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Lung adenocarcinoma (LUAD) is still one of the illnesses with the greatest mortality and morbidity. As a recently identified mode
of cellular death, the activation of ferroptosis may promote the effectiveness of antitumor therapies in several types of tumors.
However, the expression and clinical significance of Ferroptosis-associated genes in LUAD are still elusive. The RNA
sequencing data of LUAD and relevant clinical data were downloaded from The Cancer Genome Atlas (TCGA) datasets.
Subsequently, potential prognostic biomarkers were determined by the use of biological information technology. The R
software package “ggalluvial” was applied to structure Sanguini diagram. Herein, our team screened 14 dysregulated
ferroptosis-associated genes in LUAD. Among them, only four genes were associated with clinical outcome of LUAD patients,
including ATP5MC3, FANCD2, GLS2, and SLC7A11. In addition, we found that high SLC7A11 expression predicted an
advanced clinical progression in LUAD patients. Additionally, 8 immune checkpoint genes and 7 immune cells for LUAD
were recognized to be related to the expression of SLC7A11. KEGG assays indicated that high expression of SLC7A11 might
participate in the modulation of intestinal immune network for IgA generation and Staphylococcus aureus infection. Overall,
our findings revealed that SLC7A11 might become a potentially diagnostic biomarker and SLC7A11 might serve as an
independent prognosis indicator for LUAD.

1. Introduction

Pulmonary carcinoma is the leading cause of tumor-related
death across the globe [1]. Lung adenocarcinoma (LUAD)
predominantly arises from small airway epitheliums and
type II alveolar cells, accounting for 45% of lung cancer
[2, 3]. The progresses in the therapy of NSCLC sufferers, like
surgery, radiotherapy, chemical therapy, targeted treatment,
and immune checkpoint suppressor treatment, have been
reported; nevertheless, the 5-year survival is still below 15%,
mainly due to cancer metastasis [4, 5]. In addition, up to
now, the causal links as to the occurrence and progression

of pancreas carcinoma remain elusive [6]. It is imperative
to reveal potential molecule-level causal links and identify
valid treatment targets and new prognosis markers for
LUAD.

Recently, certain researches have explored cancer ferrop-
tosis [7]. Ferroptosis, an iron-dependent pathway of cellular
death, is different from novel types of apoptotic cellular
death like apoptosis, pyrolysis, and autophagy [8, 9]. Ferrop-
tosis is induced via the cumulation of lipoperoxidation prod-
ucts and cytotoxic ROS originated from Fe metabolic activity
[10, 11]. Fe metabolic activity and lipoperoxidation signal
transmission are identified as the predominant mediating
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factors of ferroptosis [12, 13]. Ferroptosis induces mitochon-
dria function disorder and cytotoxic lipoperoxidation, which
are pivotal for the inhibition of tumor progression [14, 15].
Several ferroptosis-related genes have been functionally

identified [16, 17]. For instance, NRF2 modulates the sus-
ceptibility of mankind pulmonary carcinoma cells to cystine
deprivation-triggered ferroptosis through the FOCAD-FAK
signal path [18]. Therefore, investigating the ferroptosis-
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Figure 1: The expressing pattern of ferroptosis-associated genes in LUAD using TCGA datasets. ∗∗∗p < 0:001, ∗∗p < 0:01, and∗p < 0:05.
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related gene expression profile and its prognostic value in
LUAD may develop new strategies for the treatment of
LUAD.

Herein, our team analyzed the expressing pattern of
ferroptosis-associated genes using TCGA datasets and iden-
tified 24 dysregulated genes in LUAD. Then, we further
explore their prognostic values. By now, there still have been
few reports concerning the expression and function of
SLC7A11 in human LUAD. Our attention focused on
SLC7A11, and we aimed to explore the possible association
between SLC7A11 expression and immune activity.

2. Materials and Methods

2.1. Data Collection. Level 3 raw counts of the RNA sequenc-
ing data, cancer mutation burden, aneuploidy scores, and
relevant clinic information from an overall 513 LUAD
sufferers were obtained from TCGA. Clinical variables, like
sex, age, and pathology phase, were assessed as well.
Ferroptosis-related genes are derived from GSEA (http://
www.gsea-msigdb.org).

2.2. Screening of the Abnormally Expressed Ferroptosis-
Related Genes in LUAD. For the sake of identifying the
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Figure 2: The survival-associated genes in LUAD were identified using Kaplan-Meier methods, including (a) SLC7A11, (b) GLS2,
(c) ATP5MC3, and (d) FANCD2.
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aberrantly expressed ferroptosis-related genes, R program
4.0.5 was leveraged to contrast the expression profiles of
LUAD samples to healthy samples. DEG analyses of individ-
ual genes were completed via edgeR Bioconductor package
[14]. The ∣log2 ðfold change ½FC�Þ ∣ >2, p value < 0.01, and
FDR < 0:01 were the liminal values for the determination
of the aberrantly expressed ferroptosis-related genes.

2.3. Screening of Ferroptosis-Associated and Survival-
Associated Genes. The association between the expressions
of the aberrantly expressed ferroptosis-associated genes
and survival time of LUAD was investigated. The survival
function was plotted with the Kaplan-Meier plots. The entire
analysis approaches aforesaid were completed via the “sur-

vival” and “survminer” R package [19]. p < 0:05 had signifi-
cance on statistics.

2.4. The Association between SCL7A11 and Clinicopathological
Parameters. The association between the expression of
SCL7A11 and clinicopathological variables was analyzed
through box plots and Sankey diagrams via independent
specimen nonparametric assays in the TCGA cohort. Sankey
diagrams were drawn via “ggforce” package in R.

2.5. TIMER Database Analysis. TIMER is a database for the
analysis of immunocyte infiltrates in several tumors. Such
database uses pathology test-verified statistic approach to
speculate cancer immunity infiltration via neutrophilic cells,
macrophages, dendritic cells, B cells, and CD4/CD8 T cells.
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Figure 3: (a) The curve of risk scoring. Survival status of the patients. (b) Time-reliant ROC analyses for SLC7A11.
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Our team first utilized such database to evaluate diversities
in SCL7A11 expressing levels in specific cancer types via
the TIMER database, and our team investigated the relation-
ship between the expression of SCL7A11 and infiltrative
level via specific immunocyte subsets.

2.6. Gene Set Enrichment Analysis (GSEA). GSEA was com-
pleted to analyze the biology pathway in LUAD layered
via the midvalue of SCL7A11 expression. The assay was
finished as per the protocol recommendation from the
Broad Institute Gene Set Enrichment Analysis website.
The GSEA was completed via the GSEA 4.0.3 program.
NOM (p < 0:05) and FDR q < 005 (p < 0:05) had signifi-
cance on statistics.

2.7. Statistical Analysis. The entire analysis was completed
via R 4.0.5 and the proper packages. A two-sided t-test was
employed to examine the association between the expression
of SCL7A11 and clinic characteristics. Survival curves were
drawn via the Kaplan-Meier approach and evaluated via
log-rank tests. ROC curve analyses were completed for risk
scoring computed on the foundation of screened genetic
hallmark via survivalROC R package. Statistic assays were
bilateral, with p ≤ 0:05 having significance on statistics.

3. Results

3.1. Twenty-Three Aberrantly Expressed Ferroptosis-Related
Genes in LUAD Were Identified. To explore the possible
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Figure 6: (a, b) The dysregulated expression of immune checkpoints in LUAD samples in contrast to nontumor specimens. ∗∗∗p < 0:001.
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function of aberrantly expressed ferroptosis-related genes in
LUAD, our team analyzed the expressing pattern of
ferroptosis-related genes via TCGA datasets. We observed
that 23 ferroptosis-related genes which exhibited a dysregu-
lated level in LUAD, such as CDKN1A, HSPA5, EMC2,
SLC7A11, NFE2L2, HSPB1, GPX4, FANCD2, CISD1,
FDFT1, SLC1A5, TFRC, RPL8, NCOA4, LPCAT3, DPP4,
CS, CARS1, ATP5MC3, ALOX15, ACSL4, GLS2, and
ACSL4 (Figure 1).

3.2. Identification of Survival-Related and Ferroptosis-
Related Genes in LUAD. Then, we performed Kaplan-
Meier methods to screen survival-related and ferroptosis-
related genes in LUAD. Among the above 23 aberrantly
expressed ferroptosis-associated genes, we observed four
genes were related to the OS of LUAD sufferers, including
SLC7A11 (Figure 2(a)), GLS2 (Figure 2(b)), ATP5MC3
(Figure 2(c)), and FANCD2 (Figure 2(d)). Our attention
focused on SLC7A11. The survival status of the entire LUAD
sufferers is presented by Figure 3(a). Time-reliant ROC
analyses revealed the prognosis accuracy was 0.588 at 1 year,
0.607 at 3 years, and 0.52 at 5 years, separately (Figure 3(b)).
Moreover, univariate assays suggested the above four genes,
pTNM_stage, and Radiation_therapy were risk factors for
the clinical outcome of LUAD patients (Figure 4). Moreover,
we performed Sankey diagrams to investigate the relation-
ship between the expression of SCL7A11 and clinicopatholo-
gical parameters, finding that high SCL7A11 predicted an
advanced pTNM_stage (Figures 5(a) and 5(b)). High expres-

sion of SCL7A11 was identified in LUAD samples with
phases III-IV in contrast to the phases I-II (Figure 5(c)).

3.3. The Relationship between the Expression of SCL7A11 and
Immune Checkpoint in LUAD. For the sake of exploring the
underlying function of SCL7A11 in immunoactivity, we ana-
lyzed the expressing pattern of several immune checkpoint
in LUAD. As presented by Figures 6(a) and 6(b), our team
discovered that the expression of CTLA4, LAG3, PDCD1,
TIGIT, and SIGLEC15 was distinctly increased in LUAD
specimens in contrast to nontumor specimens, while the
expression of HAVCR2, CD274, and PDCDALG2 was dis-
tinctly decreased in LUAD samples in contrast to nontumor
specimens. The outcomes of correlation analyses revealed
that the expression of SCL7A11 was associated with the
expression of most immune checkpoints (Figure 7).

3.4. A Significant Correlation between SCL7A11 and Cancer-
Infiltrating Immunocytes in LUAD. Then, we analyzed the
expression of cancer-infiltrating immunocytes in LUAD,
and observed that B cell, T cell CD4+, endothelial cell,
macrophages, NK cell, and uncharacterized cell exhibited a
dysregulated level in LUAD samples in contrast to nontu-
mor specimens (Figures 8(a) and 8(b)). For the sake of
knowing the association between the expression of SCL7A11
and cancer-infiltrating immunocytes, the kit of TIMER was
employed. A remarkable association was observed between
the expression of SCL7A11 and diverse kinds of immuno-
cytes, like B cell and macrophage (Figure 9).
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3.5. Gene Ontology (GO) and the Kyoto Encyclopedia of
Genes and Genomes (KEGG) Enrichment Analysis of DEGs.
To explore the function of SCL7A11 in LUAD, our team
selected DEGs between LUAD specimens with high
SCL7A11 expression and LUAD specimens with low
SCL7A11 expression. The GO analyses revealed that the
GO annotations of differentially expressed genes were sepa-
rated into 3 parts: biological process (BP), cell composition
(CC), and molecular function (MF). Terms were in an
ascending order as per the FDR results. Posterior to the
selection process, we discovered that (FDR<0.05) along with
DEGs were concentrated in BP, like response to metal ion,
cellular ketone metabolic process, cell projection membrane,
clathrin-coated endocytic vesicle, carboxylic acid binding,
and monocarboxylic acid binding (Figure 10(a)). The KEGG
analyses revealed that DEGs were predominantly enriched
in Staphylococcus aureus infection, intestine immunity net-
work for IgA generation, glutathione metabolism, viral myo-
carditis, steroid hormone biosynthesis, and arachidonic acid
metabolism (Figure 10(b)).

4. Discussion

Based on the Chinese statistics as to LUAD development, it
is evident that LUAD prognosis factors preventing and cur-
ing LUAD require further exploration [20]. Investigating
novel molecule-level prognosis and prediction biomarkers
is a hotspot in medical researches [21, 22]. Recently, more
and more researches have reported the underlying effects
of ferroptosis-related genes utilized as new diagnosis and
prognosis markers for LUAD [23–25]. Herein, our team
identified 23 dysregulated ferroptosis-associated genes in
LUAD. Among them, SLC7A11, GLS2, ATP5MC3, and

FANCD2 were associated with five-year survivals of LUAD
patients, suggesting their potential use as novel biomarkers.

Previously, several studies have reported the function of
the above four genes in several types of tumors, including
LUAD. For instance, nuclear and cytoplasmic localization
of FANCD2 was identified in ovarian carcinoma from both
healthy and ovarian carcinoma sufferers [26]. Sufferers with
cytoplasm localization of FANCD2 had remarkably better
median survival duration (50 months), in contrast to suf-
ferers in the absence of cytoplasm localization of FANCD2.
In addition, cytoplasm FANCD2 was discovered to be capa-
ble of binding protein participating in the native immune
system, cell reaction to thermal stress, amyloid fiber forma-
tion, and estrogen-mediated signal transduction [27]. High
ATP5MC3 expression predicted a poor prognosis in prostate
cancer, colon cancer, and endometrial cancer [28–30]. TGF-
β1-mediated inhibition of SLC7A11 drives vulnerability to
GPX4 suppression in hepatic cell cancer [31]. In this study,
we focused on SLC7A11 and found that high SLC7A11
expression predicted an advanced clinical pTNM_stage in
LUAD patients. In clinical practice, pTNM_stage has been
considered an important factor for the prediction of clinical
outcome of LUAD patients, and its degree was strongly asso-
ciated with distant metastasis [32, 33]. Thus, our findings
suggested SLC7A11 may play a functional role in tumor
metastasis. In addition, a survival study confirmed that high
SLC7A11 expression predicted a poor prognosis in LUAD
patients, which may be due to its potential function on
tumor stage and metastasis.

With the development of cancers, our immunosystems
are stimulated to inhibit tumorous progression [34]. It is
unfortunate that oncocytes leverage a variety of methods
to postpone or even prevent our immunosystems from
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Figure 8: (a, b) The expressing feature of immune cells in LUAD specimens and nontumor specimens. ∗∗∗p < 0:001 and∗∗p < 0:01.
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repressing cancers, a phenomenon called immunoescape
[35, 36]. The onset of immunoescape normally induces the
development of malignancies, metastases, unsatisfactory
prognoses, and immune therapy failures [37, 38]. Immune
checkpoints, like programmed cell death protein-1 (PD-1),
PD ligand-1 (PD-L1), and cytotoxic T-lymphocyte-
associated protein 4 (CTLA4), account for immunoescape
[39, 40]. Herein, our team discovered that eight immune

checkpoints exhibited a dysregulated level in LUAD. More-
over, we found SLC7A11 expression was associated with
several Immune checkpoints, indicating NLRP3 promoted
immune escape in LUAD. Moreover, our team discovered
that the expression of SLC7A11 was negatively associated
with the expression of B cells and macrophage while being
positively associated with that of T cell CD4+. Those associ-
ations imply an underlying causal link in which SLC7A11
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Figure 9: The association analysis between the expression of SCL7A11 and immunocytes.
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Figure 10: (a) GO analyses and (b) biological pathway enrichment analyses of the dysregulated genes.
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modulates T cell functions in LUAD. Collectively, those dis-
coveries reveal that the SLC7A11 is vital for recruiting and
regulating immune infiltration cells in LUAD.

Nonetheless, there are certain deficiencies herein. Firstly,
the present paper was a research finished retrospectively,
although our team strove to involve as many data sets as
possible to more strictly validate such hallmark. Further pro-
spective researches were required to evidence the prognosis
value of SLC7A11. Secondly, this report was restricted by
the lack of experiment proofs. More researches exploring
lineage cells and encompassing animal assays are warranted
to substantiate the discoveries herein and unravel the
molecule-level causal links.

5. Conclusion

In summary, our study suggested that four ferroptosis-
related genes could be used as a prognostic indicator for
LUAD with which to predict patient risk. In addition,
SLC7A11 was related to immune therapy-associated biolog-
ical markers, revealing its application significance in fore-
casting the potency of immune therapy.
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