Research Article

General Integral Operator of Analytic Functions Involving Functions with Positive Real Part

B. A. Frasin

Department of Mathematics, Faculty of Science, Al al-Bayt University, P.O. Box 130095, Mafraq, Jordan

Correspondence should be addressed to B. A. Frasin; bafrasin@yahoo.com

Received 22 August 2012; Accepted 21 October 2012

Academic Editor: S. T. Ali

Copyright © 2013 B. A. Frasin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Let B_β be the integral operator defined by

$$B_\beta (z) = \left[\beta \int_0^z t^{\beta-1} \prod_{i=1}^n \left[\frac{(f_i(t))}{t} \right] \frac{\zeta_i(t)}{t} dt \right]^{1/\beta},$$

where $f_i \in \mathcal{A}$, $p_i \in \mathcal{P}$, $\beta \in \mathbb{C}^+ = \mathbb{C} \setminus \{0\}$, and $\gamma_i, \zeta_i \in \mathbb{C}$ for all $i = 1, \ldots, n$. The object of this paper is to obtain several univalence conditions for this integral operator. Our main results contain some interesting corollaries as special cases.

1. Introduction and Definitions

Let \mathcal{A} denote the class of the normalized functions of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k,$$

which are analytic in the open unit disk $\mathcal{U} = \{ z \in \mathbb{C} : |z| < 1 \}$. Further, by \mathcal{S} we shall denote the class of all functions which are univalent in \mathcal{U}. Also, let \mathcal{P} be the class of all functions which are analytic in \mathcal{U} and satisfy $p(0) = 1$, $\text{Re}\{ p(z) \} > 0$.

Frasin and Darus [1] (see also [2]) defined the family $\mathcal{B}(\delta)$, $0 \leq \delta < 1$ so that it consists of functions $f \in \mathcal{A}$ satisfying the condition

$$\left| \frac{z^2 f'(z)}{f^2(z)} - 1 \right| < 1 - \delta (z \in \mathcal{U}).$$

Very recently many authors studied the problem of integral operators which preserve the class \mathcal{S} (see, e.g., [3–15]). In this paper, we obtain new sufficient conditions for the univalence of the general integral operator $B_\beta (z)$ defined by

$$B_\beta (z) = \left[\beta \int_0^z t^{\beta-1} \prod_{i=1}^n \left[\frac{(f_i(t))}{t} \right] \frac{\zeta_i(t)}{t} dt \right]^{1/\beta},$$

where $f_i \in \mathcal{A}$, $p_i \in \mathcal{P}$, $\beta \in \mathbb{C}^+ = \mathbb{C} \setminus \{0\}$, and $\gamma_i, \zeta_i \in \mathbb{C}$ for all $i = 1, \ldots, n$.

Here and throughout in the sequel, every many-valued function is taken with the principal branch.

Remark 1. Note that the integral operator B_β generalizes the following operators introduced and studied by several authors:

(1) If we let $\gamma_i = 0$, for all $i = 1, \ldots, n$, in (3), we obtain the integral operator:

$$I_\gamma (f_1, \ldots, f_n) (z) = \left\{ \beta \int_0^z t^{\beta-1} \left(\frac{f_1(t)}{t} \right)^{\gamma_1} \cdots \left(\frac{f_n(t)}{t} \right)^{\gamma_n} dt \right\}^{1/\beta},$$

introduced and studied by D. Breaz and N. Breaz [16].

(2) If we let $\gamma_i = 0$, for all $i = 1, \ldots, n$, in (3), we obtain the integral operator:

$$I_\beta (p_1, \ldots, p_n; \alpha_1, \ldots, \alpha_n) (z) = \left\{ \int_0^z \beta t^{\beta-1} \left(p_1(t) \right)^{\alpha_1} \cdots \left(p_n(t) \right)^{\alpha_n} dt \right\}^{1/\beta},$$

introduced and studied by Frasin [17].
If we let $\beta = 1$ and $\zeta_i = 0$, for all $i = 1, \ldots, n$, in (3), we obtain the integral operator:

$$F_n(z) = \int_0^z \left(\frac{f_1(t)}{t} \right)^{\gamma_1} \cdots \left(\frac{f_n(t)}{t} \right)^{\gamma_n} dt,$$

introduced and studied by D. Breaz and N. Breaz [16].

In order to derive our main results, we have to recall here the following lemmas.

Lemma 2 (see [18]). Let $\alpha \in \mathbb{C}$ with $\text{Re}(\alpha) > 0$. If $h \in \mathcal{A}$ satisfies

$$1 - \left| \frac{\text{Re}(\alpha)}{\alpha} \right| \left| z h''(z) \right| \leq 1,$$

for all $z \in \mathcal{U}$, then, for any complex number β with $\text{Re}(\beta) \geq \text{Re}(\alpha)$, the integral operator

$$F_\beta(z) = \left\{ \beta \int_0^z t^{\beta-1} h'(t) dt \right\}^{1/\beta}$$

is in the class \mathcal{D}.

Lemma 3 (see [13]). Let $\beta \in \mathbb{C}$ with $\text{Re}(\beta) > 0, c \in \mathbb{C}$ with $|c| \leq 1, c \neq -1$. If $h \in \mathcal{A}$ satisfies

$$\left| c |z|^{2\beta} + (1 - |z|^{2\beta}) \frac{z h''(z)}{\beta h'(z)} \right| \leq 1,$$

for all $z \in \mathcal{U}$, then the integral operator $F_\beta(z)$ defined by (8) is in the class \mathcal{D}.

Lemma 4 (see [19]). If $p(z) \in \mathcal{P}$, then we have

$$\left| \frac{z f'(z)}{f(z)} \right| < \frac{2|z|}{1 - |z|^2}, \quad (z \in \mathcal{U}).$$

Lemma 5 (see [20]). If $f(z) \in \mathcal{B}(\delta)$, then

$$\left| \frac{z f'(z)}{f(z)} - 1 \right| < \frac{(1 - \delta) (1 + |z|)}{1 - |z|}, \quad (z \in \mathcal{U}).$$

Also, we need the following general Schwarz Lemma.

Lemma 6 (see [21]). Let the function f be regular in the disk $\mathcal{U}_R = \{ z : |z| < R \}$, with $|f(z)| < M$ for fixed M. If $f(z)$ has one zero with multiplicity order bigger than m for $z = 0$, then

$$|f(z)| \leq \frac{M}{R^m} |z|^m \quad (z \in \mathcal{U}_R).$$

The equality can hold only if

$$f(z) = e^{i\theta} \left(\frac{M}{R^m} \right) z^m,$$

where θ is constant.

2. Univalence Conditions for the Operator B_β

We first prove the following theorem.

Theorem 7. Let $f(z) \in \mathcal{B}(\delta_i), \delta_i \geq 1$ and $p_i(z) \in \mathcal{P}$ for all $i = 1, \ldots, n$. Let $\alpha \in \mathbb{C}$ with $\text{Re}(\alpha) > a > 0$. If

$$\sum_{i=1}^n \left[|\gamma_i| (1 - \delta_i) + |\xi_i| \right] \leq \min \left\{ \frac{a-1}{2}, \frac{1}{4} \right\},$$

then the integral operator $B_\beta(z)$ defined by (3) is in the class \mathcal{D}.

Proof. Define the regular function $h(z)$ by

$$h(z) = \int_0^z \prod_{i=1}^n \left(\frac{f_i(t)}{t^{\gamma_i}} \right)^{\gamma_i} \left(p_i(t) \right)^{\xi_i} dt.$$

Then it is easy to see that

$$h'(z) = \prod_{i=1}^n \left(\frac{f_i(z)}{z^{\gamma_i}} \right)^{\gamma_i} p_i^{\xi_i} (z),$$

and $h(0) = h'(0) - 1 = 0$. Differentiating both sides of (16) logarithmically, we obtain

$$\frac{zh''(z)}{h'(z)} = \sum_{i=1}^n \gamma_i \left(\frac{f'_i(z)}{f_i(z)} - 1 \right) + \sum_{i=1}^n \xi_i p_i'(z).$$

Thus, we have

$$\left| \frac{zh''(z)}{h'(z)} \right| \leq \sum_{i=1}^n \gamma_i \left| \frac{f'_i(z)}{f_i(z)} - 1 \right| + \sum_{i=1}^n \xi_i \left| p_i'(z) \right|.$$

Since $f_i(z) \in \mathcal{B}(\delta_i)$ and $p_i(z) \in \mathcal{P}$ for all $i = 1, \ldots, n$, from (18), (11), and (10), we obtain

$$\left| \frac{zh''(z)}{h'(z)} \right| \leq \sum_{i=1}^n \gamma_i (1 - \delta_i) \left(1 + |z| \right) + \sum_{i=1}^n \sum_{j=1}^{m_i} \frac{2|z|}{1 - |z|^2}.$$

Multiply both sides of (19) by $(1 - |z|^{2\text{Re}(\alpha)})/\text{Re}(\alpha)$, we get

$$\left| \frac{zh''(z)}{h'(z)} \right| \leq \frac{1 - |z|^{2\text{Re}(\alpha)}}{1 - |z|} \frac{2}{\text{Re}(\alpha)} \times \sum_{i=1}^n \left[|\gamma_i| (1 - \delta_i) + |\xi_i| \right],$$

for all $z \in \mathcal{U}$.

Let us denote $|z| = x, x \in [0, 1], \text{Re}(\alpha) = a > 0$, and $\Phi(x) = (1 - x^2a)/(1 - x)$. It is easy to prove that

$$\Phi(x) \leq \begin{cases}
1, & \text{if } 0 < a < \frac{1}{2} \\
2a, & \text{if } \frac{1}{2} < a < \infty.
\end{cases}$$

(21)
From (20), (21), and the hypothesis (14), we have

$$\frac{1 - |z|^{2a}}{\alpha} \left| \frac{z h''(z)}{h(z)} \right| \leq \left\{ \begin{array}{ll} \frac{2^n}{\alpha} \sum_{i=1}^{n} \left| y_i \right| (1 - \delta_i) + |k_i|, & \text{if } 0 < \alpha < \frac{1}{2} \\ 4 \sum_{i=1}^{n} \left| y_i \right| (1 - \delta_i) + |k_i|, & \text{if } \frac{1}{2} < \alpha < \infty. \end{array} \right.$$ \hspace{1cm} (22)

for all $z \in \mathcal{U}$. Applying Lemma 2 for the function $h(z)$, we prove that $B_{\beta}(z) \in \mathcal{S}$.

Letting $n = 1, \delta_1 = \delta, \gamma_1 = \gamma, \zeta_1 = \zeta,$ and $f_1 = f$ in Theorem 7, we obtain the following corollary.

Corollary 8. Let $f(z) \in \mathcal{S}(\delta); 0 \leq \delta < 1$ and $p(z) \in \mathcal{P}$. Also, let $\alpha, \gamma, \zeta \in \mathbb{C}$ with $\text{Re}(\alpha) > 0$. If

$$|y| (1 - \delta) + |k| \leq \min \left\{ \frac{a}{2}, \frac{1}{4} \right\},$$ \hspace{1cm} (23)

then the integral operator $B_{\beta, \gamma, \zeta}(z)$ defined by

$$B_{\beta, \gamma, \zeta}(z) = \left[\beta \int_{0}^{1} t^{\beta - 1} \left(\frac{f(t)}{t} \right)^{\gamma} t^{\beta} (t) dt \right]^{1/\beta}$$ \hspace{1cm} (24)

is in the class \mathcal{S}.

If we set $\delta = 0$ in Corollary 8, we have the following.

Corollary 9. Let $f(z) \in \mathcal{S}$ and $p(z) \in \mathcal{P}$. Also, let $\alpha, \gamma, \zeta \in \mathbb{C}$ with $\text{Re}(\alpha) > 0$. If

$$|y| + |k| \leq \min \left\{ \frac{a}{2}, \frac{1}{4} \right\},$$ \hspace{1cm} (25)

then the integral operator $B_{\beta, \gamma, \zeta}(z)$ defined by (24) is in the class \mathcal{S}.

Next, we prove the following theorem.

Theorem 10. Let $f_i(z) \in \mathcal{A}$ satisfies $\text{Re} \left(f_i(z)/z \right) > 0$, and

$$\left(\gamma_i + \zeta_i \right) \left(\frac{z f'_i(z)}{f_i(z)} - 1 \right) \leq \left(2a + 1 \right) \left(\frac{2a + 1}{2a} \right)^{1/2},$$ \hspace{1cm} (26)

for all $i = 1, \ldots, n$, where $\gamma_i, \zeta_i, \alpha \in \mathbb{C}$ with $\text{Re}(\alpha) > 0$, then the integral operator $B_{\beta}(z)$ defined by (3) is in the class \mathcal{S}.

Proof. Suppose that $\text{Re}(f_i(z)/z) > 0$ for all $i = 1, \ldots, n$. Thus, we have

$$\frac{f_i(z)}{z} = p_i(z),$$ \hspace{1cm} (27)

where $p_i(z) \in \mathcal{P}$ for all $i = 1, \ldots, n$. Differentiating both sides of (27) logarithmically, we obtain

$$\frac{z f'_i(z)}{f_i(z)} - 1 = \frac{z p'_i(z)}{p_i(z)}, \quad (i = 1, \ldots, n).$$ \hspace{1cm} (28)

Define the regular function $h(z)$ as in (15). Thus from (28) and (17), we have

$$\frac{z h''(z)}{h'(z)} = \sum_{i=1}^{n} \left(\gamma_i + \zeta_i \right) \left(\frac{z f'_i(z)}{f_i(z)} - 1 \right), \quad z \in \mathcal{U}.$$ \hspace{1cm} (29)

Form the hypothesis (26) and (29), we immediately have

$$\left| \frac{z h''(z)}{h'(z)} \right| \leq \frac{(2a + 1)(2a + 1)^{1/2}}{2},$$ \hspace{1cm} (30)

for all $z \in \mathcal{U}$. Applying Lemma 6, we obtain

$$\left| \frac{z h''(z)}{h'(z)} \right| \leq \frac{(2a + 1)(2a + 1)^{1/2}}{2} |z|, \quad z \in \mathcal{U}.$$ \hspace{1cm} (31)

Thus from (29) and (31) we have,

$$1 - |z|^{2a} \left| \frac{z h''(z)}{h'(z)} \right| \leq \frac{|z| (1 - |z|^{2a})}{a} \frac{(2a + 1)(2a + 1)^{1/2}}{2},$$ \hspace{1cm} (32)

for all $z \in \mathcal{U}$. Let us denote $|z| = x, x \in [0, 1]$, $\text{Re}(\alpha) > 0$, and $\Psi(x) = x(1 - x^{2a})$. It is easy to prove that the maximum is attained at the point $x = 1/(2a + 1)^{1/2a}$, and thus we have

$$\Psi(x) \leq \frac{2a}{(2a + 1)(2a + 1)^{1/2a}}.$$ \hspace{1cm} (33)

In view of this inequality and (32), we obtain

$$1 - |z|^{2a} \left| \frac{z h''(z)}{h'(z)} \right| \leq 1 \quad (z \in \mathcal{U}).$$ \hspace{1cm} (34)

Applying Lemma 2 for the function $h(z)$, we prove that $B_{\beta}(z) \in \mathcal{S}$.

Letting $n = 1, \gamma_1 = \gamma, \zeta_1 = \zeta$, and $f_1 = f$ in Theorem 10, we have the following corollary.

Corollary 11. Let $f(z) \in \mathcal{S}$ satisfies $\text{Re} \left(f(z)/z \right) > 0$, and

$$\left(\gamma + \zeta \right) \left(\frac{z f'(z)}{f(z)} - 1 \right) \leq \frac{(2a + 1)(2a + 1)^{1/2}}{2},$$ \hspace{1cm} (35)

where $\gamma, \zeta, \alpha \in \mathbb{C}$ with $\text{Re}(\alpha) > 0$, then the integral operator $B_{\beta, \gamma, \zeta}(z)$ defined by (24) is in the class \mathcal{S}.

Using Lemma 3, we derive the following theorem.

Theorem 12. Suppose that each of the functions $f_i(z) \in \mathcal{A}$ satisfies $\text{Re} \left(f_i(z)/z \right) > 0$, and

$$\left(\gamma_i + \zeta_i \right) \left(\frac{z f'_i(z)}{f_i(z)} - 1 \right) \leq \frac{|\beta|}{n} \left(1 - |c| \right),$$ \hspace{1cm} (36)

for all $i = 1, \ldots, n$, where $\gamma_i, \zeta_i, \beta \in \mathbb{C}$, $\text{Re} (\beta) > 0$, and $c \in \mathbb{C}$, $|c| < 1$, then the integral operator $B_{\beta}(z)$ defined by (3) is in the class \mathcal{S}.
Proof. From (29), we have
\[
|c|z|^{2\beta} + \left(1 - |z|^{2\beta}\right) \frac{zh''(z)}{\beta h'(z)}
\]
\[
= \left|c|z|^{2\beta} + \left(1 - |z|^{2\beta}\right) \frac{1}{\beta} \sum_{i=1}^{n} (y_i + \zeta_i) \left(\frac{zf_i'(z)}{f_i(z)} - 1\right)\right|
\]
\[
\leq |c| + \frac{1}{|\beta|} \sum_{i=1}^{n} |y_i + \zeta_i| \left|\frac{zf_i'(z)}{f_i(z)} - 1\right|.
\]
(37)

Now by using the hypothesis (36), we obtain
\[
|c|z|^{2\beta} + \left(1 - |z|^{2\beta}\right) \frac{zh''(z)}{\beta h'(z)} \leq 1.
\]
(38)

Finally, by applying Lemma 3, we conclude that \(B_{\beta}(z) \in \mathcal{S}\).

Letting \(n = 1, y_1 = \gamma, \zeta_1 = \zeta,\) and \(f_1 = f\) in Theorem 12, we have the following corollary.

Corollary 13. Suppose that the functions \(f(z) \in \mathcal{A}\) satisfy \(\text{Re}(f(z)/z) > 0,\) and
\[
\left|\left(y + \zeta\right) \left(\frac{zf'(z)}{f(z)} - 1\right)\right| \leq |\beta| \left(1 - |z|\right),
\]
(39)

where \(\gamma, \zeta, \beta \in \mathbb{C}, (\text{Re}(\beta) > 0)\) and \(c \in \mathbb{C}, (|c| < 1),\) then the integral operator \(B_{\beta \gamma} \chi(z)\) defined by (24) is in the class \(\mathcal{S}\).

Acknowledgment

The author would like to thank the referee for his helpful comments and suggestions.

References
