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A clinical diagnosis of tic disorder involves several complex processes, among which observation and evaluation of patient
behavior usually require considerable time and effective cooperation between the doctor and the patient. The existing assessment
scale has been simplified into qualitative and quantitative assessments of movements and sound twitches over a certain period, but
it must still be completed manually. Therefore, we attempt to find an automatic method for detecting tic movement to assist in
diagnosis and evaluation. Based on real clinical data, we propose a deep learning architecture that combines both unsupervised
and supervised learning methods and learns features from videos for tic motion detection. The model is trained using leave-one-
subject-out cross-validation for both binary and multiclass classification tasks. For these tasks, the model reaches average
recognition precisions of 86.33% and 86.26% and recalls of 77.07% and 78.78%, respectively. The visualization of features learned
from the unsupervised stage indicates the distinguishability of the two types of tics and the nontic. Further evaluation results

suggest its potential clinical application for auxiliary diagnoses and evaluations of treatment effects.

1. Introduction

Tourette syndrome (TS) is a childhood-onset neuro-
developmental disorder characterized by the presence of fluc-
tuating motor and vocal tics [1]. The core diagnostic features are
both multiple motor and one or more phonic tics lasting more
than one year. Typically, the same tic occurs at short-term
periodicity with short intervals [2]. The simple tic forms are eye
blinking, mouth twitching, head jerking, etc. Multiple studies
published since 2000 have consistently demonstrated that the
prevalence of TS is much higher than previously thought [3]. As
the understanding of this disease deepens, the number of
children diagnosed with tic disorder has gradually increased, but
most cases do not receive timely clinical attention in the early

stages of the disease. Furthermore, approximately 20% of per-
sons with TS are unaware that they have tics [4]. The clinical
diagnosis of TS involves complex processes that require con-
siderable time and effective cooperation between the doctor and
the patient, especially observation and evaluation of the patient’s
tic behaviors. A number of instruments for tics and associated
phenomena have been developed to assess tic severity [5] and
differ in construct, comprehensiveness, and ease of
administration.

Recently, artificial intelligence and machine learning
have been widely applied in the medical field. In particular,
the development of video-based human motion behavior
analysis technology has advanced various types of medical
diagnoses, such as Parkinson’s disease [6], seizure disorders
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[7], spinal muscular atrophy [8], and discomfort detection in
premature infants [9]. In part, noncontact video-based
analysis has attracted great attention due to the increasing
availability of camera monitoring systems. To identify tic
disorders, patients’ tic movements can be detected and
analyzed from video tapes that show the patient’s face, head,
or body and rated according to the Yale Global Tic Severity
Scale (YGTSS) [10] or the Modified Rush Video-based
Rating Scale (MRVRS) [11]. These ratings can then be used
to assist a clinical doctor in evaluating the patient’s symp-
toms and severity.

Tic movements can be distributed throughout the body.
Rickard’s research [12] showed that patients’ twitches usually
start in the facial area and that eye twitches are the most
frequent. Chappell et al. [13] showed that, in addition to a
severity scale, the severity of Tourette syndrome can also be
determined by recording the patient’s tics with video for more
than ten minutes. Moreover, monitoring and recording pa-
tients in their natural states instead of facing a clinician ef-
fectively avoids interference in diagnosis and evaluation caused
by the patient actively controlling their tics. Therefore, we aim
to develop a method to automatically detect tics to help cli-
nicians or parents spot and assess tic signs.

In recent decades, many studies have focused on the pa-
thology, genetics, and clinical treatment of TS [14-16], but only
a few studies have been published regarding the automatic
detection of TS-related motor disturbances. Jonathan et al. [17]
studied two patients with TS using deep brain stimulation
(DBS) during tics and found that low-frequency (1-10Hz)
centromedian (CM) thalamic activity and beta frequency motor
cortex (ML1) activity were tic features and that long complex tics
are concurrent with a highly detectable thalamocortical sig-
nature. Bernabei et al. [4] used a wearable device attached to the
patient’s trunk with an embedded triaxial accelerometer to
monitor tic events. This approach achieved a sensitivity of
80.8%, a specificity of 75.8%, and an accuracy of 80.5%.
However, the implementation process of this method is quite
complicated, which poses a major challenge and requires ex-
tensive cooperation between doctors and patients. Recently,
Barua et al. [18] proposed a deep learning approach for
detecting tic disorders using wireless channel information and
achieved an accuracy above 97%. The data used in the task were
simulated using healthy human subjects. However, in a real
clinical situation, acquiring such data would be a considerably
more complicated task. Regarding methodological aspects,
action detection methods have made numerous advancements
in video comprehension, such as the two-stream network
[19-21], 3D ConvNet [22-24], and temporal enhancement-
and-interaction network (TEINET) [25], whereas these deep
learning networks require large amounts of labeled data, which
carries the high costs and slow procedures associated with
manual labeling. Data labeling is often costly and time con-
suming: an example is the popular ImageNet dataset [26].
However, in real-world situations, large amounts of readily
accessible unlabeled data exist; therefore, unsupervised learning
has attracted increasing attention from researchers.

From these perspectives, we instead adapt a two-stage
architecture by first training an unsupervised feature ex-
traction model to make full use of the more easily acquired
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unlabeled data and then applying a comparatively simple
network attached to the former trained model for the
classification tasks. Visualizing the feature representation of
the labeled data shows the correspondence with the tic parts,
indicating that the unsupervised model learned the valid
feature representation. This approach results in the following
contributions: (1) we employ a deep learning scheme by a
convolutional-neural-network- (CNN-) based model to
learn feature representation from abundant unlabeled video
data, (2) we apply a long short-term memory neural network
(LSTM) to classify the feature sequences of video clips, and
(3) an automated video-based system for detecting tic
movements in TS patients is devised.

2. Materials and Methods

To solve the problem of insufficient labeled data but enough
monitoring video data, we propose a two-stage framework
that combines unsupervised and supervised learning, as
shown in Figure 1. In the first stage, we adopt a contrastive
learning network that learns from unlabeled video data by
extracting features by maximizing mutual information. The
core idea behind this is to maximize the mutual information
between the two nonoverlapping patch inputs. In the second
stage, we design an end-to-end architecture based on an
LSTM network connected to the feature extraction module
in the first stage that learns to classify tic movements from
video data labeled by doctors. We use a combination of
supervised and unsupervised learning to design and build an
end-to-end tic detection model.

2.1. Subjects. Sixty-eight patients (4-13 years old) diagnosed
with TS by two experienced specialists were employed in this
study. All participants were inpatients under normal
treatment recruited from the Second Affiliated Hospital of
Zhejiang University School of Medicine between May and
September 2019. This study was approved by the ethics
committee of the Second Affiliated Hospital of Zhejiang
University School of Medicine (YAN2019-148). All partic-
ipants provided written informed consent with the agree-
ment to participate in the study.

2.2. Data Acquisition and Preprocessing. The TS dataset was
sourced from the Department of Pediatrics at the Second
Affiliated Hospital of Zhejiang University School of Medi-
cine and was collected using EEG video acquisition
equipment installed in the pediatric ward. The video data
were recorded in two situations: (i) the patient was asked to
sit on a chair in front of the camera and (ii) before or after
EEG recording, the patient was asked to agree to video
recording. The two situations arise because the data were
collected in different periods: (i) represents data collected
during the preproject preparation phase, whereas (ii) is a
part of the routine during subsequent EEG video recording.
In both situations, every patient was informed in advance of
the recording period and asked to face the camera as much as
possible during recording, but no mandatory measures were
imposed; the patients could move freely, which may result in
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FiGuRre 1: The architecture of the proposed method. (1) Stage 1: extracting representative visual features. (2) Stage 2: training an LSTM using

visual features.

useless frames. The patients’ parents provided informed
permission for the collection procedure and research use of
the video recordings.

Due to different camera devices, the original video frame
rate includes video acquired at both 30 and 25 fps. The duration
of all videos ranges from 5 to 15 minutes, and all the videos have
a resolution of 1920 x 1080. The length of the videos is listed in
Table 1, and the distribution of the durations is presented in
Figure S1. In this TS dataset, 13 cases were annotated by two
specialists, who labeled the starting and ending timestamps of a
specific tic event, such as an eye tic or a mouth tic. They
performed manual annotation frame by frame through the
video annotation software VoTT (https://github.com/
microsoft/VoTT), which then generated annotated JavaScript
Object Notation (JSON) files for postprocessing to extract
annotations. The annotation work was independently per-
formed by two clinicians and verified by the third expert, and
they performed an extra check if there were disagreements until
they reached a consensus. Finally, we cut and categorized the
videos based on the timestamped annotations to form the TS
research dataset, which can be supplemented at any time. We
also segmented the video segments between two labeled tic
events in the original video, which can be used as normal
recordings and act as negative samples.

There are more than five types of tics involving different
muscle groups in the labeled data. The most common tics are
eye tic and mouth tic. Not only in this research dataset but also
most in clinical practice, these two tic types are widespread from
a specialist’s perspective [12]. Therefore, we defined two
classification tasks. (1) We chose these two tic types and normal
recordings to define a multiclass classification task. (2) We also
configured a binary classification task for the tic and normal
datasets—that is, all the tic video clips form the positive samples,
while the normal video clips form the negative samples. Figure 2
shows the category proportion of every patient in the labeled
dataset, defined in these two tasks.

The proposed method is composed of two stages, and
there are slight differences in data preprocessing for the two

TaBLE 1: Original TS video dataset.

Category Labeled dataset Unlabeled dataset
Videos 13 55
Minutes 136 709

stages. The common operation is to obtain the region of
interest (ROI), which is defined as the area centered on the
patient’s face. This ensures that the models will focus on
features related to patients’ tic behaviors rather than on
other family members or physicians visible in the videos.
Identifying the ROI also reduces interference from different
camera angles and from patient movements since they are
free to move out of the camera view. This procedure uses a
neural-network-driven face detection method. We use the
multitask cascaded CNN (MTCNN) [27] architecture to
detect the patient’s face and obtain the ROI and use the
pretrained weights from Face2 [28]. To avoid the regional
deviations caused by free patient motion and obtain more
features in the face area, we extract the ROI area by
expanding the width of the face bounding box by 20%.
Figure 3 illustrates the ROI output margin. We also conduct
data augmentation during preprocessing, an approach that
has been widely used in both supervised and unsupervised
learning [29, 30]. The effectiveness of simple data aug-
mentation methods for contrastive learning tasks was ver-
ified by [31]. Similarly, after obtaining the ROI area,
combined data augmentation methods are adopted in-
cluding random cropping, random noise, and random color
distortion.

The difference between the two main stages during data
preprocessing is that the first stage uses a relatively large
number of frames from an unlabeled video dataset. As well
known, the information between continuous video frames is
usually highly redundant, which can cause overfitting during
training. Thus, we perform a 3-fold downsampling proce-
dure, which extracts the first frame for every three
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F1GURE 2: Category proportion of normalized video clips of patients in (a) the multiclass classification task and (b) the binary classification
task. The ordinate indicates the patient number in the labeled TS dataset.
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FIGURE 3: Region of interest in data preprocessing. (a) is the output
of the MTCNN, and (b), (c), and (d) are the random data aug-
mentation methods applied.

consecutive frames on the original videos. In the second
supervised training stage, we first cut the original continuous
video data into video segments and divide them into motion
tic categories based on annotations. Then, we cut each video
segment into 1s video clips using a no overlapping sliding
window. These clips form the input objects for Stage 2. We
then performed the same ROI extraction procedure as for
Stage 1 but without video frame downsampling because the
frame data are randomly extracted from every second of
input, which has an effect similar to downsampling.

2.3. Stage 1: Extracting Representative Visual Features.
The dataset used in this work consists of a small amount of
labeled data (n=13) and a relatively large amount of

unlabeled data (n = 55). Apparently, the labeled data we have
are insufficient to train a deep learning model. To explore the
value of the unlabeled data, we adopt a contrastive learning
framework similar to SimCLR [31] in Stage 1 to extract
representative visual features among the TS patient groups.
Specifically, a randomly selected minibatch S of N examples
is transformed into a minibatch pair S’ consisting of 2N
examples after applying a combination of a set of data
augmentation methods. Then, S’ is input to the defined
contrastive prediction task. For every minibatch pair S', each
pair (i, j) of augmented examples S’ (i, j) is treated as a
positive example (n=2), while the others (n=2(N-1)) are
treated as negative examples. Then the similarity sim (4, j) of
the pair S’ (i, j) is defined as follows:

T
oSS
sim (i, ) = 7= (1)
(Isifsi1)
and the loss function of the pair loss (i, j) is defined as
.. exp (sim (4, j)/1
loss (7, j) = ~log = p(sim (i, j)/) 2)

i ksexp (sim (i, k)/7)

where 7 denotes a temperature parameter, as in [32]. For
each pair in every minibatch, the total loss is computed as
follows:

1

L=—
2N

[loss (2k — 1, 2k) + loss (2k, 2k — 1)]. (3)

|MZ

k=1

As shown in Figure 1, we use ResNet [33] as the neural
network encoder (F) to extract the visual features after data
augmentation, and we use an MLP network (G) to map the
output feature fto the space where contrastive loss is applied.
The contrastive prediction task involves finding the other
example j in examples S’ (i # j) (n = 2N — 1) for example i in
each pair. In addition, we impose a restriction that every
minibatch input must be a set of continuous frames
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randomly selected from the video frames of a single subject.
This restriction eliminates the possibility of finding existing
macrofeatures between different faces during training and
helps the model focus on the microfeatures of tics.

2.4. Stage 2: Training the LSTM through Visual Features.
In Stage 2, we design a supervised learning framework based
on the formerly trained neural network encoder (F). The
LSTM network consists of a layer of LSTM with dropout and
a fully connected layer with rectified linear unit (ReLU)
activation. Specifically, we take a one-second-long pre-
processed video clip as the input of this stage and randomly
select k frames (k <25) to feed to F, which generates visual
feature vectors. Every visual feature vector came from one
frame of the input video clip and corresponded to one
neuron of the LSTM layer. These visual feature vector se-
quences are then fed to the LSTM network to learn their
temporal features and deeper spatial features to accomplish
the classification task.

To alleviate the problem of imbalanced categories in our
labeled data, we use the focal loss [34] L £ which is defined as
follows:

p» ify=1,

Ly == p)os(e). p-{T

otherwise,
(4)

where y denotes a tic label, p is the output prediction of the
LSTM network, and « and y are network hyperparameters.

3. Evaluation and Results

3.1. Experimental Setup. Chen et al. [31] showed that the
simple operation of expanding the batch data volume can
replace the more complex memory library training model
[35, 36]. In this work, the two stages are trained separately.
In Stage 1, we set the batch size to 512 and limited the single-
input data to a randomly chosen person’s continuous data
due to the memory limitation of the training platform. For
the neural network encoder, we used a modified ResNet18
model, with an input dimension of 112x112x3 and an
output dimension of 512. The following MLP network
consists of two layers: the first layer has 512 neurons and the
second layer has 256 neurons. All the preprocessed unla-
beled video datasets were randomly split into a training set
(70%) and a validation set (30%) at the patient level. During
training, we used the Adam optimizer [37] with an initial
learning rate of 3x10™* adjusted by setting the cosine
annealing learning rate (LR) and a weight decay of 10-6.
Considering the limitation of our dataset, we used the
pretrained built-in weights of PyTorch [38]. The training
procedure is stopped when the loss of validation set has no
more drops within 10 epochs. Then the ResNet model is
reused in Stage 2 to extract feature representations.

In Stage 2, each video clip generates a feature vector of
clip-length x 512 through F. Here, clip-length is set as 16,
which means that there are 16 frames randomly sampled
from each video clip, matching the time-step setting in the
LSTM network. The input size of the LSTM is 512 with a

drop rate of 0.8; the output size is 128; and the size of the
fully connected layer is changed to match the number of
classes in each classification task. Considering the limited
amounts of labeled data in the study that can easily cause
overfitting during training and validation, we adopted the
leave-one-subject-out cross-validation scheme in Stage 2,
which allows us to evaluate the differences between indi-
vidual patients. The setting for the overall analysis of a single
patient is in line with the real clinical scenario, which is
beneficial for the subsequent comprehensive analysis. We
assess the effectiveness of our proposed method by calcu-
lating the accuracy, precision, recall, F1-score, area under the
receiver operating characteristic (ROC) curve (AUC_ROCQC),
area under the precision-recall curve (AUC_PR), and a
confusion matrix for each subject evaluation. In the two
different classification tasks, we consider different cutoft
conditions during the training procedure by observing the
following indicators from the validation evaluation: (1)
accuracy and (2) the F1-score of the tic category. In addition
to the data used for experimental modeling, we also collected
individual test video data beyond those used for training
verification to verify the universality of the method.

The next subsections report the details of the results and
provide discussions. Unfortunately, to the best of our
knowledge, no public TS dataset for tic detection exists,
which makes it difficult to compare the results of our method
with other works. Instead, we applied another two kinds of
supervised ConvNet architectures, convolutional 3D (C3D)
[22], and temporal segment network (TSN) [39], for
comparison.

3.2. Classification Tasks. C3D [22] is a simple yet effective
model that uses 3D convolution kernels for spatiotemporal
feature learning, and TSN [39] combines a sparse temporal
sampling strategy and video-level supervision. They both
achieved good performances for action recognition in videos
when given limited training samples. As shown in Table 2,
compared with the former two approaches C3D [22] and
TSN [39], our method with the watch-accuracy strategy
achieves the best performances, with an average accuracy of
94.87%, precision of 86.26%, and both recall and F1-scores
of approximately 80%. These results illustrate the effec-
tiveness of our proposed method for tic recognition on the
multiclass classification task.

Using the classification results for an individual subject,
we further examine the misclassified items. Taking Case 1 as
an example, as shown in Figure 4, after checking the original
data, we found that (a) in the false positive result where the
label is normal but the prediction is mouth twitching, the
mouth of the patient in this video clip does indeed twitch in
the corners during a smile, indicating that the classification
model has learned the features of the motion but cannot
precisely differentiate between a mouth-twitching motion
and a mouth-smiling motion when both are subtle; thus, it
misclassifies the action. (b) In false negatives where the labels
are eye tics while the prediction is normal, the patient in this
video clip is indeed blinking, but it is difficult for ordinary
people and for the model to determine whether the blink is
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TaBLE 2: Evaluations of the multiclass classification task.
Accuracy Precision Recall Fl-score
C3D [22] 0.7252 (+0.108) 0.7483 (+0.047) 0.7023 (+0.051) 0.7194 (+0.032)
TSN [39] 0.8988 (+0.117) 0.8354 (+0.089) 0.7284 (+£0.054) 0.7600 (0.070)
Ours-acc" 0.9487 (£0.0298)"* 0.8626 (£0.084)** 0.7878 (+0.106)* 0.7975 (+£0.093)*
Ours-f1° 0.9363 (+0.0390) 0.7628 (+0.209) 0.7362 (+0.198) 0.7391 (+0.198)

'Ours-acc means the proposed architecture with the watch-accuracy strategy. *Ours-fl means the proposed architecture with the watch-F1 strategy. * p value

<0.01; **p value <0.001.
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FIGURE 4: Evaluation result of one subject. The confusion matrix is shown in the middle; the correct detection cases from the multiclass
classification task are shown on the left; and the misclassification cases are shown on the right. For the sake of patient privacy, the images

used in the cases were blurred.

normal or a twitch blink. This may be due to model mis-
understanding, but a small possibility of labeling error also
exists. These two situations reflect either possible misclas-
sifications or misdiagnosis in the real situation; however, it
should be noted that the identification unit in this study is at
the level of a video clip, whereas the identification unit in the
clinic is the complete subject over time. A few misidenti-
fications from the clip may not be completely reflected at the
level of subject recognition. Therefore, quantitative methods
and full quantification of the video data for the standard
duration at the subject level will be considered in future
research. This will allow individual subject evaluations to be
made and improve the model’s application prospects for
clinical auxiliary diagnosis.

The evaluation results of the binary classification task are
shown in Table 3. Compared with the multiclass classification
task, the indicator results are slightly lower in Table 2, and its
watch-F1 strategy performs better. After comparing the datasets
of the two tasks, we find that the multiclass data use two types of
tics with more discriminative characteristics, which provides a
data quality advantage. In contrast, the positive samples in the
binary classification task cover all the tic categories that appear
in the TS dataset. Despite these shortcomings, our model still
achieves good recognition performance and will offer sub-
stantial clinical value after further optimization.

3.3. Further Evaluation. To verify the visual representation
performance of the unsupervised model in Stage 1, we vi-
sualized the final layer features of the neural network

encoder using the gradient-weighted class activation map-
ping (Grad-CAM) [40] method. As shown in Figure 5, the
feature attention areas are shown as heatmap colors, and the
attention areas are consistent with the corresponding tic
positions, indicating that the unsupervised model has ef-
fectively learned the visual features used in the follow-up
training.

To verify the validity of the proposed method and the
possibility of subsequent integration with scales such as MRVRS
[11], we compared the differences between the model’s output
and the clinician’s result. This comparison test was based on the
labeled dataset using the leave-one-subject-out test. We used
two items based on the MRVRS and modified it within our data
condition and one item for time comparison. The number of tic
areas came from the annotations performed by clinicians and
the tic categories of the model output. The tic frequency was
calculated as the number of tic signs divided by the total length
of the video used for every patient. Then, a t-test was performed
on each of the items. The time for evaluation for clinicians was
recorded between the start and the end for each video evalu-
ation, and for our model it was calculated as the sum of the time
taken for the whole process of our architecture, including
preprocessing, model calculation, and postprocessing, among
which preprocessing is the most time-consuming process. The
subitem clinician review refers to the time taken for the cli-
nician’s checking process on the results of our models, which is
divided into two categories: <5min (0—5min) and <10 min
(5-10 min). The results are listed as Table 4. The p values of the
two scale-related items are greater than 0.05, which shows no
significant difference between the two groups of results. The p
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TaBLE 3: Evaluations of binary classification task.

Accuracy AUC_ROC

AUC_PR

Precision Recall Fl-score

0.8890 (+0.0458)
0.9057 (+0.0479)

Ours-acc
Ours-f1

0.7532 (+£0.080)
0.7815 (+0.155)

0.7035 (+0.138)
0.7669 (+0.187)

0.8057 (£0.103)
0.8633 (+0.150)

0.7532 (+0.103)
0.7707 (£0.296)

0.7634 (+£0.093)
0.7874 (£0.264)

Eye tic

Mouth tic

AEEEEEEERAAR

FIGURE 5: Visualization of two tic video clips of representation learning in Stage 1. The first row shows the original video clip frames; the
second row shows the corresponding CAM image.

TABLE 4: Evaluations of some items of scales.

Number of tic areas

Tic frequency (tics/min)

Time for evaluation (min)

Test ID Clinician Our model Clinician Our model Clinician Our model Clinician review
1 2 2 6 5 >40 <5 <5
2 2 2 6 7 >40 <5 <5
3 1 2 2 1 >30 <5 <5
4 1 1 40 37 >70 <5 <10
5 1 1 3 1 >30 <5 <5
6 1 1 9 12 >50 <5 <10
7 1 1 15 14 >60 <5 <5
8 1 1 0 0 >30 <5 <5
9 1 1 1 1 >30 <5 <5
10 1 1 11 8 >50 <5 <10
11 2 2 3 3 >30 <5 <5
12 1 0 0 0 >30 <5 <5
13 1 2 4 2 >40 <5 <5
p value 0.7211 0.8666 <0.0001 -

value of the time comparison is less than 0.0001, showing that
our model can save considerable time on tic detection, especially
for videos with frequent tic events, which indicates great po-
tential for clinical application.

Further evaluation for independent testing was addi-
tionally conducted on new data to identify tic events, in-
cluding 1 new patient video and 4 non-TS patient videos.
The binary classification task was adopted for this experi-
ment. In the non-TS patient video testing, as shown in
Table 5, the recognition accuracy for every non-TS patient
was above 90%; the highest accuracy exceeded 98%. As
discussed in the preceding subsection, the evaluation scores
are computed at the video-clip level. If that were to be
upgraded to the subject level in a clinical application, this
level of individual evaluation would be acceptable. For the
patient data, we must take recall into account; that is, the tic
detection accuracy reaches 72.69%. Although we have only

TaBLE 5: Non-TS patient evaluation.

No. Accuracy Number of clips
1 0.9701 67

2 0.9531 192

3 0.9016 193

4 0.9890 91

one testing video for this initial study, while these results lack
statistical significance, they can still indicate that this ap-
proach has optimistic application prospects.

4, Discussion

Tourette syndrome is a highly individualized neurological
disease whose expression changes over time. In the process
of long-term observation, diagnostic evaluation, and



management of the patient, the ability to continuously
monitor and record tic events is the key to obtaining a
patient-specific understanding of the disease. While
reviewing and evaluating these monitoring data is a highly
time- and cost-intensive process for doctors, the use of
computer-assisted detection of tic movements can save time
and cost, empower doctors to optimize and adjust medi-
cation responses, and help establish a good evaluation and
management process for patients. Our work is the first
application of a deep learning for video-based assessment of
Tourette syndrome.

As the above experimental evaluations show, our
video-based architecture possesses the ability to detect
motor tic events in TS from videos acquired in a natural
state. In the classification tasks, we detected two kinds of
tics that occur most often in patients. Although the
multiclass classification task involves limited motor tic
categories in our dataset, it represents a unique result: to
the best of our knowledge, no other similar research that
has used surveillance video data for automatic tic rec-
ognition and classification exists. In the evaluation of
subsequent results of the model, we defined some items
that frequently appeared on the tic scales applied on these
model outcomes and obtained consistent results with
those from clinicians based on the MRVRS, which shows
the ability to integrate observation-based scales or
screening instruments for tics, although our current
dataset limited a part of it. If we expand to audio data in
the near future, it could be more comprehensive for
developing an automatic rating scale of tics. For the binary
classification task, it achieved good accuracy on video-
clip-based recognition; however, it needs more video data
for individual tests and other clinical data to support its
outstanding performance in computer-aided diagnosis.

From our perspective, this work has application pros-
pects from two main aspects: (a) automatic annotation of a
video TS dataset. Because our classification task is based on
small video clips, the task model can be used to prelabel the
video and can then be checked by a doctor in a subsequent
continuous data collection task, thereby reducing the doc-
tor’s labeling workload and accelerating the accumulation of
labeled data. (b) Home-based health management applica-
tions: the extensive use of monitoring cameras makes it
possible to extend this work to home-based health moni-
toring and management since acquiring video at home
enhances the retrieval of objective tic expression [41]. In this
case, object recognition and tracking, multiangle analysis,
body tic detection, etc. all need to be considered and re-
solved. Furthermore, noise reduction and voice extraction
are also significant for voice tic detection. A home-based tic
surveillance system allows doctors and family members to
better manage and provide more effective treatments for
patients with tics who are undergoing long-term observation
and treatment.

The inadequacy of labeled data is a clear limitation to
future work and constitutes a weakness that we alleviate
through unsupervised learning methods. We will continue
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to try to ameliorate this limitation by integrating the few-
shot learning method, which has performed well on many
tasks with only small amounts of available training data
[42, 43]. Moreover, this work can be applied and expanded
to multicenter data analysis similar to [44, 45]; a larger
research platform may result in additional interesting re-
search works.

5. Conclusions

In this work, we introduce the first application of a deep
learning method that combines unsupervised and super-
vised learning for video-based facial tic motion detection
in TS patients. The developed model achieved good
classification results on both multiclass and binary clas-
sification tasks; it can both detect and classify facial tic
behaviors. This study effectively utilized large amounts of
unlabeled data, which greatly reduced the labeling
workload. A subsequent quantification of tic behavior has
potential clinical application value for early identification
and auxiliary diagnosis and evaluation of treatment effects.
In the future, more video data will be collected and used to
evaluate our scheme.
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