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Falls are a multifactorial cause of injuries for older people. Subjects with osteoporosis are particularly vulnerable to falls. We
study the performance of different computational methods to identify people with osteoporosis who experience a fall by
analysing balance parameters. Balance parameters, from eyes open and closed posturographic studies, and prospective
registration of falls were obtained from a sample of 126 community-dwelling older women with osteoporosis (age 74.3 ± 6.3)
using World Health Organization Questionnaire for the study of falls during a follow-up of 2.5 years. We analyzed model
performance to determine falls of every developed model and to validate the relevance of the selected parameter sets. 'e
principal findings of this research were (1) models built using oversampling methods with either IBk (KNN) or Random Forest
classifier can be considered good options for a predictive clinical test and (2) feature selection for minority class (FSMC)
method selected previously unnoticed balance parameters, which implies that intelligent computing methods can extract useful
information with attributes which otherwise are disregarded by experts. Finally, the results obtained suggest that Random
Forest classifier using the oversampling method to balance the data independent of the set of variables used got the best overall
performance in measures of sensitivity (>0.71), specificity (>0.18), positive predictive value (PPV >0.74), and negative
predictive value (NPV >0.66) independent of the set of variables used. Although the IBk classifier was built with oversampling
data considering information from both eyes opened and closed, using all variables got the best performance (sensitivity >0.81,
specificity >0.19, PPV� 0.97, and NPV� 0.66).

1. Introduction

Falls are a major threat to the quality of life of older adults.
'e risk of falling is multifactorial but can be decreased if
predisposing factors are addressed [1]. 'erefore, the
identification of predisposing factors is essential. Clinical
guidelines recommend screening the risk of falling in older
adults at least once a year [1, 2]. Among identified predis-
posing factors, balance, [3] aging, [4], and osteoporosis [5]

have been found to be the most relevant. Several methods
have been developed to assess balance problems and the risk
of falling in the elderly population with positive results [4, 6].
However, the use of clinical scales may be insufficient to
predict falls in special population such as people suffering
from osteoporosis [5]. It has been reported that women with
osteoporosis present balance particularities which com-
promise their stability and predispose them to fall [7]. But
while some studies have reported differences in balance
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among older people with osteoporosis who have fallen
compared to older people with osteoporosis who have not
[8–10], others have reported no differences [11, 12].

As can be seen, there is a lack of information about the
usefulness of objective measures such as postural sway
parameters to identify fallers in older people with osteo-
porosis. 'erefore, it is of interest to answer the following
research question: how to evaluate and to determine the
relevance of balance parameters associated with an older
adult with osteoporosis being at risk of falling?

Assessment models have been developed to support the
identification of useful information for fall prevention. For
example, a linear model to predict the risk of falling in older
adults based on postural sway parameters presented a better
performance (area under the receiver operating character-
istic curve (AUC): 0.73; 95% CI: 0.63–0.83) than a model
using exclusively clinical parameters (AUC: 0.67; 95% CI:
0.55–0.79) [13]. Other examples are the logistic regression
models that were developed to predict the risk of falling in
elder people [8–11, 14–16], but the principal limitation of
these models is the assumption of linearity between the
dependent variable and the independent variables. Other
examples are the prediction models based on intelligent
computing methods that are thought to be better than re-
gression techniques [17–19]. In the previously cited works,
the authors presented results using regression to evaluate the
fall risk. However, these studies do not consider balance
parameters and lack detailed information regarding the
model’s performance to determine the risk of fall.

Another computational alternative is machine learning
(ML), which is a subset of artificial intelligence which has
played a key role in many health-related realms, due to its
wide set of techniques, many of which do not assume lin-
earity between the dependent variable and the independent
variables like regression models. 'e application of machine
learning techniques in topics related to healthcare has been
varied. For example, Srinivas and Salah [20] applied clas-
sification techniques, Random Forest, and deep neuronal
networks to estimate consultation length and to predict no-
shows at a cardiology clinic; in [16], artificial neural net-
works models and multiple regression models were used to
forecast blood supply at blood centers; in [21], supervised
machine learning classifiers were induced to develop pre-
dictive models that identify the risk of a patient no-show to a
clinical site; in [22], the authors compared four ML algo-
rithms, namely, logistic regression, Random Forest, gradient
boosting machine, and artificial neural networks to identify
which one has the best performance to predict the patient-
specific risk of late arrival to some ambulatory care clinics. In
general, the research works report an effectiveness of around
80% to predict the event of interest, which provide evidence
of the viability to apply ML techniques to help in healthcare
problems.

Machine learning techniques have also been used to
buildmodels to predict the risk of falling. In [23], the authors
developed a dynamic Bayesian network (DBN) from spa-
tiotemporal data for estimating the risk of falling from gait
data of women with osteoporosis with a specificity and
sensitivity higher than 70.8% and 90.2%, respectively, but

they used a small sample size of 18 patients where the
number of fallers was greater than the nonfallers. In [24], the
authors made a systematic comparison of multifactorial
assessment tools and their instrumentation for fall risk
classification based on machine learning approaches with a
population of 296 community-dwelling older persons, and
their best F-score measure obtained from several classifiers
was 72.85% with Naı̈ve Bayes classifier; they only used
spatiotemporal data to build the classifiers. In [25], the
authors studied whether deep learning methods using
spatiotemporal data can assess fall risk.'ey used an existing
dataset of 296 older adults, and they obtained the best
performance of AUC� 0.75. Another example is a con-
volutional neural network used to predict status about the
risk of falling in older adults using data from inertial sensors
capture during walking which achieved good results (AUC:
0.75; 95% CI: 0.54–0.92) in the short-term (<6 months), but
was not accurate (AUC: 0.56, 95% CI 0.33–0.74) to predict
falls in the long term (from 6 to 12 months) [26]. It is
important to mention that the results reported in the works
cited are a global value, i.e., the authors do not report the
score obtained about the faller classification.

In general, previous works cited indicate that impair-
ments of gait and balance are associated with an increased
risk of falls. However, there are inconsistencies regarding the
characteristics or parameters most predictive of a fall. To
advance fall prevention efforts, there is an important need to
understand the relationship between balance and fall risk
[27], particularly in osteoporotic older people. Another
important issue is determining which is the best compu-
tational technique or techniques that allow getting a reliable
predictive clinical test to identify the risk of fall because
previous works report different types of techniques applied
to determine that risk.

In this research, we propose using three machine
learning methods to identify elder people at risk of fall.
'ose techniques are (1) feature selection methods, to
evaluate and determine the relevance of balance parameters
to identify fall risk of the elder people with osteoporosis, (2)
classification methods to build a model to predict falls, and
(3) sampling techniques to balance data for improving the
performance of the classifiers. 'e latter technique was
applied since we worked with unbalanced datasets.

'e principal contributions of our research are as fol-
lows: (1) we obtained different sets of parameters, and we
discussed the consistency of these sets concerning infor-
mation reported previously and their relevance to identify
the risk of fall, (2) we discussed the effectiveness of the
different machine learning methods to build a model to
predict falls, and we suggest a good combination of bal-
ancing data methods with classifier methods to get a reliable
predictive clinical test to identify the risk of fall.

2. Method

2.1. Subjects and Procedures. Community-dwelling women
with osteoporosis older than 60 years, able to stand up for
2min without assistance and to follow instructions, were
recruited at the National Institute of Rehabilitation (INR
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from its acronym in Spanish) in Mexico City. Women were
excluded if they had physical or cognitive impairments or
any medical condition that could compromise balance
function. Bone mineral density (BMD) of all participants
was measured using dual-energy X-ray absorptiometry
(DXA) scanners (Hologic, Marlborough, MA, USA). Di-
agnosis of osteoporosis wasmade based on their DXA results
according toWorld Health Organization (WHO) definitions
(Tscore lower than 2.5 standard deviations of the mean peak
bone mass for healthy adults at one or more skeletal sites).
Written consent was obtained from all participants, and the
study was approved by the Ethical Committee of the In-
stitute. Sociodemographic information including age and
comorbidities of volunteers was obtained from patient
records and interviews. All subjects underwent quantitative
posturography assessment at their enrollment at the INR.
Measurements were performed in a reproducible, well-lit
environment, with no audio or visual interference.

Static posturography was performed on a force platform
(AccuSway, AMTI Inc., Watertown, MA, USA) with a
sampling frequency of 120Hz. Data were acquired using
Balance Trainer software (AccuSway, AMTI Inc., Water-
town, MA, USA). Center of pressure (COP) coordinates
were analyzed in MATLAB (Mathworks, Natick, MA, USA)
to calculate displacement, velocity, area, and frequency-
related parameters in anterior-posterior, mediolateral, and
resultant direction (see Table 1). Force platform was
strapped with an antislip plastic cover (0.01mm thin) with a
template of two lines at 30° to standardize individual foot
positions for the repeated measurements across participants
and during follow-up. Participants stood up on the platform
barefooted on a comfortable, double-legged position aligned
to the two 30° lines. Outlines of both feet were marked on the
plastic cover with a marker. Individual’s base of support
(BOS) was entered in the Balance Trainer software after the
subject leaves the platform.

'ereafter, patients were instructed to stand on the
premarked plastic cover with the arms by the sides and eyes
open while looking straight ahead.

Women were tested individually within a single session
that lasted less than 5 minutes. Static posturography was
performed on two 100-second trials at two conditions (eyes
open and eyes closed). Between tasks, subjects were allowed
to sit down to rest. Only the first 50 seconds of the trial were
used for the calculations to avoid boundary effects, and a low
pass bidirectional second-order Butterworth filter with a
cutoff frequency of 5Hz was used.

WHO Questionnaire for the study of falls in the elderly
(WHO-QSFE) [28] was also applied to each subject at the
beginning of the study. Subjects underwent further func-
tional balance andWHO-QSFE assessments every 6 months.
For this study, data of 2.5-year follow-up were used due to
the increasing loss of participants.

2.2. Data Description and Processing. We used balancing
data and feature selection techniques with the balance data
of the longitudinal study to discover relevant information to
determine fall risk.

Table 1: Analyzed balance parameters.

Parameter
number Parameter name Parameter

abbreviation
Displacement

Mediolateral displacement (X)
1 Average X Avg
2 Maximum X Max
3 Minimum X Min
4 Standard Deviation X SD
5 Skewness X Skew
6 Kurtosis X Krts
7 D average X D Avg
28 Deviation of CoG DCG X
36 Sway Range Sway Range X
37 Path length Path Length X
39 Sway ratio Sway Ratio X
59 Frequency X Freq Avg

Anteroposterior displacement (Y)
8 Average Y Avg
9 Maximum Y Max
10 Minimum Y Min
11 Standard Deviation Y SD
12 Skewness Y Skew
13 Kurtosis Y Krts
14 D average Y D Avg
29 Deviation of CoG DCG Y
38 Sway Ratio Sway Ratio Y
60 Frequency Y Freq Avg

Resultant displacement (D)
15 Radial D Average Rdl D Avg
16 Radial D standard deviation Rdl D SD
20 Path Length Path Lgth
61 Frequency Freq Avg

Area
17 Circular Area Circ
18 Rectangular Area Rect
19 Effective Area Efft

Area 95% Ellipsoid
31 Area Area95
32 mayor axis Majr95
33 minor axis Min95
34 Mayor axis Tangent Tan95
35 Mayor axis Slope Slope95
62 Romberg Coefficient Romberg Coef
22 Path/Area Path/Area
30 Area Covariance Cov

Velocity
Mediolateral velocity (Vx)

57 Average Vx Avg
23 Maximum Vx Max
24 Minimum Vx Min

Anteroposterior velocity (Vy)
58 Average Vy Avg
25 Maximum Vy Max
26 Minimum Vy Min
40 RMS RMSVAP

Resultant velocity (V)
21 Unitarian Path Length Unit Path
27 Average V Avg

Base of support (BoS)
41 X1 coordinate BoS(0).x
42 Y1 coordinate BoS(0).y
43 X2 coordinate BoS(1).x
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2.2.1. Balancing Data. Amajor problem in many domains is
that data are often skewed or unbalanced. In our case, we
expect the prevalence of falls among the elderly to be low,
and this can be mended by sampling the original dataset,
either by oversampling the minority class and/or under-
sampling the majority class [29]. 'ese techniques have
proven to be effective and can help to improve the per-
formance of classifiers to identify the class of interest
[30–32].

From the study described in Section 2.1, we recorded
527 instances, each one corresponding to 63 balance
parameters obtained from the force platform on one
patient of the study. We add the fall data of the patient and
used it to determine the class of the instance. It is im-
portant to comment that we have 401 instances where the
patients did not fall (nonfallers), which belong to the
majority class, and only 126 instances where the patients
fall (fallers), which belong to the minority class. For this
reason, we applied two methods to balance the dataset:
oversampling (SMOTE) [29] and subsampling with
random undersampling (RUS), both of them integrated as
part of the Weka software.

2.2.2. Feature Selection. Raw data contain a mixture of at-
tributes, some of which are relevant tomaking predictions. It
is possible to automatically select those features in the data
that are most useful or most relevant for a specific problem.
'is is a process called feature selection, which reduces the
attributes’ number in the dataset. Few attributes are desir-
able because they might reduce the model’s complexity, and
a simpler model is easier to understand and explain.
However, the feature selection process imposes an extra
effort of trying to get a subset that preserves the performance
of the original dataset. In the context of classification, feature

selection techniques can be categorized into filter, wrapper,
embedded, and hybrid [27].

Five of the feature selection methods were used from
Weka [33] corresponding to the most representative of the
classification above, and they were ReliefFAtributeEval,
OneRAttributeEval, SymetricalUncertAttributeEval, Wrap-
perSubsetEval, CorrelationAttributeEval, and a homemade
algorithm called Feature Selection for Minority Class
(FSMC) [34].

2.2.3. Construct Validity. Sixty-three balance features from
the static posturographic test were obtained. Balance fea-
tures were included with a reported utility to identify fallers
from nonfallers and subjects with osteoporosis from non-
osteoporotic subjects. 'ose features were used to test
convergent validity. We also include features previously
studied without positive results using logistic regression
techniques [8–11, 14, 15], to test discriminant validity.

COP-related features were grouped into four categories:
COP displacement, COP displacement speed, based of
support, and time of evaluation. 'e characteristics of
displacement and velocity of displacement of the COP have a
theoretical relation with the identification of fallers, non-
fallers, and subjects with and without osteoporosis. On the
other hand, the characteristics related to the base of support
and time of evaluation were controlled to have equal or very
similar values in all the subjects throughout all the evalu-
ations, so a theoretical relationship with the identification of
falls or osteoporosis is not expected.

2.2.4. Weka. Weka is a machine learning software with
algorithms for data mining tasks [33]. In our case, we apply
different balancing, feature selection, and classification
methods to analyze and describe the data.

2.3. Machine Learning. In this section, we describe the
classification algorithms applied to verify the importance of
the information obtained with feature selection techniques
to determine fall risk, using the balance parameters. 'ose
algorithms are implemented in various fields such as
economy, medicine, finance, and industry [35].

2.3.1. Classification Techniques. Classification is used to
determine to which of a set of categories (groups or classes) a
new observation or instance belongs, based on a training set
of data containing instances whose category or class
membership is known. Generally, a classification technique
follows three approaches, statistical, machine learning, and
neural network [36]. Considering these approaches, we used
five of the most common classifiers applied to predict the
risk in health-related studies [37], and the description of
each classifier can be consulted in [38]. 'e classifiers used
were as follows: Näıve Bayes which is based on the Bayes
theorem, LibSVM which builds a hyperplane or set of hy-
perplanes in a high- or infinite-dimensional space, AdaBoost
which is an ensemble method and is made up of multiple
classifier algorithms, RandomForest that creates a set of

Table 1: Continued.

Parameter
number Parameter name Parameter

abbreviation
44 Y2 coordinate BoS(1).y
45 X3 coordinate BoS(2).x
46 Y3 coordinate BoS(2).y
47 X4 coordinate BoS(3).x
48 Y4 coordinate BoS(3).y
49 X5 coordinate BoS(4).x
50 Y5 coordinate BoS(4).y
51 X6 coordinate BoS(5).x
52 Y6 coordinate BoS(5).y
53 X7 coordinate BoS(6).x
54 Y7 coordinate BoS(6).y
55 X8 coordinate BoS(7).x
56 Y8 coordinate BoS(7).y
63 Time Time
'e table shows the identification number, name, and abbreviation. Pa-
rameters are clustered on categories such as displacement on mediolateral
direction, displacement on anteroposterior direction, displacement on
resultant direction, area, 95% ellipsoid, Romberg coefficient, path/area,
covariance, velocity on mediolateral direction, velocity on anteroposterior
direction, velocity on resultant direction, the base of support, and time.
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decision trees from a randomly selected subset of the
training set, and IBk which implements the k-nearest
neighbor algorithm.

2.4. Experiments. 'ree datasets (with eyes open, eyes
closed, and one merging both datasets) were used. 'e
experiments were divided into three sets of tests. In the first
set, we built five models for each of the three datasets using
all features and five models corresponding to the five
classifiers mentioned in Section 2.3.1, and 10-fold cross-
validation was used to evaluate the performance of each
model. As a result, we built 15 models for the first exper-
iment set. For the second experiment set, we built five
models for each one of three datasets using the parameters
selected by FSMC in each one of the datasets, and we applied
10-fold cross-validation to evaluate the models’ perfor-
mance, we also built 15 models for the second experiment
set. Finally, in the third experiment set. We built five models
for each of three datasets using the merge parameters se-
lected with the five feature selection methods from Weka
mentioned in Section 2.2.2, and we applied 10-fold cross-
validation to evaluate the models’ performance, so we built
15 models for the third experiment set. We repeated the
same three sets of tests with the three datasets, balanced
using oversampling and using subsampling. In total, we
generated 135 models with 45 models for each resampling
method that we used. Figure 1 shows the 45 models built
with unbalanced data, and a similar procedure was followed
with the data balanced by the two methods used. Specificity
and sensitivity, positive predictive value (PPV), and negative
predictive value (NPV) were calculated for each model.

3. Results

3.1. Subject’s Characteristics. One hundred and twenty-six
subjects were enrolled (mean age 74.3± 6.3, height
148.5± 6.4, weight 58.3± 8.8, BMI 26.5± 3.8) by INR, and a
static posturography test was performed on a force platform
for each one of them. Patients were asked to return every 6
months for new data acquisition (open and close tests), for
2.5 years, between each period. Patients were asked to report
by phone call if they suffered a fall, and these data were
added to each one of the record (instance) of the patients.

Due to different circumstances, in each new data col-
lection, there was a smaller number of patients; likewise, in
each period, a different number of falls was obtained, and
these data are shown in Table 2.

Finally, we collected 527 instances for each test (open
and close), 401 with falls and 126 without falls. We used all
instances to build different classifiers. So, when we applied
oversampling methods, we get a dataset with 401 instances
with falls and 401 without falls, and when we applied
subsampling methods, we get a dataset with 126 instances
with falls and 126 without falls.

3.2. Set of Balance Parameters to Identify Falls. 'e variables
selection was applied over all the instances. Figure 2 shows
the sets of balance parameters used to build classification

models. In both cases, Figure 2 presents the variable selected
from the close eyes dataset ( ), open eyes dataset ( ), and
merge dataset ( ).

Table 3 presents the number of variables selected in each
dataset (close, open, and merge). With each variable se-
lection method, we obtained three different sets, and using
each one of the sets, different classifiers were built.

3.3. Performance ofComputationalModels. 'e results of the
models are presented in two parts. First, the effect of bal-
anced and unbalanced datasets was analyzed plotting the
performance (true positive rate and false positive rate) for
each developed model irrespective of feature selection
method or classifier, showing their receiver operating
characteristic (ROC) space (see Figure 3(a)). Balancing data
using oversampling techniques results in better classification
performance. 'e cluster of oversampling data lies on the
upper left quarter of the ROC space (above the reference
line) which is desirable for a good classifier. Unbalanced
datasets and subsampled datasets result only on a perfor-
mance near the reference line.

Second, a detailed analysis was performed over feature
selection methods, classifiers, and testing conditions which
showed a better performance in ROC space (see Figure 3(b)).
Specifically, models built with dataset using all parameters
and using IBk (KNN) and Random Forest classifiers for
open eyes condition (open) and closed eyes condition (close)
showed the best performance, sensitivity� 0.81, specific-
ity� 0.19, sensitivity� 0.79, and specificity� 0.21, respec-
tively. Followed by models from datasets using the FMSC
feature selection method with closed eyes condition using
Random Forest classifier, sensitivity >0.76 and specific-
ity� 0.24. Sensitivity, specificity, positive predictive value
(PPV), and negative predictive value (NPV) are presented in
Table 4.

3.4. Construct Validity. 'e set of features selected by the
FMSC method contains features of the COP displacement
and COP displacement speed in the three measurement
conditions analyzed (open eyes, closed eyes, and both).
Additionally, Weka’s methods were picked up by six bases of
support features and one duration time feature during all
testing conditions: open eyes and closed eyes. 'ey are x-
coordinates and y-coordinates of the base of support po-
sition which are not correlated to falls. 'ese features
represented from 5% to 20% of the dataset of selected
features by theWekamethod. In contrast, the FMSCmethod
selected features mostly at closed eyes. It has been thought
that balance tests at closed eyes yield more significant results
about the assessment of postural balance [3, 39–41]. 'is
deteriorates confidence in the construct validity of the re-
sults obtained based on the set of features selected byWeka’s
methods.

4. Discussion

We tested a set of 63 balance parameters to build models to
identify fallers among elderly women with osteoporosis.'is
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Figure 1: Graphic description of the mode of creation of the 45 models built with unbalanced data. B�Naı̈ve Bayes classifier, S� support
vector machine classifier, K� IBk classifier, A�AdaBoost classifier, and R�Random Forest classifier.
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Figure 2: Sets of variables selected using different feature selection methods from eyes open (o), eyes closed (c), and merge datasets. (a)
Using FSMC method and (b) using Weka’s methods.

Table 2: Instances relation during the study time.

Follow-up (months)
Instances Baseline First (6) Second (12) 'ird (18) Fourth (24) Fifth (30)
Total 126 115 96 81 68 41
Fallers 43 29 27 16 10 1
Nonfallers 83 86 69 65 58 40
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approach besides being computationally expensive also lacks
construct validity due to the fact it includes sources of pure
random information which are not logically correlated with
the risk of falling such as x-y coordinates of the base of
support. Variable selection is less computationally expen-
sive. Table 3 shows a resume about the number of variables
selected by the methods which get an average reduction of
70% in each study condition.

Notably, the FMSC method selected parameters that
have been regarded as highly reliable such as the area of sway
(Area Efft) [42, 43] and maximum COP displacement in
anteroposterior and mediolateral directions (X max, Y max)
[42]. On the other hand, some of the selected parameters
have been rejected as representatives of postural balance
variability by logistic regression techniques such as dis-
placement in the mediolateral, anteroposterior, and resul-
tant direction as well as the area of 95% ellipsoid (X SD, Y
SD, unit path, area95) [9, 42]. Some selected parameters by
the FMSC method related to displacement in resultant di-
rection (Rdl D avg, Rdl D SD, Path lgth) have not shown

properties to distinguish balance peculiarities in either os-
teoporotic people [8, 39, 44] people or fallers [39, 40, 42].

FMSC method selected some balance parameters with
no reports about reliability or utility such as displacement
and velocity in both anteroposterior and mediolateral di-
rection, sway area, and Romberg coefficient (Xmin, X D avg,
Y min, area circ, area rect, Vx max, Vx min, Majr95, Minr95,
sway range X, path length X, sway ratio Y, RMSVAP, and
Romberg). Consequently, it seems that computing methods
such as the FMSC method can extract useful information to
identify fallers using specific balance parameters which
otherwise are disregarded using only logistic regression
techniques.

'e results presented in Table 4 show that the use of the
variables selected by FSMC andWeka’s methods, in general,
enables building better classifiers for all datasets that were
balanced. In this way, we present evidence of the importance
of using balanced information to build classifiers.

Regarding the performance of classifiers, as can be seen
in Figure 2(a), the classifiers built with balanced datasets
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Figure 3: (a) ROC space of models developed by applying different machine learning techniques to unbalanced dataset (unbalanced) and
balanced datasets (subsampling and oversampling), over data acquired at all conditions (open eyes, closed eyes, open eyes and closed eyes),
all feature selectionmethods (FMSC andWeka’s methods), and all classificationmethods (AdaBoost, Näıve Bayes, LibSVM, Random Forest,
and IBk). Models of balanced datasets using oversampling techniques have a better performance. (b) ROC space of models developed with
balanced data (oversampling) over data acquired at all conditions, using all feature selection methods and all classification methods. 'e
names of each model graphed follow this nomenclature: the first uppercase letter corresponds to set of variables used, A� all variables,
F� variables selected with FSMC, and W� variables selected with Weka’s methods; the second uppercase letter corresponds to condition,
Op� open eyes, Cl� closed eyes, and Me� open eyes and closed eyes; the third uppercase letter corresponds to the dataset used,
O� oversampling data, and finally the rest of the name correspond to the name of the classifier used. So, A_Me_O_KNN refers to an IBk
classifier built with oversampling data with the merged condition using all variables.

Table 3: 'e number of variables selected from each dataset by the selection methods used.

FSMC method Weka’s methods
Variables Close Open Merge Close Open Merge
Total 63 63 126 63 63 126
Selected 25 13 34 19 10 40
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using oversampling methods scored better in sensitivity and
specificity measures than all the classifiers. A special case of
the model is that based on the dataset using all parameters
and the IBk classifier (KNN) for open eyes and closed eyes
condition (Merged) because our experiments obtained the
best result. But, in general, the results show that the classifier
which gets better results using each of the variable sets is
Random Forest. 'e results obtained with classifiers built
using variables selected with FSMC and Weka’s methods
were closed to the best score with a reduced number of
parameters. Additionally, features selected with FSMC are
more significant and in accordance with the literature that
reports the use of the balance data to identify fall risk.

We consider that the combination of oversampling and
FSMC selection methods using Random Forest classifier is
the best option because it leads to classifiers with better
performance to identify the risk of falling using potentially
valid and relevant information of key features which could
be used as markers to distinguish populations.

'e performance of developed models is like those
reported in the literature. For instance, the model devel-
oped by König [14] based on linear regression techniques
showed a sensitivity and specificity of 74% and 76% to
classify fallers and nonfallers. Other developed models
could explain up to 20% of the variance related to falls [9].
'e authors in [45] reported a model based on intelligent
computing methods using SVMs with an accuracy of 95%
with only two features. However, the last model was used
only for classifying people with balancing problems and not
to identify the risk of falls.

'e difference in results could be mainly attributable to
the sample conformation, specifically to the proportion of
fallers. König studied a population of 42 fallers and 48
nonfallers. Also, the authors [45] trained a classifier with
statistical features taken from gait data of 10 elderly healthy
people and 10 elderly people with balance problems. In
contrast, in our study, we have 401 records without falls and
126 with falls. 'erefore, we consider that the results of
specificity and sensitivity are more reliable. An abstract of
the performance of each one of the classifiers is summarized
in Table 4.

4.1. Clinical Implications. Because no testing condition
(eyes open vs eyes closed) showed a clear advantage, a
clinical test should be conducted for both conditions. All
those models were built based on balance parameters
feasible to be measured in clinical practice using relatively
simple equipment such as balance platforms or acceler-
ometers. It is important due to the seriousness of the as-
sociated conditions and because it allows the establishment
of an intervention to modify the associated risk within a
reasonable time frame.

A bigger proportion of fallers within the sample would
be desirable for training and tuning the classifiers. In this
study, only balance-related parameters were analyzed.
However, falls are multifactorial. 'erefore, a combination
of balance-related parameters with other data such as gait-
related parameters could improve the accuracy of results.

5. Conclusion

Most of the classifier performance could be considered
inferior to practical requirements for a predictive clinical
test, except those built using oversampling methods using all
features with either IBk or Random Forest classifiers. None
of the test condition (eyes closed or eyes open) showed a
clear superiority to identify the risk of falling in osteoporotic
women. 'erefore, we recommend the assessment of bal-
ance on both conditions.

'e results show that applying the oversampling method
to balance open and close eyes datasets and using the se-
lected attributes using our algorithm FMSC for feature se-
lection enable us to build more valid and feasible classifiers
to identify fallers with osteoporosis.
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[30] C. Bédard, S. Béhuret, C. Deleuze, T. Bal, and A. Destexhe,
“Oversampling method to extract excitatory and inhibitory
conductances from single-trial membrane potential record-
ings,” Journal of Neuroscience Methods, vol. 210, no. 1,
pp. 3–14, 2012.

[31] T. K. K. Dey, J. Giesen, S. Goswami, J. Hudson, R. Wenger,
and W. Zhao, “Undersampling and oversampling in sample
based shape modeling,” in VIS ’01: Proceedings of the Vi-
sualization 2001, pp. 83–90, San Diego, CA, USA,
October2001.

[32] A. Zimek, M. Gaudet, R. J. Campello, and J. Sander, “Sub-
sampling for Efficient and Effective Unsupervised Outlier
Detection Ensembles,” in KDD’13: Proceedings 19th ACM
International Conference Knowledge Discovery And Data
Mining, pp. 428–436, Association for Computing Machinery,
New York, NY, USA, 2013.

[33] R. R. Bouckaert, E. Frank, M. Hall et al., WEKA Manual for
Version 3-7-8, Waikato University, New Zealand, [online]
User manual, 2013.

[34] G. Cuaya, A. Muñoz-Meléndez, and E. F. Morales, “A mi-
nority class feature selection method,” in Proceedings of the in
Progress In Pattern Recognition, Image Analysis, Computer
Vision, and Applications, M. C. San and SW. Kim, Eds.,
pp. 417–424, Springer, Pucón, Chile, November 2011.

[35] D. L. Olson, Dataset Balancing, Springer, Berlin Heidelberg,
1st. edition, 2004.

[36] S. S. Nikam, “A comparative study of classification techniques
in data mining algorithms,” Oriental Journal of Computer
Science and Technology, vol. 8, no. 1, pp. 13–19, 2015.

[37] K. Prasanna, R. SivaRanjani, T. Kanti, and S. Ranjan, “A study
of classification techniques of data mining techniques in
health related research,” International Journal of Innovative
Research in Computer and Communication Engineering, vol. 5,
no. 7, pp. 13779–13786, 2017.

[38] M. Gupta and N. Aggarwal, “Classification Techniques
Analysis,” in NCCI 2010: Proceedings of the National Con-
ference On Computational Instrumentation, pp. 128–131,
CSIO, Chandigarh, India, 2010.

10 Journal of Healthcare Engineering



[39] G. C. Brech, P. G. Plapler, E. de Souza Meirelles,
F. M. D. A. Marcolino, and J. M. D. A. Greve, “Evaluation of
the association between osteoporosis and postural balance in
postmenopausal women,” Gait & Posture, vol. 38, no. 2,
pp. 321–325, 2013.
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