2. Feature Extraction. When myocardial infarction occurs,
the abnormal wave pattern continues to change over time. In
the early stage of myocardial infarction, the T wave and ST
segment are elevated at the same time; after the myocardial
infarction lasts for a few hours, the ST segment arch is el-
evated, forming a one-way curve, abnormal Q waves appear,
and the T wave is gradually inverted. In the subacute phase,
the ST segment returns to the baseline I point, the T wave
gradually becomes flat, and the abnormal Q wave persists; in
the old phase, the ST segment and T wave return to normal,
but the abnormal Q wave persists. ST segment, T wave, and
Q wave have different morphological criteria due to different
leads. ,erefore, it is not possible to simply extract the
amplitude or duration of the band nor only describe the
information of one band. It is necessary to associate multiple
waveforms for a comprehensive description. Based on the
research of related literature [6–8] combined with doctor’s
diagnosis rules, this paper extracts the following myocardial
infarction-related feature groups. Figure 6 is the annotation
of extracted features. Among them, STsegment, Twave, and
Q wave are the ground for doctors to diagnose myocardial
infarction, so they are integrated as rule features, and the
specifics are shown in formulas (2)–(8). ,e specific cal-
culation formula for ventricular activity features is formula
(9). Table 3 summarizes the features’ descriptions extracted
in this paper:

Table 1: Summary of related work.

Method Feature Literatures
Deep learning End-to-end [9–16]

Machine learning

Morphology [22–26, 36, 37]
Interval [4, 25]
Area [22, 27, 28]

Wavelet coefficients [18, 20, 21, 25, 29, 31–33]
Discrete Cosine Transform [30]

Empirical Mode Decomposition [31]
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Signal

12-lead
ECG signal Denoising Heartbeat

segmentation

Preprocessing Feature extraction

Ventricular activity features

Morphological features of QT
segment

Feature compression

Rule features

Q wave statistical features

ST-T segment statistical
features

XGBoost

Classification

Figure 2: Myocardial infarction classification algorithm flow.
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Figure 3: Raw data of myocardial infarction.
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Figure 4: Myocardial infarction data after denoising.
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(a) ST segment features description: these features
include the amplitude difference between the J
point (QRS end point) and the baseline (QRS
starting point) and the amplitude difference be-
tween the T wave start point and the J point. When

myocardial infarction occurs, the ST segment is
abnormally elevated or depressed, and the doctor
judges whether the ST segment is elevated or de-
pressed based on the magnitude of the amplitude
difference.

Table 2: Statistical results of wave detection in collaborative center ECG data.

Records
R wave P wave T wave

+p% Se% Acc% +p% Se% Acc% +p% Se% Acc%
001 99.78 100 99.78 99.93 99.95 99.89 99.79 99.87 99.67
002 99.94 100 99.94 99.92 99.92 99.84 99.79 99.87 99.67
003 99.93 99.93 99.87 99.84 99.96 99.81 99.93 99.90 99.84
004 99.89 100 99.89 99.86 99.86 99.73 99.76 99.83 99.59
005 99.91 100 99.91 99.88 100 99.88 99.95 100 99.95
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Figure 5: Position mark of each waveform detected.
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J_relative � J_amp − I_amp, (2)

ST_relative � Tstart_amp − J_amp. (3)

(b) Qwave features description: these features include the
duration of the Q wave and the ratio of the amplitude
of the Q wave to the R wave. When the myocardial
infarction progresses to the later stage, abnormal Q
waves will appear. Its specific features are that the Q
wave is broadened, and the amplitude exceeds a
certain proportion of the R wave in the same lead.

Q_ratio �
Q_amp − I_amp
R_amp − I_amp

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
�

Q_relative
R_relative

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (4)

Q_interval �
Q_pos − I_pos

SR
. (5)

(c) T wave features description: these features include the
ratio of the amplitude of the Twave to the R wave, the
amplitude difference between the T wave and its start
point, and the amplitude difference between the Twave
and its end point. Different leads have different Twave
morphology standards. To determine the T wave
morphology change needs to be based on the R wave
amplitude or the amplitude of the start and end points
of the Twave.When the Twave is higher than a certain
proportion of the R wave, it is usually a towering T
wave, and when the T wave is lower than a certain
proportion of the R wave or the relative starting point
of the Twave is lower than a certain amplitude, it is low
and flat. ,e difference in amplitude between the T
wave and its start and end points describes whether the
T wave is inverted or upright.

T_ratio �
T_amp − I_amp
R_amp − I_amp

�
T_relative
R_relative

, (6)

Tstart_relative � T_amp − Tstart_amp, (7)

Tend_relative � T_amp − Tend_amp. (8)

(d) QT segment features description: the QT segment is
the ECG record from the beginning of the Q wave to
the end of the T wave, including QRS complex wave
and ST-T segment. Since the QRS wave represents
the time of ventricular depolarization and the ST-T
wave represents the time of slow ventricular repo-
larization, the QT segment is a total measurement of

ventricular activity. Myocardial infarction generally
occurs in the ventricle, so the record of ventricular
activity has a more comprehensive and accurate
description of myocardial infarction. In this paper,
QT segments are extracted and unified to 1000
samples as ventricular activity feature.

QT � x1 amp, x2 amp . . . xm amp􏽮 􏽯 mÎ[I,Tend]. (9)

3.3. Feature Compression. In this paper, considering that
myocardial infarction is not simply embodied in a fixed
feature, as it is a comprehensive measurement of Q wave and
ST-T segment, the rule feature group is a feature map for
doctors to diagnose myocardial infarction, which is not
needed feature compression in this work. For the ventricular
activity features, all sampling points of the QT segment are
included. Simply extracting all samples is often mixed with
redundant information, and the feature dimension is too
high to make the calculation complicated, so it needs to be
compressed. Different feature compression methods have
different effects on the same data. ,erefore, for the ven-
tricular activity features, this paper used three techniques for
comparison: DWT, PCA, and LPP. ,e 1000 samples of
ventricular activity features are compressed into 32 features.

3.3.1. Discrete Wavelet Transform. Discrete Wavelet
Transform is a time domain-frequency domain transform
analysis method [40], which decomposes the signal into
different frequency components through high-pass filtering
and low-pass filtering. ,e output of the high-pass filter is
the detail coefficient, which represents the high-frequency
information of the signal; the output of the low-pass filter is
the approximate coefficient, which represents the low-fre-
quency information of the signal. In this work, db4 wavelet is
used to decompose the feature of ventricular activity in five
levels. After the ECG signal is processed by the db4 wavelet
function, the coefficients are smoother, and at the same time
it is guaranteed to be closer to the original waveform.
Discrete Wavelet Transform is to sample the scale and
translation parameters of the continuous wavelet in the
above formula (1), which is defined as follows:

W(a, b) �
1
��
a

√ 􏽘
R

f(n)ψa,b(n). (10)

3.3.2. Principal Component Analysis. Principal Component
Analysis is a dimensionality reduction method based on
orthogonal transformation [41], which recombines relevant

Table 3: ECG signal features in this paper.

Number ECG signal features Introduction of ECG signal feature parameters

1 Rule features Including ST segment features description, Q wave features description, and T wave features
description, a total of 7 features

2 Ventricular activity
features Including 1000 sample points of the QT segment

3 Ventricular fusion rule
features Combining ruler features and ventricular activity features
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indicators into irrelevant comprehensive indicators. ,is
technology uses linear projection to map high-dimensional
data to low-dimensional space while ensuring that the
variance of the projected data is maximized. In this work,
considering that the ECG data bands and adjacent lead data
are generally correlated, resulting in greater redundancy, the
global key features are extracted. ,e principal formula of
Principal Component Analysis is shown as follows:

Xm∗ k
′ � Xm∗nV

T
n∗ k. (11)

When the sample is anm ∗ nmatrixX, find the k ∗ nmatrix
VT composed of the largest k eigenvectors of the matrix XTX

through Singular Value Decomposition (SVD). Matrix VT

compresses the features of m columns to k columns.

3.3.3. Locality-Preserving Projections. Local Preserving
Projections are a linear dimensionality reduction technique,
which reduces the spatial dimension while maintaining the
internal fixed local structure [42]. After constructing an
adjacencymatrix representing the near-distance relationship
between samples, this technology introduces the Laplace-
Beltrami function and calculates the best linear approxi-
mation to obtain a locally preserved projection. ,is work
considers that ventricular activity features of the same
structure are similar, and extracting the commonality of
these neighboring features can effectively compare the
features. ,e loss function of the principle of Local Pre-
serving Projections is shown in the following formula:

􏽘
ij

yi − yj􏼐 􏼑
2
Wij. (12)

Here, yi represents any data point i after dimensionality
reduction, yj represents any data point that does not contain
i point after dimensionality reduction, and Wij represents a
matrix composed of the distance weight coefficients between
i and j in the original space.

3.4. XGBoost Model Description. XGBoost is an improved
algorithm based on Gradient Boosting Decision Tree
(GBDT); similar to GBDT, it is an ensemble algorithm
composed of multiple decision trees [43]. ,e basic idea is to
establish K decision trees so that the predicted value of the
tree group is as close as possible to the true value (accuracy)
and has the greatest possible generalization ability. ,e
structure of the algorithm is shown in Figure 7. ,e algo-
rithm uses multiple iterations; each iteration produces a
weak classifier, and each classifier is trained on the basis of
the residual of the previous round of classifiers. Finally, the
accuracy of the final classifier is continuously improved by
reducing the deviation.

For the input sample X, the output prediction model is

􏽢yi � 􏽘
K

k�1
fk xi( 􏼁, (13)

where K is the total number of numbers, fk represents the k-
th tree, and 􏽢yi represents the prediction result of sample xi.

,e loss function is expressed as

Obj(θ) � 􏽘
n

i�1
l yi, 􏽢yi( 􏼁 + 􏽘

K

k�1
Ω fk( 􏼁. (14)

Here, l(yi, 􏽢yi) is the training error of the sample, and
Ω(fk)represents the regular term of the k-th tree. ,e
formula is as shown in (15): Tis the number of leaf nodes of
the tree, and w is the output score of the leaf nodes of each
tree.

Ω ft( 􏼁 � cT +
1
2
λ􏽘

T

j�1
w

2
j . (15)

Since f is a decision tree, not a numerical vector, it
cannot directly optimize the loss function, so it is necessary
to find a local optimal solution through a greedy algorithm;
and the predicted score for the t-th tree can be expressed as

􏽢y
(t)
i � 􏽢y

(t−1)
i + ft xi( 􏼁. (16)

,e optimized loss function obtained by Taylor ex-
pansion formula is shown in (17), where gi is the first-order
derivative and hi denotes the second-order derivative:

Objt(θ) � 􏽘
T

j�1
gift xi( 􏼁 +

1
2
hif

2
t xi( 􏼁􏼔 􏼕 + cT +

1
2
λ􏽘

T

j�1
w

2
j

� 􏽘
T

j�1
􏽘
i∈Ij

gi
⎛⎜⎝ ⎞⎟⎠wj +

1
2

􏽘
i∈Ij

hi + λ⎛⎜⎝ ⎞⎟⎠w
2
j

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ + cT.

(17)

Here, by making Gj � 􏽐i∈Ij
gi and Hj � 􏽐i∈Ij

hi, the loss
function can be further compressed to obtain formula (18),
where the partial derivative of wj can be replaced by Gj and
Hj. Formula (19) is obtained, and the final loss function is
shown in formula (20).

Objt(θ) � 􏽘
T

j�1
Gjwj +

1
2

Hj + λ􏼐 􏼑w
2
j􏼔 􏼕 + cT, (18)

w
∗
j � −

Gj

Hj + λ
, (19)

Obj∗ � −
1
2

􏽘

T

j�1

Gj

Hj + λ
+ cT. (20)

,e advantage of XGBoost is that it has a reliable ob-
jective function. XGBoost adds a regularization term to the
objective function to make the trained model simpler and
prevent overfitting. Compared with GBDT, XGBoost ex-
pands the objective function Taylor to the second order,
retaining more information about the objective function,
making the algorithm converge to the global optimum faster.
XGBoost performs column sampling in a similar manner to
random forests, which can not only reduce overfitting but
also reduce calculations. In this paper, comparing the
performance of multiple classifiers while considering the
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characteristics of the classifiers, a decision tree is selected as
the base classifier.,en ensemble learning is used to alleviate
data imbalance and improve classifier performance.

4. Results

In this part, the process and results of the experiment will be
described in detail. ,e subject focuses on feature extraction
and classification of myocardial infarction. According to
clinical medical diagnosis rules and medical significance, 7
rule features are extracted and calculated as feature groups,
and all samples of QT segment are extracted as ventricular
activity features. In order to reduce the redundant infor-
mation of the ECG data of the 12-lead ventricle and improve
the efficiency of the model, three technologies of DWT,
PCA, and LPP are used to transform and compare the
ventricular activity features, and 32 features are obtained,
respectively. Finally, the performances of the ventricular
activity features with the best compression effect and the rule
features and their combination on the classification effect are
compared.,is paper uses the PTB database. ,e focus is on
the analysis and classification of 8 kinds of myocardial in-
farction, as well as health and other diseases data. A total of
37,359 heart beats were extracted, and the 10-fold cross-
validation method was used for model [44]. ,is process
divides the training set into ten subsets. For each subset, the
remaining dataset is used to train the model, and then the
subset is used to predict the result. ,is process is repeated
ten times.,e average of the prediction results is taken as the
final prediction result. ,e classification results help doctors
make preliminary judgments.

4.1. Experimental Data. ,e data used in this paper comes
from the PTB diagnostic ECG database [45]. ,e PTB di-
agnostic ECG database includes 549 records of 290MI, other
diseases, and healthy control patients. 1 to 5 records are
collected for each subject. Each record is about 2 minutes,
including 15 simultaneous measurement signals: traditional
12-lead and 3 Frank-lead ECG signals. ,e data is shown in
Table 4. In this study, a 12-lead electrocardiogram was used
to analyze and classify data on 8 types of myocardial in-
farction, health, and other diseases.

,is work classifies myocardial infarction from health
(H) and other diseases (O) while classifying anterior (A),
anterolateral (AL), anterior septum (AS), inferior (I), infe-
rior lateral (IL), inferior posterior (IP), inferior posterior
lateral (IPL) and posterior (P) myocardial infarctions. ,e
extracted data is shown in Table 5.

4.2. Evaluation Indicator. In this paper, the experimental
results are obtained by comparing the difference between the
label output of the model and the real label. ,e evaluation
indicator is based on the literature [46] using sensitivity,
specificity, positive predictability, and accuracy to evaluate
the results of the experiment. Sensitivity (Se) is the pro-
portion of samples judged to be positive in all positive cases.
Specificity (Sp) is the proportion of samples judged to be
negative among all negative cases. ,e positive predictive
value (+p) is also known as precision, which is the correct
proportion of all samples that are judged to be positive.
Accuracy (Acc) is the proportion of correctly classified
samples to the total sample. ,e calculation formulas
((21)–(24)) of the four evaluation indicators are as follows:

Data set D

Decision tree 1

Decision tree 2

Decision tree T

Residual 1

f1

Residual 2

f2

fT

XGBoost

Figure 7: XGBoost algorithm structure.
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Se �
TP

(TP + FN)
, (21)

Sp �
TN

(TN + FP)
, (22)

+p �
TP

(TP + FP)
, (23)

Acc �
(TP + TN)

(TP + TN + FP + FN)
. (24)

4.3. Experiment and Result Analysis. In order to verify the
effectiveness of the extracted features and compare the
performances between XGBoost and other classifiers, this
work conducted four sets of experiment. Experiment 1
applies three technologies to compare the ventricular activity
features and verifies the effect through the XGBoost. Ex-
periment 2 compares the performance of the rule features,
the ventricular activity features, and the ventricular fusion
rule features on the XGBoost. In order to verify the effec-
tiveness of the XGBoost, Experiment 3 compares the per-
formance of XGBoost with traditional basic classifiers. At the
same time, because XGBoost belongs to ensemble learning,
Experiment 4 compares it with other ensemble classifiers.
Finally, the proposed method is compared with other lit-
erature methods.

4.3.1. Comparative Analysis of Different Dimensionality
Reduction Methods. In order to fully explore the medical
significance of ECG signals in myocardial infarction, this
paper extracts a total of 1000 samples of QT segment as
ventricular activity features. At the same time, in order to
remove the redundant information of the ventricular activity
features, Experiment 1 used three different technologies of
DWT, PCA, and LPP to compare the ventricular activity
features. Table 6 shows the compression effects of the three
transformation techniques on ventricular activity features.

According to the experimental results, although PCA has
good performance on individual classifiers, for example,
reaching 93.02% on XGBoost, it does not work well on most
classifiers. ,is is because PCA is sensitive to local singular
features in the transformation process but ignores key de-
tailed features, so the classification accuracy is relatively low.
LPP has high performance on most classifiers; it reached an
accuracy of more than 90% on most of them. But, for a few
classifiers, the performance is poor, so the overall effect on all
the classifiers is not good. DWT has achieved good per-
formance on all classifiers, with an average classification
accuracy of 90.31%.,is is because DWTreduces the feature
dimension while making it as close to the original signal
waveform as possible, retaining the global key features, so
the overall classification accuracy is higher, and it reaches
99.70% on XGBoost. Based on the above experimental re-
sults, this article will select the ventricular activity features
after DWT transformation as further experiments.

4.3.2. Comparative Analysis of Different Features. In order
to understand and make full use of the global features of
myocardial infarction, we compare and analyze the per-
formance differences of the rule features, ventricular activity
features, and ventricular fusion rule features and use the
overall accuracy as the final indicator of comparison. Ex-
periment 2 compares the performance differences of the
three feature sets through XGBoost. Table 7 shows the
classification performance of three feature sets on XGBoost.

,e results show that the model based on rule features
has high classification performance, and its total accuracy is
99.67%. ,is shows that the doctor’s diagnosis rules have a
good effect on the recognition of myocardial infarction, and
it can be classified as a strong feature by itself. ,e classi-
fication of myocardial infarction based on the ventricular
activity features has significant performance, with an ac-
curacy of up to 99.70%. Because it contains more heart
activity information, it has improved rule features, but the
improvement is not obvious. ,e ventricular fusion rule
features use the correlation information between different
segments and the global ventricular activity information,
and its final classification accuracy is 99.86%. Compared
with the rule features, the ventricular fusion rule feature
supplements the specific details of the internal information;
and, compared with the ventricular activity features, the
ventricular fusion rule features add the correlation infor-
mation between the segments. ,erefore, compared with the
other two features, the classification performance of the
ventricular fusion rule feature has a certain improvement.

Table 5: Total number of heart beats extracted.

Class Number of beats
A 5001
AL 4695
AS 3219
I 5395
IL 3391
IP 503
IPL 1739
P 460
H 5820
O 7136
Total 37359

Table 4: PTB dataset diseases.

No. Diagnostic class Records
1 Bundle branch block 17
2 Cardiomyopathy 17
3 Dysrhythmia 16
4 Healthy control 80
5 Heart failure 3
6 Myocardial hypertrophy 7
7 Myocardial infarction 368
8 Myocarditis 4
9 N/A: clinical summary not available 27
10 Palpitation 1
11 Stable angina 2
12 Unstable angina 1
13 Valvular heart disease 6

10 Journal of Healthcare Engineering



Tables 8 and 9 and Figure 8 show the detailed classification
results of the ventricular fusion rule features.

4.3.3. Comparative Analysis of XGBoost and Base Classifiers.
Experiment 3 compares the performance between XGBoost
and traditional classifiers. ,is paper selects 6 basic classi-
fiers for comparison: K-Nearest Neighbor (KNN), Gaussian
Naive Bayes (GNB), Linear Discriminant Analysis (LDA),
decision tree (DT), Support Vector Machine (SVM), and
Logistic Regression (LR). ,e comparison results are shown
in Table 10.

,e results show that, compared to the basic classifier,
XGBoost has significant performance on all three feature
sets. Among them, for all classifiers, the ventricular fusion
rule feature has a certain improvement in performance
compared with other features. In addition to XGBoost, DT,
SVM, and KNN all have good classification performance,
with a classification accuracy of about 90%, but the per-
formance of SVM is greatly affected by the feature di-
mension, and the classification performance is not stable.

4.3.4. Comparative Analysis of Different Ensemble Methods.
Experiment 4 compares the performance of XGBoost
classifiers with other ensemble methods. ,is paper selects
several common ensemble methods for comparison, such as
AdaBoost, GBDT, Bagging, Random Forest, and ExtraTrees.
,e results are shown in Table 11.

,e results show that each ensemble classifier has higher
performance in each feature set. Among them, Random
Forest, ExtraTrees, and XGBoost are the most prominent,
achieving 99% accuracy on all feature sets. However, in a
comprehensive comparison, XGBoost has the best perfor-
mance, which achieves 99.6% on all feature sets, and the
accuracy of ventricular fusion rule features is even 99.86%.

4.3.5. Comparative Analysis with Other Studies. In order to
verify the performance of the proposed method, this paper
performs a comparison with other literature methods. ,e
results are shown in Table 12. ,e above four experiments
show that the XGBoost model based on ventricular fusion
rules has better performance than the other methods in this
paper, and the overall accuracy reaches 99.86%.,is method

Table 6: Performance comparison of each classifier on PCA, LPP, and DWT.

Classifier PCA (%) LPP (%) DWT (%)
KNN 53.94 97.74 98.15
GNB 26.70 23.43 48.00
LDA 13.88 27.07 76.00
LR 14.31 39.75 82.17
DT 73.16 98.71 92.84
SVM 61.17 37.10 98.55
Random forest 80.75 99.43 99.46
AdaBoost 73.80 98.31 92.46
ExtraTrees 70.80 99.19 99.59
Bagging 88.12 99.19 98.89
GBDT 67.98 99.65 97.96
XGBoost 93.02 99.65 99.70
Average 59.80 76.60 90.31

Table 7: Classification performance of three feature sets on XGBoost.

Classifier Rule features (%) Ventricular activity features (%) Ventricular fusion rule features (%)
XGBoost 99.67 99.70 99.86

Table 8: XGBoost with ventricular fusion rule features of classi-
fication results specific category statistics.

A AS AL I IL IP IPL P H O
A 500 0 0 0 0 0 0 0 0 0
AS 1 468 0 0 0 0 0 0 0 0
AL 0 0 320 0 0 0 0 1 0 0
I 0 0 0 537 1 0 0 0 0 1
IL 0 0 0 0 339 0 0 0 0 0
IP 0 0 0 0 0 50 0 0 0 0
IPL 0 0 0 0 0 0 173 0 0 0
P 0 0 0 0 0 0 0 46 0 0
H 0 0 0 0 0 0 0 0 582 0
O 0 0 0 0 0 0 0 0 1 710

Table 9: XGBoost with ventricular fusion rule features of classi-
fication results.

TP TN FP FN Se Sp +p Acc
A 500 3229 1 0 100 99.97 99.80 99.97
AS 468 3261 0 1 99.79 100 100 99.97
AL 320 3409 0 1 99.69 100 100 99.97
I 537 3191 0 2 99.63 100 100 99.95
IL 339 3390 1 0 100 99.97 99.71 99.97
IP 50 3680 0 0 100 100 100 100
IPL 173 3557 0 0 100 100 100 100
P 46 3683 1 0 100 99.97 97.87 99.97
H 582 3147 1 0 100 99.97 99.83 99.97
O 710 3019 1 1 99.86 99.97 99.86 99.95
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can not only identify myocardial infarction, health, and
other diseases but also detect 8 parts of myocardial in-
farction. Compared with literature [5, 28, 29, 47], the
proposed method has superior results in detection and

location, and it is also competitive compared to deep
learning networks. ,erefore, compared with the above
literature results, the proposed method has excellent per-
formance in the recognition of myocardial infarction.
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Figure 8: Confusion matrix based on classification results of XGBoost with ventricular fusion rule features.

Table 10: Detailed performance comparison between XGBoost and other basic classifiers.

Classifier Rule features (%) Ventricular activity features (%) Ventricular fusion rule features (%)
GNB 42.68 48.00 56.11
LDA 55.63 76.00 84.98
LR 61.98 82.17 92.57
DT 93.53 92.84 95.65
SVM 89.00 98.55 99.08
KNN 95.33 98.15 99.06
XGBoost 99.67 99.70 99.86

Table 11: Detailed performance comparison between XGBoost and other ensemble classifiers.

Classifier Rule features (%) Ventricular activity features (%) Ventricular fusion rule features (%)
Random Forest 99.27 99.46 99.75
ExtraTrees 99.51 99.59 99.75
AdaBoost 94.45 92.46 95.54
Bagging 98.25 97.98 98.60
GBDT 98.04 97.96 99.19
XGBoost 99.67 99.70 99.86
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5. Conclusion

Accurate identification of myocardial infarction based on
medical principles is very important for the treatment of
patients. ,erefore, a classification method of myocardial
infarction based on the ventricular fusion rule features and
the XGBoost algorithm is proposed this paper. In the pre-
processing, wavelet transform is used for denoising and
waveform segmentation. ,en, rule features based on
clinical diagnosis rules and ventricular activity features
based on myocardial infarction pathology are extracted. By
comparing the compression performances of PCA, LPP, and
DWT, low-dimensional and efficient ventricular activity
features can be obtained. ,e features obtained by the above
methods are fused into the final feature group as ventricular
fusion features. For MI classification, compared with other
algorithms combined with 10-fold cross-validation, the
classification method based on the XGBoost algorithm
obtained a total accuracy of 99.86%. ,e main advantages of
the proposed method include the following: fully consider
the development process of myocardial infarction to extract
comprehensive feature information; compare multiple
compression methods and classification strategies to get the
best myocardial infarction detection and location strategy;
the ventricular fusion rule features extracted based on the
ECG specific waveform changes of myocardial infarction
and the doctor’s diagnosis strategy show more vital clinical
significance and excellent results.

However, the rule features proposed in this paper do not
describe the doctor’s diagnosis rule comprehensively, such
as the internal changes of ST segment. In the future, more
interpretability and simplified features based on clinical
diagnosis rules are applied to the detection and location of
myocardial infarction. Meanwhile, the above methods still
rely on a mass of clinical ECG data, so we will focus on the
collection and processing of ECG data.
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“Time-frequency approach to ECG classification of myocar-
dial infarction,” Computers & Electrical Engineering, vol. 84,
Article ID 106621, 2020.

[5] Z. Lin, Y. Gao, Y. Chen, Q. Ge, G. Mahara, and J. Zhang,
“Automated detection of myocardial infarction using robust
features extracted from 12-lead ECG,” Signal, Image and
Video Processing, vol. 14, no. 5, pp. 857–865, 2020.

[6] P. J. Zimetbaum and M. E. Josephson, “Use of the electro-
cardiogram in acute myocardial infarction,” New England
Journal of Medicine, vol. 348, no. 10, pp. 933–940, 2003.

[7] K. ,ygesen, J. S. Alpert, and H. D. White, “Universal defi-
nition of myocardial infarction,” Journal of the American
College of Cardiology, vol. 50, no. 22, pp. 2173–2195, 2007.

Table 12: Comparison of the proposed method with other related literature.

Reference Class number Feature Classifier Performance (%)
Lin et al. [5] 2 MODWPT, statistical KNN Acc� 99.57; Se� 99.82; Sp� 98.79
Baloglu et al. [12] 11 End-to-end CNN Acc� 99.78;
Han and Shi [13] 7 End-to-end ResNet Acc� 99.72; Se� 99.63; Sp� 99.72;
Han and Shi [28] 2 MODWPT, morphological SVM Acc� 99.81; Se� 99.56; +p� 99.74
Acharya et al. [29] 11 DWT KNN Acc� 98.80; Se� 99.45; Sp� 96.27
Padhy and Dandapat [47] 6 Singular Value Decomposition SVM Acc� 95.30; Se� 94.60; Sp� 96.00
Liu et al. [48] 6 End-to-end CNN Acc� 99.81
Proposed 10 DWT, rule features XGBoost Acc� 99.86; Se� 99.86; Sp� 99.86

Journal of Healthcare Engineering 13

https://www.physionet.org/cgi-bin/atm/ATM
https://www.physionet.org/cgi-bin/atm/ATM


[8] A. L. Goldberger, Z. D. Goldberger, and A. Shvilkin, Clinical
Electrocardiography: A Simplified Approach E-Book, Elsevier
Health Sciences, Amsterdam, Netherlands, 2017.

[9] U. R. Acharya, H. Fujita, S. L. Oh, Y. Hagiwara, J. H. Tan, and
M. Adam, “Application of deep convolutional neural network
for automated detection of myocardial infarction using ECG
signals,” Information Sciences, vol. 415-416, pp. 190–198, 2017.

[10] H. W. Lui and K. L. Chow, “Multiclass classification of
myocardial infarction with convolutional and recurrent
neural networks for portable ECG devices,” Informatics in
Medicine Unlocked, vol. 13, pp. 26–33, 2018.

[11] P. Kora, “ECG based myocardial infarction detection using
hybrid firefly algorithm,” Computer Methods and Programs in
Biomedicine, vol. 152, pp. 141–148, 2017.

[12] U. B. Baloglu, M. Talo, O. Yildirim, R. S. Tan, and
U. R. Acharya, “Classification of myocardial infarction with
multi-lead ECG signals and deep CNN,” Pattern Recognition
Letters, vol. 122, pp. 23–30, 2019.

[13] C. Han and L. Shi, “ML-ResNet: a novel network to detect and
locate myocardial infarction using 12 leads ECG,” Computer
Methods and Programs in Biomedicine, vol. 185, Article ID
105138, 2020.

[14] P. Hao, X. Gao, Z. Li, J. Zhang, F. Wu, and C. Bai, “Multi-
branch fusion network for myocardial infarction screening
from 12-lead ECG images,” Computer Methods and Programs
in Biomedicine, vol. 184, Article ID 105286, 2020.

[15] E. Prabhakararao and S. Dandapat, “Myocardial infarction
severity stages classification from ecg signals using attentional
recurrent neural network,” IEEE Sensors Journal, vol. 20,
no. 15, pp. 8711–8720, 2020.

[16] K. Sugimoto, Y. Kon, S. Lee, and Y. Okada, “Detection and
localization of myocardial infarction based on a convolutional
autoencoder,” Knowledge-Based Systems, vol. 178, pp. 123–
131, 2019.

[17] L. D. Sharma and R. K. Sunkaria, “Myocardial infarction
detection and localization using optimal features based lead
specific approach,” IRBM, vol. 41, no. 1, pp. 58–70, 2020.

[18] C. Sridhar, O. S. Lih, V. Jahmunah et al., “Accurate detection
of myocardial infarction using non linear features with ECG
signals,” Journal of Ambient Intelligence and Humanized
Computing, vol. 12, no. 3, pp. 3227–3244, 2020.

[19] J. Heo, J. J. Lee, S. Kwon, B. Kim, S. O. Hwang, and Y. R. Yoon,
“A novel method for detecting ST segment elevation myo-
cardial infarction on a 12-lead electrocardiogramwith a three-
dimensional display,” Biomedical Signal Processing and
Control, vol. 56, p. 101700, 2020.

[20] J. Liu, C. Zhang, Y. Zhu, T. Ristaniemi, T. Parviainen, and
F. Cong, “Automated detection and localization system of
myocardial infarction in single-beat ECG using Dual-Q
TQWTand wavelet packet tensor decomposition,” Computer
Methods and Programs in Biomedicine, vol. 184, p. 105120,
2020.

[21] P. S. Choudhary and S. Dandapat, “An evaluation of machine
learning classifiers for detection of myocardial infarction
using wavelet entropy and eigenspace features,” in Proceedings
of the 2020 IEEE Applied Signal Processing Conference
(ASPCON), pp. 222–226, Kolkata, India, October 2020.

[22] M. Arif, I. A. Malagore, and F. A. Afsar, “Detection and
localization of myocardial infarction using k-nearest neighbor
classifier,” Journal of Medical Systems, vol. 36, no. 1,
pp. 279–289, 2012.

[23] A. K. Dohare, V. Kumar, and R. Kumar, “Detection of
myocardial infarction in 12 lead ECG using support vector
machine,” Applied Soft Computing, vol. 64, pp. 138–147, 2018.

[24] R. S. Remya, K. P. Indiradevi, and K. K. A. Babu, “Classifi-
cation of myocardial infarction using multi resolution wavelet
analysis of ECG,” Procedia Technology, vol. 24, pp. 949–956,
2016.

[25] A. Diker, Z. Cömert, E. Avci, and S. Velappan, “Intelligent
system based on genetic algorithm and support vector ma-
chine for detection of myocardial infarction from ECG sig-
nals,” in Proceedings of the 2018 26th Signal Processing and
Communications Applications Conference (SIU), pp. 1–4,
Izmir, Turkey, May 2018.

[26] L. Sun, Y. Lu, K. Yang, and S. Li, “ECG analysis using multiple
instance learning for myocardial infarction detection,” IEEE
Transactions on Biomedical Engineering, vol. 59, no. 12,
pp. 3348–3356, 2012.

[27] N. Safdarian, N. J. Dabanloo, and G. Attarodi, “A new pattern
recognition method for detection and localization of myo-
cardial infarction using T-wave integral and total integral as
extracted features from one cycle of ECG signal,” Journal of
Biomedical Science and Engineering, vol. 7, no. 10, pp. 818–
824, 2014.

[28] C. Han and L. Shi, “Automated interpretable detection of
myocardial infarction fusing energy entropy and morpho-
logical features,” Computer Methods and Programs in Bio-
medicine, vol. 175, pp. 9–23, 2019.

[29] U. R. Acharya, H. Fujita, V. K. Sudarshan et al., “Automated
detection and localization of myocardial infarction using
electrocardiogram: a comparative study of different leads,”
Knowledge-Based Systems, vol. 99, pp. 146–156, 2016.

[30] M. Sharma, R. S. Tan, and U. R. Acharya, “A novel automated
diagnostic system for classification of myocardial infarction
ECG signals using an optimal biorthogonal filter bank,”
Computers in Biology and Medicine, vol. 102, pp. 341–356,
2018.

[31] U. R. Acharya, H. Fujita, M. Adam et al., “Automated
characterization and classification of coronary artery disease
and myocardial infarction by decomposition of ECG signals: a
comparative study,” Information Sciences, vol. 377, pp. 17–29,
2017.

[32] M. Kumar, R. Pachori, and U. Acharya, “Automated diagnosis
of myocardial infarction ECG signals using sample entropy in
flexible analytic wavelet transform framework,” Entropy,
vol. 19, no. 9, p. 488, 2017.

[33] N. A. Bhaskar, “Performance analysis of support vector
machine and neural networks in detection of myocardial
infarction,” Procedia Computer Science, vol. 46, pp. 20–30,
2015.

[34] G. de Couto, M. Ouzounian, and P. P. Liu, “Early detection of
myocardial dysfunction and heart failure,” Nature Reviews
Cardiology, vol. 7, no. 6, pp. 334–344, 2010.

[35] L. E. Juarez-Orozco, O. Martinez-Manzanera, A. E. Storti, and
J. Knuuti, “Machine learning in the evaluation of myocardial
ischemia through nuclear cardiology,” Current Cardiovas-
cular Imaging Reports, vol. 12, no. 2, p. 5, 2019.

[36] A. K. Bhoi, K. S. Sherpa, and B. Khandelwal, “Arrhythmia and
ischemia classification and clustering using QRS-ST-T (QT)
analysis of electrocardiogram,” Cluster Computing, vol. 21,
no. 1, pp. 1033–1044, 2018.

[37] A. K. Bhoi and K. S. Sherpa, “Statistical analysis of QRS-
complex to evaluate the QR versus RS interval alteration
during ischemia,” Journal of Medical Imaging and Health
Informatics, vol. 6, no. 1, pp. 210–214, 2016.

[38] G. Han and Z. Xu, “Electrocardiogram signal denoising based
on a new improved wavelet thresholding,” Review of Scientific
Instruments, vol. 87, no. 8, Article ID 084303, 2016.

14 Journal of Healthcare Engineering



[39] V. P. Vassilikos, L. Mantziari, G. Dakos et al., “QRS analysis
using wavelet transformation for the prediction of response to
cardiac resynchronization therapy: a prospective pilot study,”
Journal of Electrocardiology, vol. 47, no. 1, pp. 59–65, 2014.

[40] E. S. Jayachandran, K. P. Joseph, and U. R. Acharya, “Analysis
of myocardial infarction using discrete wavelet transform,”
Journal of Medical Systems, vol. 34, no. 6, pp. 985–992, 2010.

[41] S. Wold, K. Esbensen, and P. Geladi, “Principal component
analysis,” Chemometrics and Intelligent Laboratory Systems,
vol. 2, no. 1-3, pp. 37–52, 1987.

[42] X. He and P. Niyogi, “Locality preserving projections,” Ad-
vances in Neural Information Processing Systems, vol. 16, no. 1,
pp. 186–197, 2003.

[43] T. Chen and C. Guestrin, “Xgboost: a scalable tree boosting
system,” in Proceedings of the 22nd acm sigkdd international
conference on knowledge discovery and data mining,
pp. 785–794, New York, NY, USA, August 2016.

[44] Z. Qi, B. Wang, Y. Tian, and P. Zhang, “When ensemble
learning meets deep learning: a new deep support vector
machine for classification,” Knowledge-Based Systems,
vol. 107, pp. 54–60, 2016.

[45] A. L. Goldberger, L. A. Amaral, L. Glass et al., “PhysioBank,
PhysioToolkit, and PhysioNet: components of a new research
resource for complex physiologic signals,” Circulation,
vol. 101, no. 23, pp. e215–20, 2000.

[46] R. Li, X. Zhang, H. Dai, B. Zhou, and Z. Wang, “Interpret-
ability analysis of heartbeat classification based on heartbeat
activity’s global sequence features and BiLSTM-attention
neural network,” IEEE Access, vol. 7, pp. 109870–109883,
2019.

[47] S. Padhy and S. Dandapat, “,ird-order tensor based analysis
of multilead ECG for classification of myocardial infarction,”
Biomedical Signal Processing and Control, vol. 31, pp. 71–78,
2017.

[48] W. Liu, Q. Huang, S. Chang, H. Wang, and J. He, “Multiple-
feature-branch convolutional neural network for myocardial
infarction diagnosis using electrocardiogram,” Biomedical
Signal Processing and Control, vol. 45, pp. 22–32, 2018.

Journal of Healthcare Engineering 15


