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Today’s standard robotic systems often do not meet the industry’s demands for accurate high-speed robotic applications. Any
machine, be it an existing or a new one, should be pushed to its limits to provide “optimal” efficiency. However, due to the high
complexity of modern applications, a one-step overall optimization is not possible. Therefore, this contribution introduces a step-
by-step sequence of multiple nonlinear optimizations. Included are optimal configurations for geometric calibration, best-exciting
trajectories for parameter identification,model-based control, and time/energy optimal trajectory planning for continuous path and
point-to-point trajectories. Each of these optimizations contributes to the improvement of the overall system. Existing optimization
techniques are adapted and extended for use with a standard industrial robot scenario and combined with a comprehensive toolkit
with discussions on the interplay between the separate components. Most importantly, all procedures are evaluated in practical
experiments on a standard robot with industrial control hardware and the recorded measurements are presented, a step often
missing in publications in this area.

1. Introduction

State-of-the-art robotic systems are equipped with highly
sophisticated industrial hardware, capable of short sample
times and offering high computational power.This increasing
arithmetic performance may be used to improve positioning
accuracy and dynamic accuracy and compute time/energy-
optimal trajectories. The proper fundamentals are found in
the underlying mathematical models.

This contribution focuses on giving an overview of vari-
ous nonlinear optimizations. With each optimization, a
certain aspect of an arbitrary robotic system is improved.
Applying all of them in sequence will provide better results
regarding positioning accuracy and dynamic accuracy and
will reduce the cycle times. The basis for this optimization
lies in the kinematic and dynamical modeling of the sys-
tem. Therefore, Section 2 starts with the deviation of these
models enhanced by a model-based control strategy. Special
emphasis is laid on the implementation on an industrial
system including time delays. In Section 3, the static position
accuracy of the robot is improved by considering unavoidable

tolerances in the robot kinematics. The main topic is obtain-
ing optimal configurations for the identification process. The
identification of the dynamic parameters, that are used for
the model-based control, is described in Section 4. Also,
the problem of optimal exciting trajectories is solved by
nonlinear optimization techniques. Finally, Section 5 reviews
time/energy optimal trajectory planning for continuous path
trajectories and point-to-point trajectories.

Each section provides information on the used solvers for
the various optimizations and also presents detailed results
of the conducted experiments. Experiments are performed
using an off-the-shelf robot, a Stäubli RX130L shown in
Figure 3, with industrial control hardware and commercially
available measurement hardware, to guarantee that all pro-
posed methods are applicable for industry. For specifications
of the articulated robot, please consult Table 1.

Previous works of the authors, which are also focused on
industrial robotics, see, for example, [1], cover the basics like
control and geometric path planning. Based on these works,
a specific combination of algorithms is presented, each of
which optimizes a specific aspect of the robotic system.
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Table 1: Technical specifications.

Stäubli RX130L industrial robot
Degrees of freedom 6
Maximum load capacity 10 kg
Reach at wrist 1660mm
Weight ≈200 kg

2. System Modeling and Control

2.1. Kinematic Modeling. The kinematic modeling can be
divided in the direct kinematics problem and the inverse
kinematics problem. The direct kinematics calculates the
end-effector coordinates z𝑇

𝐸
= (r𝑇

𝐸
𝜑

𝑇

𝐸
) as a function of the

joint coordinates q and nominal geometric parameters p
𝑛
as

z
𝐸
= fDK (q, p𝑛

) , (1)

see Figure 3. Vector r
𝐸
indicates the end-effector position,

which can be calculated by a sequential summation of the
relative connecting vectors. For the orientation, a description
in Cardan angles is used. A sequential multiplication of
the relative rotation matrices between two successive joints
delivers the rotation matrix A

𝐼𝐸
between end-effector frame

(𝐸) and inertial frame (𝐼) from which the Cardan angles
can be extracted. In this paper, also the notation tool center
point (TCP) is used for the end-effector. Inverse kinematics
calculates the joint coordinates q as a function of end-effector
coordinates z

𝐸
and p

𝑛
:

q = f
𝐼𝐾
(z

𝐸
, p

𝑛
) . (2)

Solutions for the inverse kinematics problemof such standard
robotic systems can be found inmany textbooks, for example,
[2] or [3].

2.2. Dynamic Modeling. The equations of motion for multi-
body systems, like a robot, can be calculated by several
methods. The method with minimal effort is the Projection
Equation, see [4]. Linear momenta p = 𝑚v

𝑐
and angular

momenta L = J𝜔
𝑐
are projected into the minimal space

(minimal velocities q̇) via the appropriate Jacobian matrices:

𝑁

∑

𝑖=1
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𝜕
𝑅
v
𝑐

𝜕q̇
]

𝑇
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𝜕
𝑅
𝜔

𝑐

𝜕q̇
]

𝑇

]

𝑖

(

𝑅
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𝑅
𝜔̃

𝐼𝑅 𝑅
P −

𝑅
f𝑒

𝑅
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𝑅
𝜔̃

𝐼𝑅 𝑅
L −

𝑅
M𝑒

)

𝑖

= 0.

(3)

All the values like the translational velocity v
𝑐
or the rota-

tional velocity of the center of gravity 𝜔
𝑐
can be inserted

in arbitrary coordinate systems 𝑅. In contrast to 𝜔
𝑐
, 𝜔

𝐼𝑅
is

the velocity of the used reference system. The matrix J is the
inertia tensor, while 𝜔̃p characterizes the vector product𝜔×p.
f𝑒 and M𝑒 are impressed forces and moments acting on the
𝑖th body. An evaluation of (3) yields the highly nonlinear
equations of motion for the robot

M (q) q̈ + g (q, q̇) = Q
𝑀
. (4)

They are composed of the minimal coordinates q, the config-
uration dependent, symmetric and positive definite mass
matrix M(q), the vector g(q, q̇) containing all nonlinear
effects (like Coriolis, centrifugal, gravity, and friction forces),
and the vector of the generalized actuating forcesQ

𝑀
.

Detailed dynamical modeling is an essential task because
it is the basis for model-based control and optimal trajectory
generation.

2.3. Control. The hardware setup is composed of an indus-
trial PC, communicating via Powerlink with six ACOPOS
servo drives, which power the synchronous motors of the
Stäubli robot. The servo drives use cascaded controllers for
precise position control of the robot’s joints. However, the
articulated robot is a highly nonlinear system due to the
serially connected arm/joint units. Typically, using linear
joint controllers on a highly nonlinear mechanical system
will not lead to sufficiently accurate and dynamic end-effector
motion.

2.3.1. Model-Based Control. This contribution suggests to
effectively linearize the nonlinear mechanical system with
a flatness-based feed-forward approach and use the servo
drives’ linear cascaded controllers to compensatemodel devi-
ations and external disturbances. Thus, they are summarized
for the sake of completeness. Introducing the state x𝑇

=

(q𝑇q̇𝑇
), the equations of motion, (4), in state space read

𝑑

𝑑𝑡

(

q
q̇) = (

q̇
M(q)−1

(−g (q, q̇) +Q𝑀
)

) (5)

with the input vector of motor torques Q
𝑀
. With the flat

output y = q and its derivatives with respect to time,

y = q,

ẏ = q̇,

ÿ = q̈ = M(q)−1
(−g (q, q̇) +Q𝑀

) ,

(6)

all state and input variables can be computed as a function
of the flat output, see, for example, [5]. Consequently, the
evolution of all system variables q, q̇, and Q

𝑀
is determined

by a sufficiently smooth trajectory y(𝑡).
Thus, combining the superimposed feed-forward branch

with the servo drives’ internal controllers yields the control
law for the motor torquesQ

𝑀
:

Q
𝑀
= M(q

𝑑
)q̈

𝑑
+ g(q

𝑑
, q̇

𝑑
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

feed-forward Q𝑀,𝑓𝑓

+ K
𝑝
(q

𝑑
− q) + K

𝑑
(q̇

𝑑
− q̇)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

feed-back

.

(7)

Please note that the feed-forward term in (7) guides the
system states along the desired trajectory, while the feed-
back control law ensures stability against disturbances and
modeling errors with the positive diagonal matrices K

𝑝
and

K
𝑑
. The stability of the overall system, applying (7), is proven

in [6]. Alternatively, the feed forward control law may also
be computed by using the structural properties of the robot’s
subsystem representation, as described in [7].
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Figure 1: Block diagram of the control structure.

2.3.2. Implementation. In order to evaluate the quality of the
suggested controls, the Stäubli RX130L robot is interfaced
with the motion hardware. During this process, the robot’s
mechanics, AC motors, and resolvers are not changed or
manipulated in any way.

The industrial PC is using 400 𝜇𝑠 as base sample time.
Every sample step, the inverse kinematic problem is solved
numerically to transform the desired end-effector movement
into corresponding joint positions, velocities, and accelera-
tions. With these reference joint variables (q

𝑑
, q̇

𝑑
, and q̈

𝑑
),

the mathematical model is evaluated to compute the feed-
forward motor torques as stated in (7). Then, for each joint,
a separate Ethernet telegram is generated containing the
reference positions and corresponding feed-forward motor
torques.

The servo drives are parameterized to accept cyclic
position inputs for the cascaded controller. To do so, the
cyclically arriving network telegrams are received and the
desired reference positions are passed to the set value inputs
of the cascaded controllers. Also, the computed feed-forward
torques are transformed to corresponding motor currents
and added to the servo drives’ current controllers set values.
Figure 1 presents the corresponding block diagram.

2.3.3. Experimental Results. The quality of the implemented
control strategy is validated by experiments with the Stäubli
RX130L robot. Regarding industrial interests, the standard-
ized trajectory found in the EN ISO NORM 9283, see [8], is
used as reference trajectory. It consists of various elements:
circles, straight lines, and squares in the typical workspace
for an industrial application.The TCP velocity is chosen with
1m/s and its acceleration with 5m/s2.

Figure 2(a) depicts the the lag errors of the first three
joints. The other axes show similar results. The positive
influence of the feed-forward loop is clearly observable. To
present insights on the TCP-accuracy during high dynamics,
the TCP errors for the standard and the improved control
law along the trajectory are presented in Figure 2(b).They are

measured using a high-precision laser tracker LTD600 from
Leica at a sampling rate of 1ms.

Obviously, the positive effects of the model-based feed-
forward approach drastically reduce the TCP and joint errors.
Mainly, they compensate static effects, for example, resulting
from gravity, and dynamic effects, for example, arising from
friction and high accelerations while the standard cascaded
controller provides stiffness, stability, and robustness.

3. Static Position Accuracy

Industrial robotic systems usually offer a satisfying repeata-
bility. However, the lack of sufficient accuracy of the end-
effector is responsible for time-consuming adjustments while
commissioning new tasks. The sources of these errors are
nonmodeled manufacturing tolerances, assembly inaccura-
cies, and joint encoder offsets.

3.1. Kinematics with Error Parameters. Thedirect kinematics,
which compute the end-effector position r

𝐸
and orientation

𝜑
𝐸
as function of the joint angles q and nominal geometric

parameters p
𝑛
, can be extended by a set of error parameters

p
𝑒
regarding lengths, joint offsets, and assembly inaccuracies.

For example, the connection vector between points 2 and 3
reads

r
23
= (

𝑙
2

0

0

) + (

𝑝
𝑒2𝑥

𝑝
𝑒2𝑦

𝑝
𝑒2𝑧

) , (8)

where 𝑙
2
is the nominal length of the connection (part of p

𝑛
)

and 𝑝
𝑒2𝑥
, 𝑝

𝑒2𝑦
, 𝑝

𝑒2𝑧
are the position error values (part of p

𝑒
).

Thus, the robot’s TCP position and orientation is

z
𝐸𝑒
= (

r
𝐸𝑒

𝜑
𝐸𝑒

) = fDK𝑒
(q, p

𝑛
, p

𝑒
) . (9)

For a standard six-axis industrial robot, as sketched in
Figure 3, p

𝑒
contains 6 ⋅ 3 error parameters regarding length,

6 joint encoder offsets, 6 ⋅ 2 angles for misaligned coordinate
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Figure 2: Measured errors with (model-based) and without feed-forward loop (standard).
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Figure 3: RX130L industrial robot.

frames between each link, and 3 tolerances for defining the
inertial coordinate system. This results in a set of 39 parame-
ters. To remove all linear dependencies, a𝑄𝑅-decomposition
is applied, see Section 4.1 for details. Applying this method
yields the final error parameter p

𝑒
∈ R30.

3.2. Geometric Calibration. Thecalibration process calculates
valid values for the error parameterp

𝑒
thatminimize the error

e between measured TCP-positions z
𝑀

and TCP-positions
determined using the corresponding joint angles q:

e = z
𝑀
− fDK𝑒

(q, p
𝑛
, p

𝑒
) = 0. (10)

This highly nonlinear equation can be solved by an iterative
method. Representing (10) as a Taylor-series around p

𝑒
,
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neglecting higher order terms and demanding that the error
converges towards zero, yields

e = e (z
𝑀
, q, p

𝑛
, p(𝑛)

𝑒
)

+

𝜕e (z
𝑀
, q, p

𝑛
, p

𝑒
)

𝜕p
𝑒

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨p(𝑛)𝑒⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

:=Θ̂

Δp
𝑒
= 0.

(11)

For𝑚measurements, (11) becomes

(

e (z
𝑀1
, q

1
, p

𝑛
, p(𝑛)

𝑒
)

...
e (z

𝑀𝑚
, q

𝑚
, p

𝑛
, p(𝑛)

𝑒
)

)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Q

+(

̂Θ (z
𝑀1
, q

1
, p

𝑛
, p(𝑛)

𝑒
)

...
̂Θ (z

𝑀𝑚
, q

𝑚
, p

𝑛
, p(𝑛)

𝑒
)

)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Θ

Δp
𝑒

= 0,

(12)

which is an overdetermined equation system solvable by
standard least-squares techniques. The minimum of the
quadratic error is found with

𝜕

𝜕Δp
𝑒

[

(Q +ΘΔp
𝑒
)

𝑇
(Q +ΘΔp

𝑒
)

2

]

𝑇

= Θ
𝑇
ΘΔp

𝑒
+Θ

𝑇Q = 0,

(13)

yielding the update law for the error parameter vector

Δp
𝑒
= −[Θ

𝑇
Θ]

−1

Θ
𝑇Q with p(𝑛+1)

𝑒
= p(𝑛)

𝑒
+ Δp

𝑒
. (14)

Initial values for p(0)

𝑒
can be assumed to be zero because the

error parameters regarding length, and so forth, are con-
siderably smaller than the nominal geometric parameters.
To finally obtain good position accuracy, the identified
parameters p

𝑒
must be considered in the inverse kinematics

algorithm. Any suitable numerical solution is viable and can
handle the set of additional parameters.

3.3. Optimal Configurations for Calibration. It is obvious
that the geometric calibration only identifies parameters well
that are excited accordingly. To overcome this problem, the
whole work- or joint-space could be discretized for taking
the necessary measurements. While this approach is viable
for small systems, it is heavily time and cost consuming for
systems with multiple degrees of freedom. Such complex
systems are common in today’s industrial applications. As
a consequence, an optimal set of configurations, which
guarantees well-excited error parameters, needs to be found.

3.3.1. Observation Index and Algorithm. In order to ensure a
well-conditioned problem formulation and also well-excited
parameters p

𝑒
, the minimum singular value of the covariance

matrix Λ = Θ𝑇
Θ in (14) is used as observation index and

optimization criterion and further described by 𝐵 = 𝜎
𝑚
(Λ).

As, for example, [9–11] show, there exist various choices for

valid observation indices with slightly different properties.
The proposed algorithm, which has been presented in [12],
allows the use of arbitrary observation indices.

Before introducing the optimization algorithm, two basic
operations are defined:

(i) Add a configuration: adding a new configurationwith
the Jacobian ̂Θ

𝑗
to the current information matrixΘ

𝑖

yields

Θ
𝑖+1
= [

Θ
𝑖

̂Θ
𝑗

] , and consequently Λ
𝑖+1
= Λ

𝑖
+
̂Θ

𝑇

𝑗
̂Θ

𝑗
,

(15)

which directly influences the change of the chosen
observation index

Δ𝐵 = 𝜎
𝑚
(Λ

𝑖+1
) − 𝜎

𝑚
(Λ

𝑖
) . (16)

(ii) Remove a configuration: similar to the previous case,
removing a configuration ̂Θ

𝑗
from the current infor-

mation matrixΘ
𝑖
is described by

Θ
𝑖
= [

Θ
𝑖+1

̂Θ
𝑗

] with Λ
𝑖+1
= Λ

𝑖
−
̂Θ

𝑇

𝑗
̂Θ

𝑗
,

Δ𝐵 = 𝜎
𝑚
(Λ

𝑖+1
) − 𝜎

𝑚
(Λ

𝑖
) .

(17)

Additionally, the complete set of 𝑁 measurable configura-
tions is called the configuration-setΠ. An arbitrary subset of
it is denoted by the set 𝜉.These operations and definitions are
the basics for the following optimization method.

(1) Initialization: a given number of 𝑛 configurations
is randomly selected from the initial configuration-
set Π. This subset 𝜉

0
must lead to a nonsingular

covariance-matrix Λ
0
to ensure a computation of

the observation index 𝐵(Λ
0
). Should this not be the

case for the chosen configurations, then the random
selection process is simply repeated.

(2) Remove and replace: the configuration that leads
to the minimal decrease of the observation index,
Δ𝐵(Λ

𝑖+1
), is removed from the current configuration

set 𝜉
𝑖
.Then, the resulting subset 𝜉

𝑖+1
is complemented

by exactly that configuration of Π that maximizes
Δ𝐵(Λ

𝑖+2
). For both operations, the correct element

is found by an exhaustive search over the respective
set. Note that due to the simple way to calculate
Δ𝐵 (see ((15)–(17))), the computational effort for
these searches is not as dramatic as it may sound.
This remove-and-replace strategy effectively sorts
out configurations that do not improve the overall
conditioning of the covariance matrix and replaces
them with ones that do. The step is repeated as long
as one remove-and-replace operation still improves
the observation index. Otherwise, the next step is
executed.

(3) Add additional configurations: from the config-
uration-set Π exactly the one configuration (again,
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Figure 4: Some exemplary optimal configurations.

found by exhaustive search) that, by itself, maximizes
Δ𝐵(Λ

𝑖+𝑖
), is added to the current subset 𝜉

𝑖
. This

step is iterated until the observation index cannot be
further increased by such an operation or until a user-
specifiedmaximumnumber of desired configurations
is reached. Otherwise, execute the final step.

(4) Final remove and replace: analogously to step 2, each
single configuration of the subset 𝜉

𝑖
is evaluated. If

any remove and replace operation as described above
still increases the observation index, this exchange is
executed. Otherwise, the procedure is terminated.

The algorithm may be applied multiple times to prevent
getting stuck at a local minimum. The solution with the
maximum observation index is used for the experimental
analysis. Nevertheless, finding these optimal configurations
is time consuming and lasts about five minutes on a standard
PC. Since these calculations are performed offline before any
measurements are done, this is not a critical issue.

3.4. Experimental Results. To evaluate the performance of
the proposed algorithm, detailed experimental results for the
RX130L robot are presented. First, the robot’s joint-space is
discretized by 13 equally large intervals per degree of freedom.
This results in a set of 136 ≈ 4.8 ⋅ 106 configurations. In
reality the coordinates of the end-effector are measured by
the visual infrared tracker system 3D-Creator, manufactured
by the Boulder Innovation Group. A probe emitting infrared
light by 4 diodes is mounted on the end-effector of the
robot. This light is recorded by three CCD cameras and the
position and orientation in world coordinates are calculated
by stereovision. Robot configurations that are not visible
by this system are removed. The remaining set consists of
approximately 4000 configurations. Then, the algorithm is
used to compute 32 optimal configurations. As Figure 4
emphasizes, the optimal configurations differ strongly from
each other to keep the condition number of the covariance
matrix low, also leading to well-excited parameters. Com-
pared to a linear scan of the workspace, the observation index
is reduced by the factor 18.5 while keeping the number of
necessary measurements very small.

For information on the position and orientation accuracy
before (uncal., p

𝑒
= 0) and after calibration (cal), see Table 2.

The orientation errors are represented in Cardan angles.

4. System Identification

In this section, the identification of the dynamical parameters
describing the robot behavior, see (4), is covered. This is
clearly an essential task because it is the basis formodel-based
control and optimal trajectory generation.

4.1. Dynamic Parameter Identification. An important prop-
erty of the equations of motion is the linearity with respect
to dynamic parameters p ∈ R𝑝 characterizing the robot links
and motors. By introducing the information matrixΘ ∈ R𝑛,𝑝

(𝑛 degrees of freedom), (4) can be restructured to

Θ (q, q̇, q̈) p = Q
𝑀
. (18)

The parameter vector p is the composition of the the joint
parameters pjoint,𝑖

p𝑇

joint,𝑖 = (𝑚 r𝑇
𝑐

J𝑇 𝑑
𝑐
𝑑

𝑣
)

𝑖
(19)

containing themass𝑚
𝑖
, the center ofmass r

𝑐,𝑖
, the elements of

the inertia tensor J𝑇
𝑖
= (𝐴 𝐵 𝐶 𝐷 𝐸)

𝑖
, and Coulomb/viscous

friction coefficients 𝑑
𝑐,𝑖

and 𝑑
𝑣,𝑖

for the 𝑖th joint-arm unit.
Since the dynamical parameters are confidential manufac-
turer data, all these parameters have to be identified. Usually,
the informationmatrixΘ and the parameter vector p contain
linear dependencies, which have to be removed before the
identification process. A 𝑄𝑅 decomposition and reformula-
tion leads to

̂Q𝑇
Θ =

̂R, (20)

where ̂Q ∈ R𝑛,𝑝 is an orthogonal matrix and ̂R ∈ R𝑝,𝑝 is
an upper triangular matrix. The nonidentifiable parameters
are those whose corresponding elements on the diagonal of
the matrix ̂R are zero. In contrast, if |̂R

𝑖𝑖
| > 0, then the

corresponding column in Θ is independent. Let the 𝑝 − 𝑠
independent columns be collected in the matrix Θ

1
and the

corresponding parameters be collected in p
1
. The dependent

columns and parameters are represented by Θ
2
and p

2
,

respectively, such that

Θp = [Θ1
Θ

2] [

p
1

p
2

] = [Θ1
Θ

1
𝜅] [

p
1

p
2

] , (21)
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is fulfilled, since Θ
2
is linearly dependent on Θ

1
by a matrix

𝜅 ∈ R𝑝−𝑠,𝑠. In (21) 𝜅 can be shifted to the parameters leading
to

Θp = Θ
1
(p

1
+ 𝜅p

2
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

p𝑏

, (22)

with the base parameters p
𝑏
∈ R𝑝−𝑠. For the calculation of 𝜅,

(20) is again evaluated with separated matrices [Θ
1
Θ

2
] and

̂Q = [̂Q
1
̂Q

2
], respectively, yielding

̂Q
𝑇

[Θ1
Θ

2] = [
̂R

1

̂R
2
] = [

̂R
11

̂R
12

̂R
21

̂R
22

] (23)

and therefore

̂Q
𝑇

[Θ1
Θ

1
𝜅] = [̂R

1
̂R

1
𝜅] = [(

̂R
11

̂R
21

) (

̂R
11

̂R
21

) 𝜅] . (24)

Combining (23) and (24), 𝜅 can be obtained as

𝜅 =
̂R

−1

11

̂R
12
.

(25)

It contains geometric parameters like lengths, lengths
squared, gear ratios, and so on, see [13] for details. The iden-
tification process can be performed by sequentially arranging
𝑘 ≫ 𝑝 − 𝑠measurements in (18) and (22) leading to

e = [[
[

Θ
1
(q

1
, q̇

1
, q̈

1
)

...
Θ

1
(q

𝑘
, q̇

𝑘
, q̈

𝑘
)

]

]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Θ𝑓

p
𝑏
−(

Q
𝑀,1

...
Q

𝑀,𝑘

)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Q𝑓

= 0. (26)

The unknown base parameters p
𝑏
are calculated with the

least-squares method leading to

{

𝜕

𝜕p
𝑏

[

e𝑇e
2

]}

𝑇

= Θ
𝑇

𝑓
Θ

𝑓
p −Θ𝑇

𝑓
Q

𝑓
= 0, (27)

and therefore the solution

p
𝑏
= [Θ

𝑇

𝑓
Θ

𝑓
]

−1

Θ
𝑇

𝑓
Q (28)

is directly available since Rank(Θ
𝑓
) = 𝑝 − 𝑠.

4.2. Optimal Exciting Trajectories. Similar to the problem
of finding optimal configurations for the geometric calibra-
tion, the dynamic parameter identification requires exciting
trajectories. In contrast to the steady-state configurations
for the calibration, the identification trajectories include an
additional dimension, the continuous time. Again, the aim is
to minimize the condition number (cond) of the covariance
matrix Λ

𝑓
= Θ

𝑇

𝑓
Θ

𝑓
by choosing suitable trajectories. A

promising approach is introduced with [14]. This section
summarizes these ideas, presents solutions to the optimiza-
tion problem, and verifies the results on the RX130L robot.

Table 2: Errors before (uncal., p
𝑒
= 0) and after geometric

calibration (cal.).

Position and orientation errors
Maximum Peak-to-peak

uncal. cal. uncal. cal.
𝑒
𝑥
in mm 7.779 0.272 ±6.171 ±0.271

𝑒
𝑦
in mm 19.026 0.310 ±4.267 ±0.303

𝑒
𝑧
in mm 12.614 0.414 ±1.402 ±0.376

𝑒
𝛼
in ∘ 1.140 0.128 ±0.272 ±0.109

𝑒
𝛽
in ∘ 1.817 0.191 ±0.335 ±0.182

𝑒
𝛾
in ∘ 1.160 0.131 ±0.514 ±0.116

4.2.1. Trajectory Description and Optimization. An adequate
description for the identification trajectory for the 𝑖th joint is
given with

𝑞
𝑖 (
𝑡) =

𝑁𝑖

∑

𝑙=1

{

𝑎
𝑖,𝑙

𝜔
𝑓
𝑙

sin (𝜔
𝑓
𝑙 𝑡) −

𝑏
𝑖,𝑙

𝜔
𝑓
𝑙

cos (𝜔
𝑓
𝑙 𝑡)} + 𝑞

𝑖0
. (29)

This Fourier-series is parameterized by the finite order𝑁
𝑖
, the

coefficients 𝑎
𝑖,𝑙
and 𝑏

𝑖,𝑙
, the base angular frequency𝜔

𝑓
, and the

joint offset 𝑞
𝑖0
. To guarantee a periodic excitation of the robot,

𝜔
𝑓
is a common parameter for all joints. To speed up the

optimization time, a discretization of (29) and derivatives for
one period of the base frequency (𝑇

𝑓
= 2𝜋/𝜔

𝑓
) is done. The

signals are therefore evaluated at discrete time values 𝑖Δ𝑇, 𝑖 =
0 ⋅ ⋅ ⋅ 𝑘, Δ𝑇 = 𝑇

𝑓
/𝑘, where 𝑘 is the number of discretization

points. This provides the following optimization problem:

Minimize
a,b

cond (Λ
𝑓
(a, b, 𝜔

𝑓
, 𝑘))

subject to 󵄨
󵄨
󵄨
󵄨
󵄨

q (a, b, 𝜔
𝑓
, 𝑘)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ qmax

󵄨
󵄨
󵄨
󵄨
󵄨

q̇ (a, b, 𝜔
𝑓
, 𝑘)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ q̇max

󵄨
󵄨
󵄨
󵄨
󵄨

q̈ (a, b, 𝜔
𝑓
, 𝑘)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ q̈max

󵄨
󵄨
󵄨
󵄨
󵄨

Q
𝑀
(a, b, 𝜔

𝑓
, 𝑘)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ Q
𝑀,max

r
𝐸
(a, b, 𝜔

𝑓
, 𝑘) ⊂ R

3

allowed .

(30)

The constraints include the mechanical joint limits qmax,
the permitted joint velocities q̇max, the expected maximum
joint accelerations q̈max, and a space of allowed end-effector
positions R3

allowed, which is used to avoid collisions with
the robot itself and its surroundings. Due to the flatness
property of the system, see Section 2.3.1, also the motor
torques can be calculated dependent on the joint coordinates
and derivatives. In contrast to [15], this motor torques are
also used in our formulation. The optimization problem is
solved with the Matlab-Optimization-Toolbox (fmincon).
The parameters order 𝑁 = 5, angular frequency 𝜔

𝑓
=

0.8 rad/s, and 𝑘 = 80 turned out to work well to get adequate
dynamical parameters, see Figure 5(b). For numerical scaling
purposes, the columns of Θ

𝑓
should also be normalized.

Solving the optimization problem yields the optimal joint
trajectories.
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Figure 5: Identification trajectory and verification.

4.3. Experimental Results. Themeasurements for the overde-
termined equations system (28) are taken to estimate the
dynamical base parameters p

𝑏
. Figure 5(a) presents a plot of

the end-effector path. Along the path, velocities up to 5m/s
and accelerations up to 12m/s2 are achieved. To verify the
quality of the identified parameters, the real robot’s motor
torques are recorded and compared to the simulated ones on
a reference trajectory which is defined in the EN ISO NORM
9283, see [8]. Figure 5(b) emphasizes, by presenting the
measured and simulated motor torques, the good parameter
identification for the RX130L robot. Joints four, five, and six
show an equivalent quality.

5. Optimal Trajectory Generation

There are two types of trajectory generation problems that
have to be considered. The first one is the continuous path
(CP) trajectory and the second one is the point-to-point (PtP)
trajectory planning problem. For the first one, the geometric
path in world coordinates is defined. Typical maneuvers are
straight lines, circles, and splines. For the PtP planning,
only the coordinates for the start-point z

𝐸,0
and the end-

point z
𝐸,end of the trajectory are given. These points can

directly be transformed to joint coordinates q
0
, qend, and

the motion planning can be performed in this coordinates.
For both cases, physical constraints like motor speeds and
torques have to be taken into account. Additionally, the
computed trajectories have to result in continuous velocities,
accelerations, and jerks. This helps that the gear elasticities
are not overly excited, leading to a soft, vibration-less end-
effector movement. Again, the equations of motion, derived
in Section 2.2 and identified in Section 4, provide the basis for
this approach.

5.1. Continuous Path Trajectory. CP applications appear in
many robotic applications like arc welding, deburring, and
laser cutting. Due to the nonlinear kinematic interrelation
between Cartesian space and the robot’s joint space, high
motor speeds and accelerations may occur, especially near
kinematic singularities. The CP motion planning can be
divided into two subproblems, namely, a geometric path
planner, describing a path z

𝐸
(𝜎)

z
𝐸
= (

r
𝐸 (
𝜎)

𝜑
𝐸
(𝜎)

) = z
𝐸 (
𝜎) ∈ R

6 (31)

as a function of a (scalar) trajectory parameter 𝜎 ∈ [𝜎
0
, 𝜎end]

and a dynamic path planner that solves the problemof finding
an optimized time behavior 𝜎(𝑡), see also [16]. For example,
a straight line in space is characterized by (39). The vector
r
𝐸
contains the end-effector position while 𝜑

𝐸
describes

the evolution of the orientation in Cardan angles, both are
functions of 𝜎. The trajectory parameter 𝜎 itself is a function
of time 𝜎 = 𝜎(𝑡) and the corresponding trajectory velocity
and acceleration are

𝜎̇ =

𝑑𝜎

𝑑𝑡

, 𝜎̈ =

𝑑𝜎̇

𝑑𝑡

. (32)

The trajectory parameter and its derivatives (trajectory speed
and acceleration) represent the trajectory and its evolution
in a demonstrative and easily interpretable manner. Figure 6
shows an example for a straight line, beginning at 𝜎

0
and

ending at 𝜎end. With six degrees of freedom and six world
coordinates, the analytical solution of the inverse kinematic
problem, see for example, [3], for the RX130 robot is obtained

q = f (z
𝐸 (
𝜎)) , (33)
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which can be differentiated with respect to time, leading to

q̇ = 𝑑
𝑑𝑡

f (z
𝐸 (
𝜎)) =

̇f (𝜎, 𝜎̇)

q̈ = 𝑑
2

𝑑𝑡
2
f (z

𝐸 (
𝜎)) =

̈f (𝜎, 𝜎̇, 𝜎̈) .

(34)
Inserting the kinematic relations (33) and (34) into the
equations of motion (4) yields the following description of
the robot’s dynamics:

Q
𝑀
= M (𝜎) q̈ (𝜎, 𝜎̇, 𝜎̈) + g (𝜎, 𝜎̇) . (35)

This representation allows to compute the motor torques as a
function of the trajectory position, velocity, and acceleration.
For additional details, see [17]. Please note that the inverse
kinematics does not necessarily have to be computed analyt-
ically. Also numerical calculations of the inverse kinematics
can be used.

5.2. Optimization Strategy. To find an optimal evolution
along a desired trajectory, the objective reads

𝐽 = min∫
𝑡𝑒

0

(𝑘
1
+ 𝑘

2
Q𝑇

𝑀
Q

𝑀
) 𝑑𝑡, (36)

where the motor torques Q
𝑀

are calculated in (35). The
design parameters 𝑘

1
and 𝑘

2
are manipulated to weight

between time and/or energy optimality. However, the upper
limit of the integral in (36) is unknown in advance, merely a
result of optimization.

Thus, a transformation with 𝜎̇ = 𝑑𝜎/𝑑𝑡 ⇒ 𝑑𝑡 = (1/𝜎̇)𝑑𝜎
leads to an objective function with constant integration limits
and 𝜎 as integration variable. Equation (38) summarizes
the result. The objective function is also subject to a set of
differential equations, describing the evolution of time along
the trajectory parameter 𝜎. The derivatives with respect to 𝜎
are used to compute all trajectory variables, which are found
in the constraints. For instance, the trajectory acceleration is
computed with

𝜎̈ =

𝑑𝜎̇

𝑑𝑡

=

𝑑𝜎̇

𝑑𝜎

𝜎̇ = 𝜎̇

󸀠
𝜎̇, (37)

where a prime indicates the differential operator (⋅)󸀠 =

𝑑(⋅)/𝑑𝜎. The input 𝑢 in the set of differential equations needs
to be computed by a numerical solver in order to minimize
the objective function while satisfying all constraints.

Finalizing the following complete description:

Minimize
𝜎

∫

𝜎end

𝜎0

1

𝜎̇

(𝑘
1
+ 𝑘

2
Q𝑇

𝑀
Q

𝑀
) 𝑑𝜎

subject to 𝑑

𝑑𝜎

(

𝑡

𝜎̇

𝜎̇

󸀠

) = (

1

𝜎̇

𝜎̇

󸀠

𝑢

)

󵄨
󵄨
󵄨
󵄨
Q

𝑀

󵄨
󵄨
󵄨
󵄨
≤ Q

𝑀,max

|q̇| ≤ q̇max

|q̈| ≤ q̈max

(38)

𝐸

𝜎

𝜎0

𝜎end

𝒓𝐸

Figure 6: A sample trajectory.

the motor torques, motor velocities, and accelerations are
constrained. To compute an optimal solution 𝑢 for the opti-
mization problem stated in (38), the MUSCOD-II software
package is utilized. Based on [18], it is developed by the Inter-
disciplinaryCenter for ScientificComputing at theUniversity
of Heidelberg. Using the direct multiple-shooting method,
see [19, 20], the original continuous optimal control problem
is reformulated as a nonlinear programming (NLP) problem
which is then solved by an iterative solution procedure, a
specially tailored sequential quadratic programming (SQP)
algorithm. For further details on the used software package,
see [21].

5.3. Experimental Results—CP Trajectory. For a straight tool
center movement with constant end-effector orientation, the
trajectory is given by

z
𝐸
= (

𝑥
0
+ (𝑥end − 𝑥0

) 𝜎

𝑦
0
+ (𝑦end − 𝑦0

) 𝜎

𝑧
0
+ (𝑧end − 𝑧0) 𝜎

0

), 𝜎 ∈ [0, 1] , (39)

where index 0 indicates the start-point and index end the end-
point, respectively. For a grid of 200 shooting intervals, the
time optimal case 𝑘

1
= 1, 𝑘

2
= 0 is computed. Minimizing

energy would lead to not only smoother, but also longer
trajectories for 𝜎 and is therefore not considered in this
example. The resulting trajectory parameters 𝑡(𝜎), 𝜎̇, and 𝜎̇󸀠

are retransformed into the time domain to compute the cor-
responding reference joint angles q

𝑑
(𝑡) and the constrained

feed-forward torques Q
𝑀,𝑓𝑓
(𝑡). The corresponding velocity

profile is depicted in Figure 7. The velocity-drop occurs due
to passing closely to a singular configuration.

The experiment with the Stäubli robot is conducted
analogously to the previous section. The reference angles
and torques are transferred to the servo drives where the
occurring torques and motor velocities are measured for
verification. Figure 8 shows the torques and velocities of the
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Figure 7: Velocity profile CP trajectory.

axes that actively constrain the trajectory. For readability
reasons, the signals are normalized to their maximum values.
The figure also shows that at least one constraint is always
active, which is a necessary condition for the time-optimal
solution.

5.4. Point-to-Point Trajectory. As an extension to the previous
section, the PtP optimization is not limited to geometrically
defined paths. Consequently, the one-dimensional variation
of the trajectory parameter becomes a more complex two-
point boundary value problem of the joint states with the
additional task of minimizing time and/or energy, summa-
rized in (40). Analogously to (38), the available joint velocities
and torques are limited. Additionally, the joint limits qmax
need to be considered and the desired initial and final
configurations q

0
, q̇

0
, q

𝑒
, and q̇

𝑒
are introduced.

A compromise between time and energy optimality is
adjusted with the parameters 𝑘

1
and 𝑘

2
. Also note that

the highly nonlinear differential equations of motion are
included in the set of constraints.

5.5. Experimental Results—PtP Trajectory. The optimization
formulation for the point-to-point trajectory

Minimize
q,𝑡𝑒

∫

𝑡𝑒

0

(𝑘
1
+ 𝑘

2
Q𝑇

𝑀
Q

𝑀
) 𝑑𝑡

subject to 󵄨
󵄨
󵄨
󵄨
Q

𝑀

󵄨
󵄨
󵄨
󵄨
≤ Q

𝑀,max

󵄨
󵄨
󵄨
󵄨
󵄨

̇Q
𝑀

󵄨
󵄨
󵄨
󵄨
󵄨

≤
̇Q
𝑀,max

|q| ≤ qmax

|q̇| ≤ q̇max

𝑑

𝑑𝑡

(

q
q̇) = (

q̇
M−1

(q) (−g (q, q̇) +Q𝑀
)

)

q (0) = q
0

q̇ (0) = q̇
0

q (𝑡
𝑒
) = q

𝑒

q̇ (𝑡
𝑒
) = q̇

𝑒

(40)
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Figure 8: Active constraints recorded during experiment.

is solved with MUSCOD-II setting 𝑘
1
= 1 and 𝑘

2
= 0 (time

optimality). While the one-dimensional variation problem
of the previous section is computed in one second, the
PtP trajectory takes about three minutes to be calculated
with a standard workstation. After solving the optimization
problem, the system states and torque inputs for the two-
point boundary problem are known and may be utilized as
reference values. The initial conditions q

0
, q̇

0
, q

𝑒
, and q̇

𝑒

are chosen equals to the start- and endpoint of the previous
section’s straight-line trajectory. This allows a comparison
between both methods.The overall time of the trajectory was
reduced from 𝑡

𝑒
= 1.04 s to 𝑡

𝑒
= 0.67 s. Figures 9(a) and

9(b) show the optimized torques and velocities. Again, the
most interesting signals are selected for reasons of readability,
all normalized to their maximum values. Experiments using
these results on the RX130L robot verify validity of the
optimized trajectory.Themaximumend-effector velocity and
acceleration that are reached along this trajectory are 5.2m/s
and 48.6m/s2, respectively. To avoid high jerks in joint space,
which would induce vibrations, the torque rates are limited to
̇Q
𝑀,max.

6. Conclusions

This work summarizes various optimization strategies for
robotic systems to improve the overall performance. The
individual results of each section not only verify the chosen
approach but also offer values for expected accuracies of
modern medium scale robotic systems. The suggested ideas
are also applicable to smaller or larger scale robots with an
arbitrary amount of degrees of freedom.

It is important to note that the quality of the control as
well as the trajectory optimization is only as good as the
underlying set of (kinematic or dynamical) parameters. As a
consequence, the optimal configurations for calibration and
the optimal-exciting trajectories for the identification process
provide the basis for control and trajectory generations. All
proposed methods can be automated by designing according
to algorithms and used during the commissioning of robot
applications.
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Figure 9: Results PtP trajectories.
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[15] D. Kostić, B. de Jager, M. Steinbuch, and R. Hensen, “Modeling
and identification for high-performance robot control: an RRR-
robotic arm case study,” IEEE Transactions on Control Systems
Technology, vol. 12, no. 6, pp. 904–919, 2004.

[16] R. Johanni, Optimale Bahnplanung bei Industrierobotern, Tech-
nische Universität München, München, Germany, 1988.

[17] R. Riepl and H. Gattringer, “An approach to optimal motion
planning for robotic applications,” in Proceedings of the 9th
International Conference on Motion and Vibration Control,
2008.

[18] D. Leineweber, I. Bauer, A. Schäfer, H. Bock, and J. Schlöder,
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