A Review of Pityriasis Rubra Pilaris and Rheumatologic Associations

HAPPY CHANa, FU TONG LIUb and STANLEY NAGUWAc,*

aDepartment of Internal Medicine, University of California, Davis, USA; bDepartment of Dermatology, University of California, Davis, USA; cDepartment of Rheumatology, University of California, Davis, USA

Pityriasis rubra pilaris (PRP) is a rare group of hyperkeratotic, papulosquamous disease that can be acquired or inherited. There have been reported cases of rheumatologic associations, mainly arthritis and dermatomyositis. In this review article, we will explore the clinical presentation and classification, rheumatologic associations and treatment modalities of PRP. In addition, we will also report a case of PRP with seronegative arthritis.

Keywords: Pityriasis rubra pilaris; Review; Arthritis; Rheumatologic; Treatment

CASE REPORT

A 50-year-old East Indian male with a 2-year history of nonspecific knee arthritis presented to his primary care doctor with a new scaly and pruritic rash. It began on the extensor surfaces of the elbow and bilaterally spread onto the forearms. Similar lesions began to appear over the scalp, trunk, axilla and knee. His nails became thickened and hyperpigmented. The patient was diagnosed with psoriasis. With the appearance of the lesions, his knee pain intensified, especially when ascending the stairs. The pain would awaken him at night. During this period, he had stiffening of his extremities. Besides fatigue, he denied any recent acute illnesses, constitutional symptoms, and mucocutaneous or ocular lesions. His past medical history included hypothyroidism and seasonal allergies. He denied food, drug and environmental allergies. His medication list at presentation included levothyroxine and glucosamine and chondroitin. He smoked tobacco occasionally and owned a cat. He had not traveled outside the country recently. His mother had nonspecific arthritis. On physical examination, his vitals were normal. There were no lymphadenopathy, oral lesions and hepatosplenomegaly. Neither joint deformity nor synovitis was appreciated. He had tenderness of the right knee on palpation with mild patellar laxity. He had multiple sharply demarcated red–orange scaly plaques over the extensor surfaces of the forearms, axillae, knees and trunk. The plaques were nearly confluent on his trunk with the exception of islands of normal skin. The skin of his palms was thick and dry. Bilaterally, his second and third fingernails were hyperkeratotic with pitting and hyperpigmentation.

X-rays of the hands and knees were normal. Complete blood count, complete metabolic panel and urinalysis were normal. The erythrocyte sedimentary rate was 15; antinuclear antibody was 1:160 with a nucleolar pattern. Thyroid stimulating hormone, immunoglobulin and complement levels were normal. Rheumatoid factor, hepatitis panel and RPR were negative. He did not respond to the conventional psoriatic treatment with ultraviolet light therapy UVA and UVB. Eventually, a punch biopsy was performed, and a diagnosis of pityriasis rubra pilaris (PRP) was made. The patient was placed on methotrexate therapy and his arthritis and skin lesions subsequently resolved.

INTRODUCTION

PRP is a rare group of hyperkeratotic, papulosquamous disease that can be acquired or inherited. It was first described by Alaudius Tarall in 1828, and Devergie named it “pityriasis pilaris” in 1856 (Griffiths, 1976; Fox et al., 1985). In 1889, Besnier renamed the disease to PRP (Griffiths, 1976). This rare skin disorder occurs in all races, affects both sexes equally, and has been reported world wide (Griffiths, 1980). The incidence of patients presenting to dermatology clinics in the United States has been reported to be 1 in 3500–5000 patients (Rinker and Shenefelt, 2003). PRP occurs in a bimodal distribution, peaking in the first and then the fifth decades (Griffiths, 1980). Although there are hereditary forms, most cases are acquired. It is commonly confused with other papulosquamous and erythrodermic disorders, particularly psoriasis. Although the etiology is unknown, there has been recent...
Albert and Mackool, 1999). There has been a report of one antigenic triggers (Albert and Mackool, 1999; Betloch dysregulation where there is an abnormal response to discussion that it may be due to immune system contained small amounts of leukotriene B 4 , C 3a , C 4a and
Radioimmunoassay of PRR scales involved with activated T suppressor cells and impaired T helper cells (Bonomo et al., 1997; Albert and Mackool, 1999). In this review article, we will explore the clinical presentation and classification, rheumatologic associations and treatment modalities of PRP.

TABLE I Differential diagnosis of pityriasis rubra pilaris (Griffiths, 1980; Fox et al., 1985; Caplan et al., 1997; Albert and Mackool, 1999)

- Cutaneous T cell lymphoma
- Dermatomyositis
- Dermatophytosis
- Eczematous dermatitis
- Erythrokeratoderma variabilis
- Erythrokeratoderma Variabilis
- Follicular eczema
- Follicular ichthyosis
- Generalized hypersensitivity reaction
- Lichen Planopilarus
- Mycosis Fungoides
- Parasoriasis
- Psoriasis
- Seborrhic dermatitis
- Secondary syphilis
- Subacute cutaneous lupus erythematosus
- Vitamin A deficiency

The widely accepted classification of PRP was proposed by Griffiths (1980) (Table II). Griffith established five types of PRP based on clinical features, age of onset, and prognosis. Recently, a sixth class was proposed to acknowledge the HIV-associated type of PRP (Miralles et al., 1995). PRP in adults typically spreads in a cephalad to caudal direction, whereas in children it is opposite (Albert and Mackool, 1999). Juvenile types have a tendency to relapse. Systemic symptoms, such as malaise, fatigue, fever and chills can accompany PRP (Rinker and Shenefelt, 2003).

The classic description of PRP found in the literature is of type I PRP. Type I, classical adult PRP, is the most common form where adults are afflicted. As Griffith describes, the elementary lesion is follicular hyperkeratosis (Griffiths, 1976). Progressive erythroderma develops due to follicular hyperkeratosis. Perifollicular erythema becomes confluent with the development of scales. Often there are patches of normal skin interdispersed among the lesions, known as “islands of sparing”. The palm and soles become hyperkeratotic and develop an orange hue, which is often very painful and disabling when fissures develop. It is common to find that the dorsal phalanges and extensor aspects of the wrist and thighs will have follicular hyperkeratotic plugs with a consistency of a nutmeg grater. Nail changes are also frequent, consisting of yellow–brown discolorations with splinter hemorrhages and nail plate thickening. With severe disease where there is prolonged facial erythroderma, ectropions can develop.

Type II, atypical adult onset PRP, affects about five percent of the patients (Griffiths, 1980). It is atypical because it can last for more than 20 years. In addition to chronicity, its clinical feature is different from type I by the presence of ichthyosiform scale located on the lower extremities. Alopecia is common. Eczematous changes of the skin are also characteristic. The hyperkeratosis of the palms and soles are more coarse and lamellated.

TABLE II Modified Griffith PRP classification (Griffiths, 1980; Miralles and Nunez, 1996; Misery et al., 1996, Albert and Mackool, 1999)

<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
<th>Incidence (%)</th>
<th>Distribution</th>
<th>Prognosis (% resolution in 3 years)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Classic adult</td>
<td>55</td>
<td>Generalized</td>
<td>81</td>
<td>Most clear in 3 years</td>
</tr>
<tr>
<td>II</td>
<td>Atypical adult</td>
<td>5</td>
<td>Generalized</td>
<td>20</td>
<td>Most are chronic</td>
</tr>
<tr>
<td>III</td>
<td>Classical juvenile</td>
<td>10</td>
<td>Generalized</td>
<td>16</td>
<td>Most clear in 1 year</td>
</tr>
<tr>
<td>IV</td>
<td>Circumscribed juvenile</td>
<td>25</td>
<td>Localized</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Atypical juvenile</td>
<td>5</td>
<td>Generalized</td>
<td>0</td>
<td>Chronic</td>
</tr>
<tr>
<td>VI</td>
<td>HIV-associated</td>
<td>Needs more evaluation</td>
<td>Generalized</td>
<td>Needs more evaluation</td>
<td></td>
</tr>
</tbody>
</table>
Type III, classical juvenile PRP, is type I PRP occurring in children, usually during the first years of life. Type IV, circumscribed juvenile PRP, is a localized form of PRP, occurring mainly on the elbows, knees and over bony prominences. Type V, atypical juvenile PRP, is a chronic disease and includes most familial forms of PRP.

There has been recognition of type VI, which occurs in established HIV disease presenting with new onset PRP. It is characterized by the development of nodulocystic and lichen spinulosus lesions (Miralles et al., 1995; Misery et al., 1996). Typically, HIV-associated PRP is refractory to treatment.

RHEUMATOLOGIC ASSOCIATIONS

Rheumatologic association of PRP is not well defined. Large trials to establish a clear relationship is extremely difficult because PRP is such a rare disease. However, there has been citing of case reports in the literature of PRP associated with arthritis and myositis, specifically dermatomyositis.

Type III, classical juvenile PRP, is type I PRP occurring in children, usually during the first years of life. Type IV, circumscribed juvenile PRP, is a localized form of PRP, occurring mainly on the elbows, knees and over bony prominences. Type V, atypical juvenile PRP, is a chronic disease and includes most familial forms of PRP.

There has been recognition of type VI, which occurs in established HIV disease presenting with new onset PRP. It is characterized by the development of nodulocystic and lichen spinulosus lesions (Miralles et al., 1995; Misery et al., 1996). Typically, HIV-associated PRP is refractory to treatment.

RHEUMATOLOGIC ASSOCIATIONS

Rheumatologic association of PRP is not well defined. Large trials to establish a clear relationship is extremely difficult because PRP is such a rare disease. However, there has been citing of case reports in the literature of PRP associated with arthritis and myositis, specifically dermatomyositis.

Table III Case reports of PRP associated arthritis (Aguilar et al., 1973; Duke et al., 1987; Fiallo et al., 1996; Lister et al., 1997; Conaghan et al., 1999; Nakafusa et al., 2002; Behr et al., 2002)

<table>
<thead>
<tr>
<th>Case reports</th>
<th>Year reported</th>
<th>Age</th>
<th>Sex</th>
<th>Rheumatoid factor</th>
<th>Antinuclear antibody</th>
<th>HLA-B27</th>
<th>Arthritic sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aguilar et al.</td>
<td>1973</td>
<td>62</td>
<td>M</td>
<td>Unknown</td>
<td>Unknown (LE test was negative)</td>
<td>Unknown</td>
<td>Feet, eventual fingers</td>
</tr>
<tr>
<td>Duke et al.</td>
<td>1987</td>
<td>18</td>
<td>M</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Fingers</td>
</tr>
<tr>
<td>Fiallo et al.</td>
<td>1996</td>
<td>19</td>
<td>M</td>
<td>Negative</td>
<td>Positive</td>
<td>Positive</td>
<td>Wrist, knees, ankles</td>
</tr>
<tr>
<td>Lister et al.</td>
<td>1997</td>
<td>21</td>
<td>M</td>
<td>Positive</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Neck, fingers, knees, ankles</td>
</tr>
<tr>
<td>Conaghan et al.</td>
<td>1999</td>
<td>25</td>
<td>M</td>
<td>Negative</td>
<td>Negative</td>
<td>Negative</td>
<td>Shoulders, knees</td>
</tr>
<tr>
<td>Behr et al.</td>
<td>2002</td>
<td>12</td>
<td>M</td>
<td>Negative</td>
<td>Negative</td>
<td>Unknown</td>
<td>Wrists, fingers</td>
</tr>
<tr>
<td>Nakafusa et al.</td>
<td>2002</td>
<td>53</td>
<td>M</td>
<td>Positive</td>
<td>Negative</td>
<td>Unknown</td>
<td>Neck, shoulders, elbows</td>
</tr>
<tr>
<td>Chan et al.</td>
<td>2003</td>
<td>50</td>
<td>M</td>
<td>Negative</td>
<td>Positive</td>
<td>Unknown</td>
<td>Knees</td>
</tr>
</tbody>
</table>

Table IV Treatment modalities of PRP and arthritis (Aguilar et al., 1973; Duke et al., 1987; Fiallo et al., 1996; Lister et al., 1997; Conaghan et al., 1999; Behr et al., 2002; Nakafusa et al., 2002)

<table>
<thead>
<tr>
<th>Case reports</th>
<th>PRP treatment modalities</th>
<th>Arthritis treatment modalities</th>
<th>Failed treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aguilar et al.</td>
<td>Vitamin A, Prednisone</td>
<td>Chloroquine, Asprin, Prednisolone</td>
<td></td>
</tr>
<tr>
<td>Duke et al.</td>
<td>Unknown</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>Fiallo et al.</td>
<td>Etretinate</td>
<td>Etretinate</td>
<td></td>
</tr>
<tr>
<td>Lister et al.</td>
<td>Betamethasone ointment</td>
<td>Methotrexate</td>
<td></td>
</tr>
<tr>
<td>Conaghan et al.</td>
<td>Liarozole</td>
<td>Anti-tumor necrosis factor immunotherapy</td>
<td>Etretinate, psoralen ultraviolet A, hydroxyurea, methotrexate, cyclosporine A, prednisolone, sulfasalazine, subcutaneous interferon alpha, intravenous gamma globulin, azathioprine, isoretinoin, acitretin</td>
</tr>
<tr>
<td>Behr et al.</td>
<td>Methotrexate and low dose acitretin</td>
<td>Methotrexate and low dose acitretin</td>
<td>Patient was initially on etretinate and responded well but has increased the dose without consultation and suffered toxicities</td>
</tr>
<tr>
<td>Nakafusa et al.</td>
<td>Vitamin D3 ointment</td>
<td>Bucillamine and prednisolone</td>
<td></td>
</tr>
<tr>
<td>Chan et al.</td>
<td>Methotrexate</td>
<td>Methotrexate</td>
<td></td>
</tr>
</tbody>
</table>
speculated by the authors that it may be the same mechanism that occurs in psoriatic arthritis given the close resemblance of PRP to psoriasis. Still, the pathophysiological relationship between psoriasis and seronegative arthritis is not well established.

It is well reported in the literature of the connection between myositis and PRP, specifically dermatomyositis. Dermatomyositis is an inflammatory myopathy of the proximal muscles with skin involvement. The skin involvement includes the classic findings of heliotrope rash, a purplish rash over the eyelid, Gottron papules, a scaly rash found over the knuckles of the hands,shawl sign, erythema over the shoulder areas exposed to the sun representing sun sensitivity. Dermatomyositis can be associated with internal malignancies.

Dermatomyositis with PRP is known as type Wong variant dermatomyositis, named after Wong who described a large series of patients from Hong Kong in 1969 (Requena et al., 1997; Lupton et al., 2000). However, it was believed that that PRP as a manifestation of dermatomyositis may have been reported as early as 1953 by O’Leary who did not describe or illustrate the histopathological findings (Requena et al., 1997; Lupton et al., 2000).

TREATMENT

There are many different regimens to treat PRP. Fox et al. found over twenty different agents that have been used to treat PRP (Fox et al., 1985). Many of these treatments had only variable or isolated success. As a result, no single agent is found to be reliably effective. It is difficult to treat a disorder when the etiology is unknown. Historically, there has been favorable response to vitamin A, systemically or topically. Unfortunately, the large oral doses required for effective treatment usually cause toxic side effects. The use of stanozolol is an attempt to increase circulating levels of retinol binding protein in order to increase tissue delivery of retinol (Cohen and Prystowsky, 1989). The androgenic side effects make it less desirable for women to use. To avoid the toxicity of vitamin A, synthetic vitamin A therapy has become popular with favorable clinical course and prognosis. Members of this class include isotretinoin and etretinate. It is estimated that 60–95% of patients will have clinical improvement within 6 months of starting therapy (Cohen and Prystowsky, 1989).

Methotrexate has traditionally been a good second line treatment (Caplan et al., 1997). Other cytotoxic and immunosuppressive medications, such as azathioprine and cyclosporine A, have been cited in the literature as successful modalities (Caplan et al., 1997). Steroids appear to be effective but unpractical for long term use. Less conventional regimens include vitamin C and E, often used in combination with vitamin A, isoniazid, paraaminosalicylic acid, penicillin, hydroxychloroquine, arsenic, pilocarpine, pituitary extract, foreign protein injections, and topical 6-aminonicotinamide (Cohen and Prystowsky, 1989).

CONCLUSION

In summary, PRP is an extremely rare skin disorder. It is a member of the hyperkeratotic, papulosquamous diseases. There have been case reports citing rheumatologic associations, mainly arthritis and dermatomyositis. However, it is difficult to establish the precise rheumatologic association of PRP given the rarity of this disease. To really establish a relationship, there needs to be a large prospective study.

References

