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Non-small-cell lung cancer (NSCLC) is one of the most threatening malignant tumors to human health, with the overall 5-year
survival rate being less than 30%. Regulatory T cells (Tregs), a functional subset of T cells, maintain immunologic
immunological self-tolerance and homeostasis. Accumulating evidence has uncovered their implicated roles in various cancers
in recent years. In NSCLC, they are associated with staging, therapeutic efficacy, and prognosis by infiltrating in tissues and
thereby attenuating immunologic anticancer effects in patients. Tumor-associated Tregs display distinct immune signatures in
NSCLC compared to thymus-derived Tregs, playing an important role in remodeling the tumor microenvironment (TME).
Targeting Tregs has become a novel direction for NSCLC patients, such as disrupting their immune-suppressive functions,
blocking their trafficking into tumors, and inhibiting their development and/or activation. This review is aimed at elucidating
the molecular mechanisms of tumor-associated Tregs in NSCLC and providing therapeutic targets relevant to Tregs.

1. Epidemiology and Prevention of NSCLC

Lung cancer is one of the most commonly diagnosed cancers
and the leading cause of cancer death worldwide in the year
2020, with an estimated 2.2 million new cases and 1.8 mil-
lion deaths, which represents more than one in ten (11.4%)
cancers diagnosed and approximately one in five (18.0%)
deaths [1]. Traditionally, 85% of all cases are histopatholo-
gically classified as non-small-cell lung cancer (NSCLC)
[2]. While treatment options comprise surgery, chemoradio-
therapy, and targeted therapy, patients with NSCLC are
often diagnosed with metastatic diseases or develop resis-
tance to the drugs, resulting in a frustrating five-year overall
survival of only less than 30% currently [3–5].

In recent years, tumor immunity has become a hot spot.
The emergence of immunotherapy led by anti-immune
checkpoint molecules has improved the overall survival of
a subset of patients with advanced NSCLC. However,
patients with positive tumor PD-L1 expression may still
experience poor outcomes and severe adverse effects or even
have a deterioration of their disease defined as hyperprogres-
sion [6, 7]. In recent years, accumulated evidence has uncov-
ered the implicated roles of regulatory T cells (Tregs) in

various cancers. In this review, we review the latest progress
in the mechanisms of Tregs in promoting tumors and pro-
pose perspectives and therapeutic strategies targeting Tregs
in NSCLC.

2. Summary of Suppressive
Mechanisms of Tregs

Tregs, an immunosuppressive subset of CD4-positive (CD4
+) T cells, are first found to serve to maintain immunological
self-tolerance and homeostasis. Accumulated evidence has
uncovered their implicated roles in autoimmune diseases
and cancer [8–12]. They can be classified into two major
groups based on their developmental origin, including
thymus-derived Treg cells (tTregs) and peripheral Treg cells
(pTregs) in vivo or induced Treg cells (iTregs) in vitro
[12–14].

In the development of tTregs, several downstream sig-
naling pathways are activated through the interaction
between CD25 molecule (also known as interleukin-2 recep-
tors, IL-2Rα), which are highly expressed on the membrane
[14–16], and interleukin-2 (IL-2) [17], resulting in an
increase of FOXP3 expression [18–20]. Elevation of FOXP3
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can further promote the level of immunosuppressive recep-
tors (i.e., CTLA-4, TIGIT, LAG-3, NRP1, CD39, and
CD73) expressed on Tregs and enhance the secretion of
multiple inhibitory cytokines such as IL-10, TGF-β, and IL
-35, thus endowing Tregs with an immunosuppressive func-
tion [21–23]. In contrast, under costimulation of IL-2, TGF-
β, or other cytokines, peripheral CD4+ T cells can be differ-
entiated into a new cell subset with highly expressed FOXP3
that are designated pTregs or iTregs [24–27].

Effector Treg cells (eTregs), characterized by their high
ability to suppress immunity, perform immunosuppressive
functions mainly through cell contact-dependent and
cytokine-mediated pathways. Cytotoxic T lymphocyte anti-
gen 4 (CTLA-4) and IL-2R are two key molecules that medi-
ate this process (Figure 1). eTregs can inhibit the
costimulatory signals in effector T cells by expressing mem-
brane and producing soluble CTLA-4, which can bind to
CD80 or CD86 molecule that is expressed on antigen-
presenting cells (APCs) [28–32]. Besides, eTregs can hamper
the activation and tumor-killing capacity of CD8+ T cells
and natural killer (NK) cells via depriving IL-2 owing to its
high-affinity receptor CD25 on the cell surface [33–35].
They can also attenuate the function of APCs and effector
T cells by secreted or intracellular inhibitory molecules, such
as IL-10, TGF-β, and IL-35, or cell-killing factors such as
granzyme and perforin (Figure 1) [36–39].

3. Current Advances of Tumor-Associated
Tregs in NSCLC

3.1. Infiltration of Tumor-Associated Tregs and Tumor
Prognosis. Tregs are associated with oncogenesis, invasion,
metastasis, reoccurrence, drug responses, and prognosis of
patients in multiple cancers by remodeling the immune-
suppressive microenvironment [40]. Tumor-associated
Tregs account for 10–50% of CD4+ T cells in tumors, with
only 2–5% of those in the peripheral blood of healthy indi-
viduals by contrast [12, 41]. However, they have displayed
distinct immune signatures and activated immunopheno-
types. Three groups of tumor-associated Tregs have been
found in tumors, including tumor-resident, tissue-resident
Tregs, and those from the circulation [42–44]. However,
their origins and relationship are still unclear that whether
tumor-infiltrated Tregs originate in the tumor-associate tis-
sues or from the circulation. Treg infiltration has been a neg-
ative prognostic factor for patients with NSCLC. Increased
number and enhanced activity have been found with Tregs
in multiple tissues of patients, including tumors, metastatic
lymph nodes, and the peripheral blood, which is highly asso-
ciated with the staging and the occurrence of metastasis and
recurrence NSCLC [45–47].

Besides, the frequency of Tregs in NSCLC contributes to
resistance or even hyperprogressive diseases after chemo-
therapies and immunotherapies. Liu et al. [48] reported that
the efficacy of platinum-based chemotherapy in NSCLC
decreased with the increasing ratio of FOXP3+ Treg and
CD8+ T, suggesting the abundance of eTregs in tumor sites
was an independent factor for poor response to platinum-
based chemotherapy. Consistent results were also found in

a mouse model. Pircher et al. [49] demonstrated that the
number of foxp3+ Tregs could increase when treated with
platinum-based chemotherapy combined with cetuximab.
eTregs potently attenuated the NK-mediated anticancer
effects and the antibody-dependent cell-mediated cytotoxic-
ity (ADCC) against CD8+ T cells.

3.2. Characteristics of Tumor-Associated Tregs and Tumor
Prognosis. Compared to the natural tTregs, the key features
of tumor-associated Tregs are highly activated and differen-
tiated effector Tregs, with higher affinity to the T cell recep-
tor (TCR). Transcriptomic data showed that several immune
checkpoints (i.e., interleukin-1 receptor 2, PD-1 ligands, and
CCR8 chemokine) were upregulated to maintain their sup-
pressive role in tumors [50]. Higher amounts of immuno-
suppressive molecules can increase and expand in tumor
tissues, inducing stronger immune suppression [41, 43, 44,
51].

It is worth noting that members of the TNF receptor
superfamily (TNFRSF) also play a crucial role in the devel-
opment and maturation of Tregs, which has not been
detailed in our previous text. Molecules such as GITR (also
known as TNFRSF18), OX40 (also known as TNFRSF4),
and TNFR2 (also known as TNFRSF1B) can function as
costimulatory agents in regulating the expression of the
FOXP3 gene [52]. In NSCLC, TNFR2+ Tregs presented in
the peripheral blood and pleural effusion of NSCLC patients
were more proliferative and expressed a higher degree of
CTLA-4 molecules to mediate immunosuppression than
TNFR2- Tregs [53, 54]. Furthermore, TNFRSF9 was pro-
posed to promote the immune-suppressive activity of Tregs
in the TME in NSCLC [55]. We still need to identify new
molecules of Tregs in order to better isolate them and
explore their roles in the TME.

3.3. Tumor-Associated Tregs in the TME. Different cells and
molecules in the TME also provide favorable conditions for
tumor-associated Tregs to exert immunosuppressive func-
tions (Figure 1). Recent studies in several kinds of tumors
revealed that insufficient glucose supply and increased intra-
cellular glycolysis in cancer cells could provide Tregs rich in
lactic acid and fatty acids, promoting their proliferation [56,
57]. Besides, TGF-β, ATP, IDO, and some other molecules
produced by tumor cells also enhanced the immunosuppres-
sive function of Tregs in tumor tissue [58–60]. In NSCLC,
tumor cells from patients with higher disease stage or lymph
node metastasis generated more TGF-β than their counter-
parts [61], which could not only expand the infiltration of
eTregs in the TME but potentiate the immunosuppressive
function by elevating the expression of inhibitory molecules
B7H1 and GITRL on the surface of APC cells [62].

Apart from the above metabolites, tumor cells can also
escape from immune-mediated tumor surveillance by
recruiting Tregs by expressing a variety of chemokines
(Figure 1). Zhang et al. [63] reported that CCL20 secretion
by tumor cells could recruit Tregs via cooperating with its
receptor CCR6 in NSCLC. Moreover, the TME can posttran-
slationally regulate the expression of FOXP3 in Tregs. It has
been shown that the AREG protein secreted by tumor cells
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of lung adenocarcinoma can maintain the Treg suppressive
function via the EGFR/GSK-3β/FOXP3 axis in vitro and
in vivo [64].

Several studies have shown that oncogene mutations can
regulate the differentiation process of Tregs. One of the most
studied has been KRAS, a fundamental driver of lung tumor-
igenesis, generally affecting 20-40% of NSCLC patients. The
incidence is higher in smokers than in nonsmokers (30% vs.
10%) [65]. KRAS mutations in lung cancer cells were found
to promote the differentiation of more CD4+ T cells into
Tregs in the TME by increasing the secretion of TGF-β
and IL-10, thereby increasing the number of cells in the
TME [66, 67].

The progression and metastatic capacity of solid tumors
are also influenced by some other immune cells in the TME.
Macrophage receptor with collagenous structure (MARCO)
expressed on the surface of tumor-associated macrophages
(TAM) has been reported to promote the proliferation of
Tregs and the inhibitory cytokine IL-10 secretion in NSCLC
[68]. Besides, at the protumor inflammatory stage of lung can-
cer, TGF-α stimulation can upregulate MHC-II molecules on
the surface of alveolar type II cells to trigger Treg expansion

and promote the tumorigenesis of inflammation-driven lung
adenocarcinoma [69].

4. Research Progress and Clinical
Applications of Targeting Tumor-
Associated Tregs

Because Tregs play roles in tumor immunity, measurements
targeting them have emerged in tumor treatment in recent
years, and three categories of approaches have been
explored: disrupting their immune-suppressive functions,
blocking their trafficking into tumors, and inhibiting their
development and/or activation. Currently, therapeutic strat-
egies targeting Tregs in oncology including NSCLC often
involve two or more of the above to enhance antitumor
immunity.

4.1. Disrupting Treg Cell Immune-Suppressive Functions in
NSCLC. Monoclonal antibodies against cell membrane
markers of Tregs have been currently the most commonly
used method to inhibit the IL-2-mediated immunosuppres-
sive function of Tregs (Figure 1). Given the constitutive
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Figure 1: Prime mechanisms of Treg-mediated immunosuppression and associated therapeutic targets in NSCLC. Black: in the tumor
microenvironment (TME), the development of regulatory T cells (Tregs) depends on several main factors that contribute to the FOXP3
expression: (1) the interaction of chemokine receptors, (2) TGF-βR signaling between Treg and cancer cells, (3) TCR, and (4) IL-2R
signaling in Tregs. Red: Tregs express the high-affinity IL-2 receptor binding to and sequestering IL-2 to reduce its availability to effector
T cells. They also express cytotoxic T lymphocyte antigen 4 (CTLA-4), which binds to CD80 and CD86, with a higher affinity than
CD28, on antigen-presenting cells (APCs), thereby transmitting suppressive signals to these cells. In addition, Tregs can produce
immunosuppressive cytokines, granzymes, and perforin to inhibit immunity. Red cross: different therapeutic approaches have been
explored in downregulating Treg cell expansion mediated by chemokine or TGF-β in the TME. In addition, inhibitors targeting TCR
and IL-2R signaling have been tested in reducing Treg cell activation and proliferation in patients.
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and high expression of CD25 by most Tregs and its crucial
role in eTreg cell maintenance, CD25 has attracted attention
as a potential target in Treg depletion [70–73]. In clinical
studies, CD25-blocking monoclonal antibody daclizumab
administration has led to a marked and prolonged decrease
in Tregs in patients with melanoma [74]. In NSCLC, preclin-
ical results demonstrated that Treg depletion blocked by
CD25 in combination with cytotoxic therapy might be ben-
eficial as a treatment strategy. Ganesan et al. [75] found that
mice bearing early NSCLC treated with daclizumab and che-
motherapy exhibited significantly increased tumor cell death
and extended survival associated with infiltration CD8+ T
cells.

4.2. Blocking Treg Trafficking into Tumors in NSCLC. Previ-
ous studies have revealed mechanisms that lead to intratu-
moral Treg accumulation involve the interaction of
chemokine receptor-expressing activated Tregs and the che-
mokines produced in the TME (Figure 1) [12, 76–78].
CCR4, a key chemokine receptor highly expressed on the
surface of Tregs, has been a promising target in oncology
herein [43, 79]. A monoclonal antibody, mogamulizumab,
which depletes CCR4+ Tregs, could suppress tumor growth,
having been approved for adult T cell leukemia or lym-
phoma [79].

However, the antitumor efficacy of this drug in solid
tumors is unclear due to the less amount of surface CCR4
expression on Tregs in the TME. Indeed, clinical trial results
did not show a significant synergistic antitumor effect for
combined therapy using mogamulizumab and docetaxel or
nivolumab, an anti-PD-1 agent, in advanced and periopera-
tive NSCLC patients (https://www.clinicaltrials.gov/, NCT
trial numbers: NCT02358473, NCT02946671), which may
be attributed to the small number of patients enrolled.
Recently, efficacy and safety of Treg depletion with moga-
mulizumab in combination with immune checkpoint inhib-
itors (anti-CTLA-4 or PD-1 or PD-L1 molecules) are being
explored and determined in numerous kinds of advanced
solid tumors, such as liver cancer, gastric cancer, and pan-
creatic cancer (NCT trial numbers: NCT02281409,
NCT01929486, and NCT02476123), on which we could
pin our hopes. In addition, CCR4 is not only expressed on
Treg but similarly on the surface of conventional T cells,
bringing about off-target immune side effects. These data
highlight the need to identify molecules specific to tumor-
accumulated Tregs as therapeutic targets.

Promisingly, there have still been several alternative
molecules associated with Treg cell recruitment that may
also effectively prevent tumor progression in solid tumors.
The study conducted by Alvisi et al. [80] reported that tran-
scription factor IRF4 could bind to BATF, reducing Treg cell
recruitment by regulating the expression of chemokine
receptors on Tregs. Besides, IRF4 can also downregulate
the expression of inhibitory factors in Tregs, such as TNF
receptor superfamily molecules and ICOS, thereby inhibit-
ing the immunosuppression in the TME. Generally, chemo-
kines are produced by cells in the TME, including tumor
cells and TAMs, which can also be combated to reduce
Tregs’ accumulation. Researchers have found that docetaxel

could rescue immunity functions against tumor cells by
reducing their secretion of CCL20 interacted with CCR6+
Tregs [63].

4.3. Inhibiting Treg Development and/or Activation in
NSCLC. Several directions have been considered to deacti-
vate and convert Tregs into effective T cells enhancing
immunity to various cancers. These include nonspecific
cytotoxic agents, strategies selectively targeting molecules
important for Treg differentiation and maturation and regu-
lating gene expression in the nucleus of premature T cells.

4.3.1. Nonspecific Cytotoxic Agents. Traditional chemothera-
peutics, such as cyclophosphamide, are effective in Treg
depletion. Cyclophosphamide could significantly reduce
the number of circulating Tregs in the peripheral blood of
colorectal cancer patients [81, 82]. Low-dose cyclophospha-
mide combined with CD25 monoclonal antibody had better
efficacy than the anti-CD25 mouse model with NSCLC
receiving radiotherapy [83]. Furthermore, whether the addi-
tion of cytotoxic agent, cyclophosphamide or doxorubicin,
can improve the efficacy of anti-PD-1 therapy by modulat-
ing tumor environment in NSCLC patients with PD-L1
expression less than 10% remains unclear to be figured out
(NCT trial number: NCT03808480).

4.3.2. Treg Signaling Pathway Inhibitors. Two tyrosine
kinase inhibitors, imatinib and dasatinib, have been found
to inhibit LCK molecules on the surface of T cells as an
off-target effect, impairing maintenance and immunosup-
pressive activity of Tregs by blocking TCR signaling
(Figure 1) [84]. Redin and his colleagues reported that dasa-
tinib could synergize with PD-1 inhibitor to impair tumor
growth in NSCLC experimental mouse models. They uncov-
ered that inactivated SFK targeted by dasatinib could inhibit
the phosphorylation of STAT5 and SMAD3, which were
downstream molecules of CD25 and TGF-βR, respectively,
hereby inhibiting the TGF-β-induced differentiation process
of Tregs. However, the combination of dasatinib and EGFR-
TKI drug did not prolong the survival time of patients with
EGFR mutations in NSCLC [85–87]. Its benefit remains to
be determined when combined with PD-1 antibody in
patients with advanced NSCLC (NCT trial number:
NCT04284202, NCT02750514).

The phosphoinositide 3-kinase pathway (PI3K) is an
important aspect of Treg cell development and function,
which mediates signaling downstream of the TCR [88–90].
The inhibitor’s deficiency of PI3Kδ by inhibitor could
inhibit Treg cell activation and augment immunity to con-
trol cancer in mice via CD8+ T cells [91, 92]. Ahmad et al.
reported a consistent result in a mouse lung cancer model
that anticancer vaccine coadministered with the PI3Kδ
inhibitor reduced the number of T cells whereas the number
of effector T cells increased, leading to a decrease in tumor
volume [91]. The efficacy and safety results of PI3Kδ inhib-
itor INCB050465 combined with pembrolizumab are cur-
rently being evaluated in a phase I trial in patients with
advanced tumors, including NSCLC (NCT trial number:
NCT02646748).
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4.3.3. Molecules Mediating Treg Cell Development. The
transformation between the immunosuppressive Tregs and
immune cells has been a hotspot in tumor immunity fields.
Notably, there is a close relation between Treg and Th17
cells, where the Th17 cell subset has been discovered with
similar properties to Tregs, both originated from a common
precursor. Recent studies uncovered the association between
their balance and the progression in different kinds of
tumors [93–95]. Th17/Treg ratio was lower in patients’
tumors and peripheral blood tissues than in healthy individ-
uals, as demonstrated in studies focused on various solid
tumors, including NSCLC [96–98].

Interestingly, cytokines in the TME are important in the
differentiation of CD4+ T cell subsets, which depend upon
the balance of expression of certain transcriptional factors.
For instance, TGF-β can inhibit the differentiation of Th17
cells while inducing more Treg precursor cells to differenti-
ate into Tregs via elevating FOXP3 expression. On the con-
trary, the mediation of cytokines such as IL-1? and IL-6
contributes to Tregs secreting more increased amounts of
IFN-γ and IL-17 and losing their original immunosuppres-
sive function. This finally transforms Tregs into another
two subsets of cells, Th1 or Th17, which will mediate
immune clearance and inflammatory responses, respectively
[99–101].

Mechanistically, Yu et al. [102] discovered that inter-
feron regulatory factor 4 (IRF4) could induce more Th17
cells than Tregs in the malignant pleural effusion of patients
with NSCLC via downregulating the expression of HELIOS,
one of the dominant genes in Treg cell development. More-
over, curcumin has also been found to promote the conver-
sion of Tregs to Th1 cells in NSCLC by inhibiting the
transcription of FOXP3 and promoting the expression of
IFN-γ, which is necessary for Th1 cells [103]. Hence, induc-
ing the differentiation of Tregs into other T cell subsets har-
boring antitumor functions can be promising in addressing
tumors within the TME to be explored in clinical practice.

5. Future Perspectives

Treg infiltration into tumors is a contributor to poor prog-
nosis via hindering effective immune response against tumor
cells in NSCLC. Recent research has uncovered molecular
mechanisms underlying their antitumor immunity. Despite
the monumental advance of checkpoint blockade immuno-
therapy, high morbidity and mortality and different
responses in NSCLC patients necessitate the consideration
of alternative targets, where Tregs are most notably modu-
lating immunosuppressive cells in the TME. Therefore, we
should explore therapeutic targets against Tregs to reinvigo-
rate cancer immunity in cancer treatment.
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