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Long noncoding RNAs (lncRNAs) actively participate in breast cancer (BRCA) tumorigenesis via epigenetic mechanisms. Our
study identified immune-related lncRNA (irlncRNA) pairs and compiled them into a set of noncoding gene signatures able to
stratify subtypes of BRCA associated with variable degrees of survival and immune cell infiltration. A 40 immune-related
lncRNA pair (IRLP) signature including 43 irlncRNAs was built, with high sensitivity and specificity for the prediction of
survival in different molecular subtypes of BRCA. Results demonstrated that the low-risk group showed a significantly longer
survival rate, and this novel IRLP signature was highly associated with survival status, T stage, metastatic disease, and overall
stage in BRCA. Immune infiltrating analyses found that the low-risk group has a lower expression level of macrophage M2 and
a higher expression level of immunosuppressed biomarkers than the high-risk group. DEirlncRNAs were further proven to be
significantly related to the MAPK signaling, Jak-STAT signaling, and ErbB signaling pathways in BRCA. In conclusion, the 40
IRLP signature showed a promising clinical prediction value in the prognosis of different molecular subtypes and
immunotherapy response in BRCA, and the underlying mechanism for these IRLPs warrants further investigations.

1. Introduction

Breast cancer ranks first for global cancer incidence in 110
countries in 2020 [1]. Despite the high incidence, breast
cancer manifests its molecular mechanisms divergently and
therefore represents a highly heterogeneous type of cancer.
With an overt lack of molecular signatures that may effec-
tively stratify tumor subclasses, there are also devoid gene
panels to predict personalized therapeutic effects.

Standard treatment of breast cancer relied heavily on a
combination use of chemotherapeutics and hormonal disrupt-
ing agents in accordance with either their hormonal receptor
(PR, ER) expression or their pathway-related molecular sub-

types. In recent years, advanced translational research resulted
in immune checkpoint inhibitors (ICIs) and modulators with
some being investigated in breast cancer management. The
contemporary guidance for drug usage depends on molecular
diagnosis in monitoring gene signatures comprised of coding
gene expression, mutational status, and DNA damage-related
epigenetic phenomena. For example, high microsatellite insta-
bility (MSI-H), programmed death-1 (PD-1), programmed cell
death ligand 1 (PD-L1), tumor mutational burden, and mis-
match repair deficient (dMMR) have been widely used in clinic
as predictive biomarkers for ICIs. With that, one may project
the importance of gene modulators that modifies the immune
cell niche as prognostic markers for BRCA.
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The immunotherapy field had achieved an immense
breakthrough in the treatment of several cancer types
[2]. Even though a defined set of predictive markers was
adopted in those cancers, the same set tends to resist cor-
responding changes in breast cancer, limiting its predictive
value. A lack of personalized treatment indication had
been reflected in immunotherapy receiving only a modest
response rate in breast cancer [3]. Therefore, there is an
urge to optimize this meager outcome-based prediction
method to enhance the clinical response rate of breast
cancer immunotherapy.

lncRNAs are active participants in breast cancer
tumorigenesis via epigenetic mechanisms, rendering them
valuable predictive markers in this cancer progression
and treatment. As a loose term for the entire collection
of intracellular noncoding RNAs that were over 200 nucle-
otides, lncRNA demonstrates a myriad of actions implica-
ted in regulating over 70% of coding gene expression
through direct interactions or sponge effects [4]. A sub-
class of lncRNAs directly participated in the remodeling
of the tumor immune microenvironment (TIME), result-
ing in augmented tumor malignancy and tumor immune
escape [5]. The lncRNA GNAS-AS1 also sets an exemplary
example for the conserved actions of its class in modulat-
ing immune surveillance of breast cancer. GNAS-AS1 can
motivate M2 macrophage polarization in situ via GATA3
activation in the estrogen receptor-positive (ER-positive)
tumors [6]. Similar M2 polarization was also reported
along with heightened noncoding BCRT1 expression [7].
In addition, other modes of immunomodulatory actions
by these lncRNAs were reported to be dysregulated in
the cancerous lesion. For example, a lncRNA named
NKILA directly sensitized T cells to induce the progression
of activation-induced cell death (AICD) and lead to tumor
immune evasion [8]. Collectively, these immune-related
lncRNAs (irlncRNAs) can be further enriched and
weighed to construct a signature panel for a better prog-
nosis and prediction of clinical response of ICIs [9–11].

In our study, we intend to explore the predictive power
of this overlooked collection of noncoding factors at the
transcript level, particularly over how they may exert actions
over immune surveillance, to reflect the likelihood of
treatment responses and anticipate probable refractory
cases. We sought to build an irlncRNAs-related computa-
tional model which efficiently predicts the immune land-
scape of breast cancer prognosis in different molecular
subtypes. Our project also extended to investigate the func-
tions of those with differential expression profiles across
the subtypes.

2. Materials and Methods

2.1. Transcriptome Data Collection and DEirlncRNA
Verification. We downloaded the fragments per kilobase
per million (FPKM) of normal tissue and breast cancer
transcriptome profiling and metadata of diagnosed patients
in these categories from The Cancer Genome Atlas (TCGA)
database in May 2021 (Table S1). Subsequently, immune-
related genes were downloaded from the ImmPort

database. GTF file (genecode v23) of hg19 was used to
distinguish lncRNAs and mRNAs in our study.

2.2. Processing of RNA-seq Data. Coexpression analyses
were performed to identify the irlncRNAs. The
lncRNAs that met the cut-off criteria of correlation
coefficients > 0:4 and p value < 0.001 with ir-mRNAs
were distinguished as irlncRNAs, and the irlncRNAs
with ∣log FC ∣ >1:5 and FDR < 0:5 were identified as
DEirlncRNAs. A 0 or 1 matrix was formed 0 as the expres-
sion of the former lncRNA in the DEirlncRNA pair of which
its expression is lower than the latter, while 1 is indicative of
the relative higher expression in the former. Qualified
DEirlncRNA pairs shall hold a skewed proportion to having
either 0 or 1 as higher than 20% in the matrix.

2.3. Development of a Risk Score (RS). The valid DEirlncRNA
pairs were screened using uni-Cox analysis; the threshold is
p < 0:05. Then, R package glmnet was performed for build-
ing the Lasso model with 10-fold cross-validation [12]. A
multi-Cox analysis was used to infer the definitive parame-
ters of each prognostic factor. The risk score =∑k

i=1βiSi.

2.4. RS Validation. Our study also calculated the AUC values
of each model, and R package ROCR was used for generat-
ing the receiver operating characteristic (ROC) curve plots
of 1, 3, and 5 years [13]. Then, we validate the cut-off point
by Kaplan-Meier analysis.

2.5. Comparison between RS and Clinical Features. To con-
firm the clinical value of our novel model, the paired t-test
is performed between the signature and clinicopathological
features. Survival status, age, gender, metastatic disease, N
stage, T stage, and clinical stage were considered variables.
To further verify if the RS can serve as an individual predic-
tor, uni-Cox and multi-Cox were conducted between the
high- and low-RS groups.

2.6. Patient Subtyping and Immune Infiltration. BRCA is
usually divided into 4 molecular subtypes—Her2-enriched,
luminal A, luminal B, and triple-negative breast cancer
(TNBC). For patients without the metadata of intrinsic
molecular subtypes, PAM50 function was used for classify-
ing the molecular subtypes [14]. The survival plot of the
low-risk and high-risk groups in PAM50 subtypes was also
plotted. Other currently acknowledged functions (ssp2006,
scmgene) were also applied to classify the subtypes. The dif-
ferences between high-risk and low-risk group numbers in
those subtypes were analysed by a chi-squared test. To reveal
the distinct immune infiltration patterns of different sub-
types, the immune infiltration statues between the high-
risk and low-risk groups of constructed models were
analysed by CIBERSORTX analysis [15].

2.7. Enrichment Analysis. To infer the possible biological
functional pathway of irlncRNAs in the prognostic signa-
ture, RNA central [16] was used to perform the GO analysis.
The GO of protein-coding genes correlated with the irlncR-
NAs were also predicted using MSigDb v7.2 Hallmarks [17]
and R package clusterProfiler v3.10.1 [18].

2 Journal of Immunology Research



2.8. Statistical Analysis. The R package ggplot2 and ggpubr
package was performed to produce the plots. A p value < 0.05
was considered significant in our study, where visualization
was labelled as below: ∗∗∗<0.001, ∗∗∗<0.01, and ∗<0.05.

3. Results

3.1. DEirlncRNA Identification. Firstly, we obtained the tran-
scriptomic profiles of 113 normal and 1109 tumor cases
from TCGA database. Those data were annotated with gene
transfer format (GTF) files downloaded from the Ensembl
database (Figure 1). In further coexpression analysis between
lncRNAs and immune-related genes, we have screened out
103 irlncRNAs (Figure 2(a)) and 63 DEirlncRNAs, among
which 45 were downregulated and 18 were upregulated in
BRCA (Figure 2(b)).

3.2. Screening DEirlncRNA Pairs and Establishing Risk
Assessment Signature. 63 DEirlncRNAs produced 1011 valid
DEirlncRNA pairs. Then, 40 DEirlncRNA pairs were

screened by Lasso regression analysis from 1011 valid
DEirlncRNA pairs (Figure 2(c)) for signature establishment.
Then, we subjected those 40 DEirlncRNA pairs to multi-Cox
regression analysis (stepwise method) for confirming such
signature establishment (Figure 3(a)). The identified cut-off
point of 5-year ROC curves was applied to separate individ-
uals into the high-risk and low-risk groups (Figure 3(b)).
Afterward, the predictive capacity of this risk assessment sig-
nature was applied for the 1-, 3-, and 5-year ROC curves.
The AUCs of those ROC curves were over 0.79 indicating
that this novel signature works well in cancer survival rate
prediction (Figure 3(c)). Furthermore, we detected the
ROC curves of 5-year and other reported clinicopathological
features. The AUCs demonstrated that our risk assessment
model is an optimal predictor for the prognosis of BRCA
(Figure 3(d)).

3.3. BRCA Molecular Subtype Identification and Clinical
Evaluation by IRLP Signature. 1055 eligible cases were
enrolled from the 1109 tumor cases for survival analysis.

Data from TCGA (113 normal, 1109
tumor) and GTF from ensembl

4384 lncRNAs from transcriptome data

Get the cut-off point

Kaplan-
Meier test

Data from ImmPort

103 irlncRNAs by co-expression analysis (r > 0.4 and p < 0.001)

63 DEirlncRNAs by limma analysis (log FC > 1.5 and FDR <0.5)

1011 valid DEirlncRNAs pairs (> 20% pairs score 0 or
1 in DEirlncRNAs pairs matrix)

40 DEirlncRNAs pairs (Lasso-cox model,
p < 0.05, 10 folds cross validation)

1-, 3-, 5- year ROC curve
and calculated the AUC

Univariate
analysis

Multiple
regression analysis

Checkpoint-related
genes expression

Tumor immune
infiltration

Clinical data of BRCA in
TCGA (n = 1055)

Comparison with AUC
values of other clinical features

Prognosis prediction
function

DEirlncRNA
enrichment analysis

Patient
subtyping

Patient
subtyping

Figure 1: Study flowchart for constructing the signature.
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Figure 2: Continued.
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Figure 2: Establishment of a risk assessment model. The heat map of 103 irlncRNAs (a) and a volcano plot of 63 DEirlncRNAs (b) are
shown. The forest map showed the details of the 40 IRLPs (c).
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There are a total of 455 cases distinguished into the low-risk
group and 600 in the high-risk group. RS and the survival
status are calculated (Figures 4(a) and 4(b)). Since the
survival time of BRCA is verified in different molecular sub-
types, Kaplan-Meier analysis was investigated in four molec-
ular subtypes. A total of 197, 106, 504, 228, and 20 patients
were identified as TNBC, Her2, luminal A, and luminal B
in PAM50 to corresponding subtypes (low RSG: 106, 69,
258, 142, and 13, respectively; high RSG: 86, 37, 241, 83,
and 7, respectively). In addition, patients in the low-risk
group exhibited a longer survival time in all molecular sub-
types (p < 0:001) (Figures 4(c)–4(f)), indicating that our sig-
nature is suitable for all patients with breast cancer.

The further nonparametricWilcoxon signed-rank test also
demonstrated that metastatic disease, T stage, clinical stage,
survival status, and age were significantly associated with the
heightened cancer risk (Figure 5). Therefore, we investigated
the statistical differences between those clinical factors and
risk score by uni-Cox (Figure 5(g)) and multi-Cox
(Figure 5(h)) regression analyses. Results showed that risk
score, overall stage, and age all exhibited statistical differences.

3.4. Investigation of Tumor-Infiltrating Immune Cells (TIICs)
and Immunosuppression-Related Genes. According to the
patient subtypes, correlation analysis showed that the high-
risk group was positively associated with higher infiltration
levels of macrophages M2/M0 and negatively associated
with CD8+ T cell infiltration in luminal A (Figure 6(a),
Table S2A), luminal B (Figure 6(b), Table S2B), and basal
(Figure 6(c), Table S2C). However, TIICs showed no
significant difference in HER2 BRCA (Figure 6(d), Table S2D).
Furthermore, we used Spearman correlation analysis to
investigate whether the IRLP signature was related to
immunosuppression-related biomarkers in all patients with
breast cancer. The analysis revealed that the high-risk group
was positively correlated with lower expression levels of
LAG3, CTLA4, PDCD1, and PDCD1LG2 (Figure 6).

3.5. Identification of 43 irlncRNA Signature Associated with
Biological Processes. Finally, we investigated the mechanisms
of these 43 irlncRNAs from the 40 DEirlncRNA pairs signa-
ture. The mRNA expression profiles were downloaded from
TCGA database and analysed with Pearson correlation to
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Figure 3: Diagrams of Lasso regression analysis and multi-Cox regression analysis. Lasso regression analysis (a). Identifying the highest
point of the AUC by ROCs of 40 IRLP model (b). 1-, 3-, and 5-year ROC showing all AUC values were around 0.80 (c). A comparison
of 5-year ROC curves with other BRCA survival-related clinicopathological features showed the superiority of the RS (d).
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Figure 4: IRLP signature for prognosis prediction of the patient with BRCA. RS (a) and survival outcome (b) of patients with breast cancer
are shown. Patients in the low-risk group experienced a longer survival time in all subtypes.
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Figure 5: Continued.
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Figure 5: Application of the IRLP signature for clinical evaluation. Strip chart showing the clinical information of each case (a). Metastatic
disease stage (b), T stage (c), clinical stage (d), survival status (e), and age (f) were significantly associated with the RS. A uni-Cox hazard
ratio analysis demonstrated that risk score (p < 0:001, HR = 2:70, 95%CI ½2:30 – 3:20�), N stage (p < 0:001, HR = 2:20, 95%CI ½1:50 – 3:10�),
T stage (p < 0:05, HR = 1:80, 95%CI ½1:20 – 2:60�), overall stage (p < 0:001, HR = 2:50, 95%CI ½1:80 – 3:50�), and age (p < 0:001, HR = 2:10,
95%CI ½1:50 – 2:90�) (g). Multi-Cox regression showing that risk score (p < 0:001, HR = 2:60, 95%CI ½2:20 – 3:10�), overall stage
(p < 0:05, HR = 2:10, 95%CI ½1:20 – 3:50�), and age (p < 0:05, HR = 1:50, 95%CI ½1:10 – 2:20�) (h).
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screen out potential genes which are highly correlated with
the 43 irlncRNAs (∣R ∣ >0:6 and p < 0:05). Those identified
genes were further subject to GO enrichment analysis
(Figure 7(a), Table S3) and Proteomaps pathway analysis
to classify the functions of those mRNAs. Results showed
that genes associated with the 43 irlncRNAs were clustered
into the NQO1, cellular antigens, cell adhesion molecules
(CAMs), MAPK signaling, Jak-STAT signaling, ErbB
signaling, and Jak-STAT signaling pathways (Figure 7(b)).

4. Discussion

Breast cancer is defined as an immunogenic “cold” tumor in
clinical settings. As in hepatocellular carcinoma (HCC) and
head and neck cancer niches, T cell-derived immune
privileges demonstrate worsen prognosis along with immu-
notherapeutic regimes. The proven hardships in the applica-
tion of ICIs in breast cancer types had dwindled continuous
research interest in immunotherapy. Furthermore, coupled
with a lack of an effective immune gene signature for the
predictive outcome, the apparent pharmacological idiosyn-
crasy further hampered the development of personalized
regimes as the last resort in breast cancer treatment. Indeed,

in ICI therapy as in all other personalized treatment, preci-
sion medicine approaches by molecular profiling remains
the key to improving all therapeutic success. As a result, it
must be emphasized that the medical status quo might have
indirectly caused an underaddressed call in the use of ICIs in
combating the disease, particularly those highly immune
infiltrated subtypes per se.

The evaluation of the expression level of PD-1/PD-L1 and
the presence and activation status of tumor-infiltrating T cells
are promising tools to improve the effect of tumor immuno-
therapy [2, 19]. However, since BRCA is a type of immuno-
suppressive cancer, more sensitive predictive biomarkers are
needed for predicting the efficacy of ICIs. Devising alternative
means to probe TIICs or immunosuppression-related gene
expression remains the most zealous means to predict the
ICI responsive rate in BRCA; therefore, we suggest noncoding
molecular changes as surrogate immune biomarkers instead.
With our current computational model, we reinstated the
use of lncRNA gene panel to make a prognosis of breast
cancer, in particular for those irlncRNAs regulating tumor
immune status in situ.

Nevertheless, lncRNAs were implicated in driving malig-
nant phenotypes in almost all walks of cancer types, and
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Figure 6: Evaluations of TIICs and immunosuppression-related genes by the IRLP signature. CIBERSORT showed that the high-risk group
was positively associated with a higher infiltration level of macrophages M2/M0 and negatively associated with CD8+ T cells in all subtypes
including luminal A (a), luminal B (b), TNBC (c), and HER2 (d). High-risk group was positively correlated with higher expression levels of
LAG3 (e), CTLA4 (f), PDCD1 (g), and PDCD1LG2 (h).
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many such transcripts formed the basis for prognostic
expression signatures of BRCA with merit success. For
example, Shen et al. identified 11 lncRNAs as a prognostic
signature for BRCA [20], and Ma et al. established a signa-
ture for predicting the survival of BRCA based on the
expression levels of 8 irlncRNAs [21]. In addition, a five-
irlncRNA signature is also built as a prognostic model for
BRCA patients [22]. However, the limitation to those studies
was that those revealed lncRNAs were often widely
expressed with promiscuous action.

Indeed, there were past attempts to devise expression
profiles for constructing irlncRNA prognostic signatures
for breast cancer. However, previous signatures are mostly
based on quantifying transcript expression levels and seem-
ingly ignored the high difference between heterogeneous
biological and clinical features in molecular subtypes. More-
over, in coding genes categorized by the molecular pathway,
they partake in; the biological function of those gene modu-
lators could be revealed from how they interact with their
binding partners directly. Unlike those coding gene prod-
ucts, most lncRNA driven by its mode of action as antisense
transcripts tend to bind multiple target mRNAs while its
presence may lead to variant expression changes of the bind-
ing partner through both direct and indirect interactions.

A highlight in the current study is an emphasis on filtering
out only reasonable signatures based on irlncRNA pairings
and discriminating the unified or divergent function of these
enriched gene sets across different molecular subtypes. It
remains difficult to single out a precise molecular action for
any lncRNA merely by its own expression, and therefore, we
sought to rely on pinpointed coexpression pairs. Their largely
uncharted molecular functions also prompted us to explore
the stage-specific actions of our clustered DEirlncRNA pairs
along with the immune feature-stratified disease subtypes.

lncRNA pairs are a reasonable optimized method for
building a prognosis signature compared to single lncRNAs.
lncRNA pairs combined with higher or lower expression
lncRNAs ignore their exact expression levels in the signa-
ture, which renders detecting specific expression values of
all irlncRNA in the expression profile unnecessary. Indeed,
such lncRNA pair signature had shown selectively greater
advantage than the transcriptome approach in predictive
performance in various cancers [9, 10]. Then, Qin et al. build
a 33-IRLP signature to predict the immune landscape of
breast cancer. However, they did not compare the difference
between different molecular subtypes of BRCA [23]. In this
study, based on the BRCA DEirlncRNA dataset, a 40 IRLP
signature was constructed as an independent prognostic pre-
dictor for BRCA. We firstly investigate the effect of this sig-
nature on the different molecular subtypes of BRCA, and
our results approved this model as a suitable approach to
discriminate all 4 major molecular subtypes—luminal A,
luminal B, TNBC, and HER2.

Some DEirlncRNAs in the 40 IRLP signature have been
validated to be involved in the occurrence and development
of tumors. lncZEB2-AS1 and MEF2C-AS1 have been demon-
strated as poor biomarkers for patients with BRCA [24, 25].
Our data indicated those IRLPs are in particular related to
MAPK signaling, Jak-STAT signaling, and ErbB signaling

pathways in BRCA. All these pathways have been found to
participate in the progression of proliferation, cancer apopto-
sis, and cell cycle. The ErbB family members are important for
the initiation and maintenance of certain solid tumors, by tar-
geting the HER2-HER3 oncogenic factors via the PI3K/AKT
signaling pathway. Impaired ERBB2 expression or function
has been implicated in the progression of breast and gastric
cancers [26], mainly through targeting the PI3K/AKT and
MAPK pathways [27]. Previous studies also demonstrated
that some DEirlcnRNAs can modulate those pathways such
as lncRNA-ZEB2-AS1 and MEF2C-AS1 [24, 28].

In this study, our IRLP signature can reflect the charac-
teristics of the TIME based on the tumor-infiltrating lym-
phocytes which were adopted to define patients with
BRCA as most likely to benefit from ICI therapies. We inves-
tigate whether RS was related to the TIME including TIICs,
checkpoint-related biomarkers, and immunosuppression-
related signal pathways. Research has demonstrated a higher
infiltration level of CD8+ T cells correlated with a better
response to traditional chemotherapy and ICIs in patients
with TNBC [29, 30].

By integrating these statistical results, data demonstrated
that the low-risk group classified by the IRLP signature was
positively associated with a higher infiltration level of CD8+

T cells as well as higher expression levels of checkpoint-
related biomarkers. Our results indicate that this novel IRLP
signature could preciously classify the patients who can ben-
efit from giving any sort of immunotherapy.

Furthermore, the macrophage M2 phenotype follows an
immunosuppressive action in general to promote tumor
growth. As such, tumors highly infiltrated with macrophage
M2 cell [31] and low expression levels of MHC class II related
pathway genes were deemed to have a poor prognosis of TNBC
[32], where the high-risk group identified by the signature was
positively associated with a higher infiltration level of macro-
phage M2 cell and negatively associated with those MHC-
locus embedded genes. The enrichment analysis showed
those DEirlncRNAs most related to the T cell receptor sig-
naling pathway which indicated that antigen-presenting pro-
gression is essential in the prognosis of BRCA.

The current prediction model had not been implemented
in a large patient cohort, and therefore, the predictive power
for our proposed gene panel might be overestimated in this
molecular-divergent BRCA sample pool. Secondly, the coex-
pression model relied on carcinoma in situ samples, and this
limited the usage of our signature panel aside from conducting
a biopsy. In fact, lncRNAs were found to exist in exosomes and
also freely circulating form in the bloodstream; therefore, the
utility of our panel as a surrogate marker could be expanded
if being considered in a liquid biopsy setting.

Finally, we had yet to demonstrate the specificity of our
gene signature across different diseases, which might or
might not hasten its clinical application as a surrogate
biomarker for prognosis in all immune-privileged primary
cancer lesions. As much as we would like to develop a spe-
cific panel sufficient but limited to stratify BRCA subtypes
in the assessment of the suitability of ICIs, there remains a
high chance that the same noncoding genes may be useful
to all these cancer types towards a unified approach.
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5. Conclusions

This study successfully constructed an IRLP signature for
the predictive prognosis of BRCA patients independent of
an individual lncRNA expression. Moreover, our signature
reliably predicts individuals who will benefit from the
immunotherapy, thus contributing to the development of
personalized immunotherapy treatment for BRCA patients.
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