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Objective. Accumulating evidence indicates that regulatory T cells (Tregs) may be involved in the pathogenesis of ankylosing
spondylitis (AS). As different markers have been used to identify Tregs, some studies on the proportions of Tregs in AS patients
have generated considerable controversy. To clarify the status of Tregs in such patients, we determine the proportion changes of
peripheral Tregs during development of the disease, with different cellular markers. Methods. We systematically searched
Embase, PubMed, Cochrane, Web of Knowledge, FDA.gov, and Clinical Trials.gov for the studies reporting the proportion of
Tregs in AS patients. Using the PRISMA guidelines, we performed a random-effects meta-analysis of the frequencies of
peripheral Tregs defined in different ways. Inconsistency was evaluated using the I-squared index (I2), and publication bias was
assessed by examining funnel plot asymmetry using the Begger and Egger tests. Results. A total 29 studies involving 1732
participants were included in the meta-analysis. Their conclusions of using the diversity of Tregs surface markers were
inconsistent with each other. No significant difference in the proportions of Tregs was evident regardless of the definitions used
[−0.709, (−1.455, 0.037, p = 0:063), I2 = 97:3%]. Six studies used “single CD25-positive” cells as Tregs, which revealed a significant
increase in AS patients compared with healthy blood donors [0.736, (0.138, 1.334), p = 0:016, I2 = 80:7%]. Notably, the proportions
of “CD4+CD25+FOXP3+,” “CD4+CD25highCD127low/−,” or “CD4+CD25+CD127low” T cells were lower in AS patients [−2.856,
(−4.645, −1.066), p = 0:002; −1.812, (−2.648, −0.977), p < 0:001; −1.12, (−1.605, −0.635), p < 0:001]. Tregs defined as “CD25high,”
“CD25bright,” “CD25bright/highCD127low/−,” “CD4+FOXP3+,” “CD4+CD25highFOXP3+,” and “CD4+CD25+CD127−” did not differ in
proportion between AS patients and healthy blood donors. Conclusions. The levels of Tregs varied based on the cellular
identification markers used. The proportions of CD4+CD25+FOXP3+Tregs, CD4+CD25highCD127low/−, or CD4+CD25+CD127low

in blood of AS patients were significantly decreased as compared with those in healthy blood donors, and our findings lend
support to the idea that the Treg status of AS patients is important. And we recommend the above as the best definition of Tregs
when evaluating the status of such patients.

1. Introduction

Ankylosing spondylitis (AS) is a common inflammatory
rheumatic disease that affects the axial skeleton, causing
characteristic inflammatory back pain, asymmetrical periph-
eral oligoarthritis, enthesitis, and specific organ involvement
such as anterior uveitis, psoriasis, and chronic inflammatory
bowel disease, which can lead to structural and functional
impairments and a decrease in quality of life [1]. To date,
the disease etiology remains unclear. Reduced proportion

and deficient function of CD4+ regulatory T cells (Tregs, with
immune modulation and suppression) have been implicated
in the pathogenesis of different immune-mediated rheumatic
diseases [2–4]. In the case of AS, few studies have been car-
ried out to analyze the levels of Tregs in the peripheral blood
of patients; however, low percentages [5–8] or functional
impairment of Tregs [9, 10] has been reported in the periph-
eral blood (PB) of patients with AS, suggesting an imbalance
between Tregs and the adaptive immune response. More-
over, AS patients treated with anti-TNF therapy showed
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similar levels of Treg cells to those observed in healthy sub-
jects [11]. These data suggest a possible role of Tregs in AS.

However, initial studies of Treg status in PB of patients
with AS are controversial. One reason for the inconsistencies
may be the multiple phenotypes of Tregs, which have been
identified using different markers [12]. Tregs were first
described as a peripheral CD4+ subset expressing interleu-
kin- (IL-) 2 receptor alpha chains (CD25) [13]. As early as
2004, Cao et al. [14] used CD4+CD25bright to identify periph-
eral Tregs in peripheral blood of AS patients. However, CD25
was expressed not only on Tregs but also on activated cells
lacking regulatory functions, although the CD4+ T cell subset
expressed the highest levels of CD25 (CD4+, CD25high) and
exhibited in vitro immunosuppressive features [15]. Fork-
head box protein P3 (FOXP3), a transcription factor
expressed at high levels in authentic Tregs, plays a key role
in Treg development and is thought to be one of the most
specific Treg cell markers [16]. Since 2008, scholars have
been studying the proportion and function of peripheral
FOXP3+Tregs of AS patients [9, 17]. However, the marker
cannot be used to sort live cells, as the protein is intracellular.
In addition, CD127, the alpha chain of the IL-7 receptor, was
reported to be upregulated on human T cells after activa-
tion and downregulated on Tregs [18]. Thus, costaining
for CD127 and CD25 has been proposed to efficiently dis-
criminate between Tregs and activated T cells [19]. The study
of CD4+CD25+CD127−Tregs in AS patients began in 2011.
Zhao et al. used CD25+CD127− to define peripheral Tregs
in new-onset AS patients firstly [6]. Furthermore, CD8+-

CD122+ T cell is a newly discovered natural immune regula-
tory T cells with immune negative regulation function [20],
which may be involved in the pathogenesis and disease pro-
gression of AS [21]. The available data on the proportions
and phenotypes of Tregs of AS patients are contradictory;
some studies using the same or different markers to analyze
peripheral Tregs of AS patients have obtained different or
even opposite results [22–25].

To better understand Treg malfunctions in patients
with AS, we meta-analyzed reports documenting the pro-
portion of peripheral Treg cells among CD4+ T cells in
the PB of patients with AS, as well as healthy blood donors
in this study.

2. Methods

2.1. Data Sources and Searches. This meta-analysis was con-
sistent with that of the Preferred Reporting Items for System-
atic Reviews and Meta-Analyses (PRISMA) Statement, and it
had been registered at the International Prospective Register
of Systematic Reviews (PROSPERO) (CRD42019120790).
We searched for relevant studies published between January
1, 1950, and November 1, 2018, using PubMed, Embase,
Cochrane, Web of Knowledge, Clinical Trials.gov, and FDA.-
gov, with no restrictions in terms of the primary outcome or
publication language. We used the MeSH terms “Spondylitis,
Ankylosing” and “T−lymphocytes, regulatory” and their
combination. All potentially eligible studies were considered
except for reviews and murine experiments. Key articles
listed in the references were retrieved manually.

2.2. Study Selection and Data Extraction. The inclusion cri-
teria were evaluation of the proportion of Tregs among
CD4+ T cells of AS patients using the 1984 Modified New
York AS Criteria [26], available as a full text article, and
information on the number of patients and healthy blood
donors. Two investigators independently selected and identi-
fied relevant publications, and a third investigator resolved
any disagreements. The evidence levels of the studies were
assessed based on the 2011 guidelines of the Oxford Centre
for Evidence-Based Medicine. Quality assessment was done
with the Newcastle-Ottawa Quality Assessment Scale, which
can be used to assess the quality of nonrandomized studies.

We recorded patient baseline characteristics and their
country of origin, the year of publication, the number of
patients and healthy blood donors, the definition of Tregs used
(including CD4+CD25+, CD4+CD25bright, CD4+CD25high,
CD25low/−FOXP3+, FOXP3+, CD25+FOXP3+, CD25high

FOXP3+, CD25+CD127−, CD25bright/highCD127low/−, and
CD25highCD127low/−FOXP3+), and the mean (or median)
and standard deviation (SD) of the proportion of Tregs among
CD4+ T cells. Data on the proportion of Tregs in patients with
HLA-B27(+) and HLA-B27(−) were also extracted.

2.3. Statistical Analysis. For continuous outcomes (the pro-
portions of Tregs among CD4+/CD8+ T cells of patients with
AS and healthy blood donors), we calculated standard-
ized mean differences (SMDs) and compared these values
by using a random-effects model (REM) (the DerSimonian
and Laird method) [27]. When Treg percentages were
reported as medians with interquartile ranges (IQRs), we
calculated means and SD (SD = IQR/1.35). The Cochrane
chi-squared test was used to explore between-study hetero-
geneity. As heterogeneity was high (I2 > 75%), we drew
forest plots and performed subgroup analyses to explore
the possible effects of study characteristics on outcomes.
Publication bias was assessed by examining funnel plot
asymmetry using the Begger and Egger tests (p ≥ 0:05). A
preplanned sensitivity analysis was performed by omitting
each study individually and calculating the remaining
pooled effect. All statistical analyses were conducted using
Stata software (ver. 12.0).

3. Results

3.1. Study Characteristics. We identified 564 studies. And
29 of them (with data on 980 patients and 752 healthy
blood donors) were included in the analysis (Figure 1), and
all of them used a reliable flow cytometric analysis to
detect the proportions of peripheral Tregs. The details are
shown in Table 1. The average age of the AS patients was
between 24.8 and 52.13 years, the proportion of males ranged
from 0 to 100%, the average disease duration was from 1.6 to
13.3 years, the average erythrocyte sedimentation rate (ESR)
was from 15.2 to 57.3mm/hour, the average C-reactive pro-
tein (CRP) was from 6.63 to 77.1mg/l, and the Bath Ankylos-
ing Spondylitis Disease Activity Index (BASDAI) [28] from
was 1.19 to 51.94. Patients were treated with glucocorticoids,
NSAIDs, DMARDs, immunosuppressants including cyclo-
phosphamide (CTX) and cyclosporine, and biological agents.
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All healthy blood donors were age and sex matched, healthy,
and without any autoimmune disease. All studies were poor-
quality case-control studies or case series; thus, they were all
of evidence level 4. We regarded all studies as case-control
studies and scored them using the Newcastle-Ottawa Quality
Assessment Scale (NOQAS); all studies had a score of 3–5.

3.2. The Proportion of Peripheral Tregs of AS Patients. First,
we performed a meta-analysis of the proportion of Tregs
between AS patients and control subjects in all studies,
neglecting the definition methods of Tregs (Figure 2). Unex-
pectedly, there was no significant difference in the proportion
of Tregs in PB between AS patients and healthy blood donors
in all studies [−0.709, (−1.455, 0.037, p = 0:063)]. Besides,
there was statistically significant heterogeneity between stud-
ies (I2 = 97:3%). In this analysis, there was no publication
bias on Egger test (p = 0:227).

We hypothesized that the cause of unexpected results
may be the different definition methods of Tregs. Thus,
we performed a subgroup analysis based on the Treg def-
initions to explore the potential sources of heterogeneity.
First, we analyzed studies that identified Tregs only as
“CD25-positive” in CD4+ T cell subpopulations. A pooled

analysis of all 6 trials [14, 22, 23, 29–31] revealed a significant
increase in the proportion of Tregs in AS patients compared
with healthy blood donors [0.736, (0.138, 1.334), p = 0:016]
with statistically significant between-study heterogeneity
(I2 = 80:7%, p < 0:001) and no significant between-study
publication bias detected by the Egger test (t = 0:72, p =
0:513). In detail, we found a significant increase in the pro-
portion of Tregs between AS patients and healthy blood
donors when Tregs were defined as “CD4+CD25+” cells
[0.846, (0.401, 1.291), p < 0:001] [31]. However, the propor-
tion of Tregs defined as “CD4+CD25high” cells [0.892,
(−0.078, 1.862), p = 0:071] [22, 23, 29, 30] and as “CD4+-

CD25bright” cells [0.123, (−0.596, 0.842), p = 0:737] [14] did
not differ significantly between patients and healthy blood
donors (Table 2).

Then, we analyzed studies in which Tregs were defined as
“FOXP3+” cells. A pooled analysis of all 18 trials [5, 7, 8, 11, 17,
25, 31–38] revealed a significant decrease in the proportion of
such Tregs between AS patients and healthy blood donors
[−1.004, (−1.966, −0.042), p = 0:041]. Statistically significant
heterogeneity was evident among the studies (I2 = 97:9%,
p < 0:001). The Egger test detected no publication bias
(t = 0:97, p = 0:795). Among the studies, 9 [5, 7, 8, 25,
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(n = 29) 

Records identified through
database searching

(n = 564) 

Records after duplicates removed
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Figure 1: The study selection process.
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31, 32, 34, 35, 38] used “CD4+CD25+FOXP3+” to define
Tregs, which showed that the proportion of Tregs in AS
patients appeared to be lower than in healthy blood
donors [−2.856, (−4.645, −1.066), p = 0:002]. However,
pooling of these data with those of other studies [17, 31]
identifying Tregs as “CD4+CD25low/−FOPX3+” cells revealed
a higher proportion of Tregs in patients than in healthy blood
donors [0.683, (0.161, 1.206), p = 0:01]. Tregs were identified

as simply “FOXP3+” cells [11, 33, 37]; and “CD25highFOXP3+”
cells [9, 17, 36] [0.383, (−0.663, 1.429), p = 0:473; 0.868,
(−0.756, 2.492), p = 0:295] were not shown to be significantly
different between patients and healthy blood donors (Table 2).

Finally, the other four groups [6, 39–41] that used
“CD127-negative” in CD4+ T cell subgroups to define Tregs
showed that such cell numbers decreased in AS patients
[−1.003, (−1.713, −0.294), p = 0:006] with statistical

Table 1: Characteristics of the individual studies included in the meta-analysis.

Author (ref.)
Publish
year

Country ELa
Q
b

Case
numbers Tregs’ definition

% of Tregs among CD4+ T cells
[mean (or median)± SD]

AS HC AS HD p

Duojia Cao et al. [14] 2004 Sweden 4 6 10 29 CD25brightCD4+ 1:31 ± 0:68 1:23 ± 0:64 ns

Jau-Ling Suen et al. [17] 2008
Taiwan,
China

4 6 23 36 CD4+CD25highFOXP3+ 0:97 ± 0:33 0:86 ± 0:39 ns

Éric Toussirot et al. [32] 2009 France 4 6 32 15 CD4+CD25+FOXP3+ 8:2 ± 0:61 7:94 ± 1:04 ns

Frauke Forger et al. [29] 2009 Swiss 4 7 15 18 CD4+CD25high 2:22 ± 1:47 2:12 ± 1:42 <0.01
Francesco Ciccia et al. [22] 2010 Italy 4 8 18 15 CD4+CD25high 1:08 ± 0:4 0:25 ± 0:12 <0.05
Christian Dejaco et al. [23] 2010 Austria 4 5 22 17 CD4+CD25high 13:54 ± 16:55 3:08 ± 2:48 ns

Heiner Appel et al. [33] 2011 Germany 4 6 19 20 CD4+FOXP3+ 5:55 ± 2:54 5:18 ± 1:99 ns

Ming-Han Chen et al. [30] 2011
Taiwan,
China

4 7 23 25 CD4+CD25high+ 2:18 ± 0:11 2:16 ± 0:1 ns

Yanfeng Wu et al. [5] 2011 China 4 8 51 49 CD4+CD25+FOXP3+ 1:23 ± 0:13 2:56 ± 0:16 <0.001
S-S Zhao et al. [6] 2011 China 4 8 14 18 CD4+CD25highCD127low/− 0:57 ± 0:29 1:65 ± 0:75 <0.001

Katayoon Bidad et al. [46] 2012 Iran 4 7 18 18
CD4+FOXP3+

RORγt−Tbet−
9:7 ± 1:2 16:1 ± 3 0.048

Leonardo Limon-Camacho
et al. [11]

2012 Mexico 4 5 39 25 CD4+FOXP3+ 7:3 ± 1:3 5:3 ± 1:7 0.01

Yong Gao et al. [34] 2012 China 4 8 40 37 CD4+CD25+FOXP3+ 3:77 ± 0:81 4:69 ± 1:23 <0.05
Li Xueyi et al. [7] 2013 China 4 6 222 68 CD4+CD25+FOXP3+ 2:14 ± 0:44 4:99 ± 0:49 <0.001
Lingying Ye et al. [62] 2013 China 4 6 21 22 CD4+CD45RO+FOXP3high 0:48 ± 0:07 0:73 ± 0:07 <0.05
Wei Ji et al. [39] 2014 China 4 7 20 20 CD4+CD25+CD127low 40:1 ± 17:5 58:6 ± 10:2 <0.05
Zhang Xin et al. [8] 2014 China 4 5 10 10 CD4+CD25+FOXP3+ 2:72 ± 0:26 5:17 ± 0:31 <0.001

Hsien-Tzung Liao et al. [31] 2015
Taiwan,
China

4 8 69 30 CD4+CD25+FOXP3+ 1:73 ± 1:08 1:51 ± 0:48 <0.001

Yuxing Shan et al. [24] 2015 China 4 6 20 10 CD4+FOXP3+CXCR5+ 5:57 ± 1:28 3:08 ± 0:59 <0.0001
Chenggong Wang et al. [35] 2015 China 4 6 45 20 CD4+CD25+FOXP3+ 1:81 ± 0:81 1:23 ± 0:52 ns

Elliott TJ Dunn et al. [36] 2016
New

Zealand
4 7 6 10 CD4+FOXP3+CD25high 1:43 ± 0:37 0:43 ± 0:15 ns

Huifang Guo et al. [9] 2016 China 4 8 39 17 CD4+CD25highFOXP3+ 5:62 ± 0:4 5:89 ± 0:2 ns

Zhongliang Duan et al. [40] 2017 China 4 7 21 16 CD4+CD25+CD127low 2:7 ± 0:8 3:47 ± 0:83 0.03

Zofia Gula et al. [37] 2017 Poland 4 7 48 23 CD4+FOXP3+ 28:83 ± 11:71 34:39 ± 20:65 ns

Dan Xu et al. [25] 2017 China 4 7 17 93 CD4+CD25+FOXP3+ 22:58 ± 12:8 35:57 ± 6:48 <0.01

Mingfei Wang et al. [10] 2018 China 4 7 26 26
CD4+CD25+

FOXP3+CD127−
6:32 ± 1:5 5:44 ± 1:02 <0.05

Mohammad Javad
Fattahietal [38].

2018 Iran 4 7 30 15 CD4+CD25+FOXP3+ 2:7 ± 0:23 3:3 ± 0:47 0.45

Renfang Han et al. [21] 2018 China 4 6 40 40 CD8+CD122+ 10:72 ± 6:32 1:21 ± 0:82 <0.05
Sonja Dulic et al. [41] 2018 Hungary 4 8 22 10 CD4+CD25+CD127– 5:708 ± 2:05 5:715 ± 0:79 ns

AS: ankylosing spondylitis; HD: healthy donors. aEvidence level (EL) of each study was based on Oxford Centre for Evidence-Based Medicine 2011. bQuality (Q
) of each study was based on the Newcastle-Ottawa Quality.
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heterogeneity (I2 = 73:1%, p = 0:011) and no publication bias
(t = −0:37, p = 0:747). More specifically, pooling the data of
studies in which Tregs were identified as “CD4+-

CD25highCD127low/−” cells [6] and “CD4+CD25+CD127low”
cells [39, 40] revealed a significant decrease between AS
patients and healthy blood donors [−1.812, (−2.648,
−0.977), p < 0:001; −1.12, (−1.605, −0.635), p < 0:001], but
no significant difference was observed when Tregs were
defined as “CD4+CD25+CD127−” cells [−0.004, (−0.751,
0.744), p = 0:992] [41] (Table 2).

Due to the heterogeneity in the meta-analysis, the
random-effects model was applied in preparing forest
plots. We hypothesized that the significant heterogeneity
might have been caused by differences in the experimental
methods, and clinical type and severity of disease among
the different studies.

3.3. Disease Activity and the Proportion of Tregs in PB. To
further assess the effect of disease activity, we analyzed 2

studies [9, 21] that reported the proportion of Tregs in active
and stable AS patients regardless of the Tregs definitions used
(Figure 3). All of these 2 studies used the Ankylosing Spondy-
litis Disease Activity Score (ASDAS) [42–44] to evaluate the
disease activity. Guo H. et al. [9] found no significant differ-
ences in the percentages of Tregs among patients with active
AS and patients with stable AS, but Han R. et al. [21] showed
a significant increase. We found no difference in the propor-
tion of Tregs in patients with active compared with stable AS
[−0.234, (−3.267, 2.799), p = 0:880]. The heterogeneity, as
assessed by the I2 statistic, was 95.3% (p < 0:0001).

4. Discussion

It is now widely accepted that Treg cells play a key role in the
maintenance of immune tolerance and homeostasis [3, 45].
However, the role of Tregs in peripheral immune tolerance
in patients with AS has not been fully elucidated in previous
studies [7, 21, 31]. During the process, the markers used in

Note: weights are from a random-effects analysis
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Figure 2: Forest plot of the overall meta-analysis of regulatory T cell (Treg) proportions in peripheral blood (PB), regardless of the Treg
definitions used, between ankylosing spondylitis (AS) patients and healthy blood donors (HD).
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the identification of Tregs are inconsistent by flow cytometry
in previous studies; therefore, the proportion of peripheral
Treg of AS patients has always been reported controversially
[5, 24, 29, 46]. Our overall meta-analysis found no significant
difference in Treg proportions between patients and healthy
blood donors, although significant between-study heteroge-
neity was evident. We considered that the primary reasons
for such unexpected results were due to inconsistent defini-
tions of Tregs based on diverse markers used; thus, we suba-
nalyzed the Treg data by the markers used for Treg
identification, including CD25, FOXP3, and CD127.

Currently, researches on Tregs mainly focus on CD4+-

Tregs. Expression of CD25 (α chain of family IL-2R) correlates
positively with Treg functionality [47]. The Treg-suppressive

capacity is restricted to the CD4+ T cells that express the
highest levels of CD25 [48]. We found out that AS patients
had a higher proportion of Tregs termed “single CD25-
positive” than had healthy blood donors. However, when
Tregs were defined as “CD4+CD25high” or “CD4+CD25bright,”
no significant differences were found between AS patients
and healthy blood donors. And other activated CD4+ T cells
also express CD25 [45, 48], indicating that use of the surface
marker CD25 alone is inadequate. In 2008, Han G. et al. [49]
found out that CD25high cells that included a large propor-
tion of FOXP3− cells could not be classified as Tregs. The
expressions of the transcription factor FOXP3 or other
markers are considered more specific for the identification
of Tregs than CD25 [50].

Table 2: Subgroup analysis based on different definitions of Tregs in PB of patients with AS.

Definition of Tregs Number of studies
Test of association

Test of
heterogeneity

Egger’s test

SMD 95% CI p value I2 p value t p value

Single CD25-positive 6 0.736 (0.138, 1.334) 0.016 80.7% <0.001 0.72 0.513

CD4+CD25+ 1 0.846 (0.401, 1.291) <0.001 – – – –

CD4+CD25high 4 0.892 (−0.078, 1.862) 0.071 87% <0.001 2.74 0.112

CD4+CD25bright 1 0.123 (−0.596, 0.842) 0.737 – – – –

Associated with FOXP3-positive 18 −1.004 (−1.966, −0.042) 0.041 97.9% <0.001 0.97 0.795

CD4+FOXP3+ 3 0.383 (−0.663, 1.429) 0.473 90.4% <0.001 −11.62 0.143

CD4+CD25+FOXP3+ 9 −2.856 (−4.645, −1.066) 0.002 98.6% <0.001 6.06 0.42

CD4+CD25highFOXP3+ 3 0.868 (−0.756, 2.492) 0.295 92.6% <0.001 2.91 0.862

CD4+CD25low/−FOPX3+ 3 0.683 (0.161, 1.206) 0.01 68.4% 0.042 9.58 0.783

Associated with CD127-negative 4 −1.003 (−1.713, −0.294) 0.006 73.1% 0.011 −0.37 0.747

CD4+CD25highCD127low/− 1 −1.812 (−2.648, −0.977) <0.001 – – – –

CD4+CD25+CD127low 2 −1.12 (−1.605, −0.635) <0.001 0.0% 0.486 – –

CD4+CD25+CD127− 1 −0.004 (−0.751, 0.744) 0.992 – – – –

PB: peripheral blood; AS: ankylosing spondylitis; SMD: standard mean difference; CI: confidence interval; I2: I-squared index. Magnitude of Cohen’s d effect
size (SMD): 0.2–0.5, small effect; 0.5–0.8, medium effect; and ≥0.8, large effect.

Note: weights are from a random-effects analysis

Overall  (I−squared = 95.3%, p = 0.000)

Study
ID

Huifang Guo et al. [9]

Renfang Han et al. [21]

–0.23 (–3.27, 2.80)

SMD (95% CI)

–1.76 (–2.50, –1.01)

1.34 (0.26, 2.42)

100.00

%
weight

50.82

49.18

0–3.27 3.27

Figure 3: Forest plot of the overall meta-analysis of regulatory T cell (Treg) proportions in peripheral blood (PB), regardless of the Treg
definition used, in patients with active and stable AS.
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FOXP3 is a pivotal regulator of Treg fictional gene
expression, being required for both Treg generation and sur-
vival [51]. The mutations of the FOXP3 gene disturb the
function of Tregs, therefore resulting in the development
of various autoimmune diseases [52]. Decreased FOXP3
expression causes an immune disease by subverting the sup-
pressive function of Treg cells and converting Treg cells into
effector cells [53]. However, when Tregs were defined as
“FOXP3-positive” cells, the proportions of such cells did
not differ between AS patients and healthy blood donors
because the definitions of Tregs were complicated by the
addition of CD25 status, giving “CD25-negative and
FOXP3-positive” and “CD25 and FOXP3 double positive.”
We also found that AS patients had a higher proportion of
Tregs termed “CD4+CD25low/−FOXP3+” than had healthy
blood donors. This phenomenon may be explained by the
findings that the CD4+CD25low/−FOPX3+ cells were dysfunc-
tional Tregs [54, 55] and may even be previously activated
conventional T cells [56].

However, the detection of FOXP3 requires cell perme-
abilization, thereby preventing isolation of viable Tregs. Sub-
sequently, the extracellular marker CD127 was established
for the identification of Tregs [57–59]. Some scholars believe
that CD4+CD25+CD127low/− is the best surface marker of
natural Tregs and alive Tregs, which not only can avoid inter-
ference of other activated T cells, but can also be used to con-
duct preliminary functional studies [19]. We found that the
ratio of “CD127-negative” in peripheral blood of patients
with AS was significantly lower than that of the control
group, further suggesting that CD127 combined with other
markers could indeed be used to label Tregs.

CD8+Tregs are similar to CD4+Treg and also have
immunomodulatory effects. However, due to the lack of spe-
cific surface markers, few studies have been conducted on
CD8+Treg [60, 61]. In 2015, Churland G. et al. [61] have
found that the proportion of CD8+Tregs in the peripheral
blood of healthy people is less than one-tenth of that of
CD4+Tregs, which makes the study of CD8+Tregs more dif-
ficult. In this study, we found that only one study [21]
reported the expression of CD8+Treg in peripheral blood of
patients with AS, and a comprehensive analysis showed that
there was a higher proportion of CD8+Treg in AS group than
in the healthy control group. The specific marker, expression,
and function of CD8+Treg need further study.

Some studies have used other markers to indicate differ-
ent subsets of Tregs [24, 46, 62]. Human FOXP3+ cells have
been subdivided into three functionally and phenotypi-
cally distinct subsets [63]: naïve Tregs (FOXP3+CD45RA+),
short-lived and highly suppressive activated Tregs (FOX-
P3highCD45RA−), and non-Tregs (FOXP3low CD45RA−).
Although human naturally occurring Tregs may express
either CD45RA or CD45RO, the majority of natural Tregs
in adults are CD45RO+, which increases significantly with
age [64, 65]. Ye L. et al. [62] found that in AS patients, the fre-
quencies of effector Tregs (CD4+FOXP3highCD45RO+) and
naïve Tregs (CD4+FOXP3lowCD45RO−) were decreased. T-
bet is an immune cell-specific member of the T-box family
of transcription factors, which is required for the functional
fitness of pTregs (also known as induced or adaptive Tregs

[66–68]). Only Bidad K. [46] observed that FOXP3+CD4+-

RORγt−Tbet− Tregs in AS patients were significantly lower
than in healthy blood donors. A specialized subset of Tregs
that are characterized by a high expression level of CXC che-
mokine receptor 5 (CXCR5), T follicular regulatory (Tfr)
cells are important for the control of humoral immune
responses [69, 70]. To date, it is still challenging to value
the real status of above Treg subsets in patients with AS.

Further, the controversial status of Tregs in PB of AS
patients might also be related to the different disease status,
such as different treatment, disease activity, or markers of
inflammation. It appears that the effects of corticosteroids
(CS) on Treg numbers in patients with autoimmune diseases
are disease-specific [71]. Treg cell numbers increased in CS-
treated patients with SLE [72, 73] but decreased in CS-
treated patients with psoriasis [74] and was not clearly defined
in multiple sclerosis patients [75, 76]. Some studies found
that disease-modifying antirheumatic drugs (DMARDs)
can normalize the distribution of Tregs in RA patients [77–
79]. Long-term anti-TNF therapy may increase Tregs in AS
and other autoimmune diseases [41, 62, 80]. However, stud-
ies about CS and DMARDs on peripheral blood Tregs in AS
patients are still lacking. In addition to drugs, disease activity
also affects the proportion of peripheral blood Tregs [81, 82].
But our subgroup analysis found no difference in the propor-
tion of Tregs in patients with active compared with stable AS.
However, this conclusion needs to be confirmed by more
studies on the proportion of Tregs and the activity of AS.
One study also observed that the highest correlation coeffi-
cient was between CD4+CD25+FoxP3+Tregs and CRP or
ESR [31]. But the true relationship between Tregs and
inflammatory markers needs further studies.

Our meta-analysis had several limitations. Firstly, sever-
ity of the disease and clinical subtypes in AS patients were
not consistent across studies. Moreover, although we did a
subgroup analysis of disease activity, the results are question-
able due to the small number of studies included. Second, we
did not consider disease duration or treatment, as both the
drugs used and disease staging were inconsistent; however,
these factors might affect the proportion of Tregs in PB.
Thirdly, there were differences in experimental methods
between studies. A flow cytometric expert must run through
all experiments: Some of the flow cytometric assays in the
papers used here might even be disqualified. Meanwhile,
the definition of Tregs in some studies also included
CD127low or CD25high rather than completely the same defi-
nition makers. Moreover, Tregs are usually evaluated in PB,
in which tissue Treg status may fluctuate.

5. Conclusion

Our study suggests that the reported variations of Treg status
among AS patients are due to using inconsistent definitions
or markers for Tregs. We found the best definition of Tregs
as CD4+CD25+FOXP3+ or CD4+CD25high/+CD127low/−. Fur-
ther studies are needed to validate our results in independent
cohorts of patients with larger sample sizes using the above
definitions of Tregs as accurate and standard definition of
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Tregs. Our findings lend support to the idea that the Treg sta-
tus of AS patients is important.
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