Research Article

Perturbations of Regularized Determinants of Operators in a Banach Space

Michael Gil

Department of Mathematics, Ben Gurion University of the Negev, P.O. Box 653, 84105 Beer-Sheva, Israel

Correspondence should be addressed to Michael Gil; gilmi@bezeqint.net

Received 15 August 2012; Accepted 7 November 2012

Academic Editor: Mark J. Friedman

Copyright © 2013 Michael Gil. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Let X be a separable Banach space with the approximation property. For an integer $p \geq 1$, let Γ_p be a quasinormed ideal of compact operators in X with a quasinorm $N_{\Gamma_p}(\cdot)$, such that $\sum_{k=1}^{\infty} |\lambda_k(A)|^p \leq a_p N_{\Gamma_p}(A) \ (A \in \Gamma_p)$, where $\lambda_k(A)$ are the eigenvalues of A and a_p is a constant independent of A. We suggest upper and lower bounds for the regularized determinants of operators from Γ_p as well as bounds for the difference between determinants of two operators. Applications to the p-summing operators, Hille-Tamarkin integral operators, Hille-Tamarkin matrices, Schatten-von Neumann operators, and Lorentz operator ideals are discussed.

1. Statement of the Main Result

Let X be a separable Banach space with the approximation property and the unit operator I. Let $E_p(z)$ be the Weierstrass primary factor:

$$E_1(z) = (1 - z), \quad E_p(z) = (1 - z) \exp \left[\sum_{m=1}^{p-1} \frac{z^m}{m} \right] \quad (p = 2, 3, \ldots; z \in \mathbb{C}).$$

For a Riesz operator A whose eigenvalues counted with their algebraic multiplicities are denoted by $\lambda_k(A)$ ($k = 1, 2, \ldots$), introduce the p-regularized determinant

$$\det_p(I - A) = \prod_{k=1}^{\infty} E_p(\lambda_k(A)), \quad (2)$$

provided

$$\sum_{k=1}^{\infty} |\lambda_k(A)|^p < \infty. \quad (3)$$

The classical theory of regularized determinants for Schatten-von Neumann operators has a long history, which is presented, in particular, in [1, 2]. König [3] developed the theory of regularized determinants for absolutely p-summing operators ($2 < p < \infty$) in a Banach space. In [2, 4], following the classical pattern, regularized determinants are defined for operators of the form $I + A$, in a Banach space where not necessarily A itself but at least some power A^m admits a trace. The idea is to replace in all formulas the undefined traces by zero.

Let $SN_p (p = 1, 2, \ldots)$ be the von Neumann-Schatten ideal of compact operators A in a separable Hilbert space H with the finite norm $N_p(A) = [\text{Trace}(AA^*)^{p/2}]^{1/p}$, where A^* is adjoint to A. The following inequalities are well-known:

$$|\det_p(I - A)| \leq \exp \left[d_p N_p^p(A) \right],$$

$$|\det_p(I - A) - \det_p(I - B)| \leq N_p(A - B) \exp \left[d_p (1 + [N_p(A) + N_p(B)])^{p'} \right] \quad (4)$$

with an unknown constant d_k, see the books [1, page 1106] and [2, page 194]. In [5, 6] these inequalities were slightly improved. In [7] it was proved that one can take $d_p = \gamma_p$, where

$$\gamma_p := \frac{p - 1}{p} \quad (p \neq 1; p \neq 3), \quad \gamma_1 = \gamma_3 = 1. \quad (5)$$

In this paper we investigate a quasinormed ideal Γ_p of compact operators in X with a quasinorm $N_{\Gamma_p}(\cdot)$. That is,
Then \(g_1(\lambda) \) is an entire function and
\[
 f(C) - f(\tilde{C}) = g_1 \left(\frac{1}{2} \right) - g_1 \left(-\frac{1}{2} \right). \tag{14}
\]

Thanks to the Cauchy integral,
\[
g_1 \left(\frac{1}{2} \right) - g_1 \left(-\frac{1}{2} \right) = \frac{1}{2\pi i} \int_{|z|=|1/2+r|} \frac{g_1(z) \, dz}{z^2 - (1/4)} \quad (r > 0). \tag{15}
\]

Hence,
\[
\left| g_1 \left(\frac{1}{2} \right) - g_1 \left(-\frac{1}{2} \right) \right| \leq \frac{1}{2} \sup_{|z|=|1/2+r|} \left| g_1(z) \right|. \tag{16}
\]

In addition, by (11),
\[
|g_1(z)| = \left| f \left(\frac{1}{2} (C + \tilde{C}) + z (C - \tilde{C}) \right) \right| \leq G \left(n \left(\frac{1}{2} (C + \tilde{C}) + z (C - \tilde{C}) \right) \right)
\]
\[
\leq G \left(\frac{1}{2} cN(C + \tilde{C}) + \left(\frac{1}{2} + r \right) cN(C - \tilde{C}) \right) \quad (|z| = \frac{1}{2} + r). \tag{17}
\]

Therefore according to (15),
\[
\left| f(C) - f(\tilde{C}) \right| = \left| g_1 \left(\frac{1}{2} \right) - g_1 \left(-\frac{1}{2} \right) \right| \leq \frac{1}{2} G \left(\frac{1}{2} cN(C + \tilde{C}) + \left(\frac{1}{2} + r \right) cN(C - \tilde{C}) \right). \tag{18}
\]

Taking \(r = 1/N(C - \tilde{C}) \), we get the required result. \(\Box \)

We need also the following result, proved in [7, Lemma 2.3].

Lemma 3. For any integer \(p \geq 1 \) and all \(z \in \mathbb{C} \), one has
\[|E_p(z)| \leq \exp |y_p| |z|^p. \]

Proof of Theorem 1. By the previous lemma
\[
\left| \det_p(I - A) \right| = \prod_{k=1}^{\infty} \left| E_p(\lambda_k(A)) \right| \leq \prod_{k=1}^{\infty} \exp \left[y_p |\lambda_k(A)|^p \right] \leq \exp \left[y_p \sum_{k=1}^{\infty} |\lambda_k(A)|^p \right]. \tag{19}
\]

Now (8) follows from the latter inequality and (7). Moreover, (8) and Lemma 2 imply (9). \(\Box \)
3. Lower Bounds

Let \(1 \notin \sigma(A) \) and \(L \) be a Jordan curve connecting 0 and 1, lying in the disc \(\{ z \in \mathbb{C} : |z| \leq 1 \} \) and such that

\[
\phi_A := \inf_{x \in L, k=1,2,...} |1 - s\lambda_k(A)| > 0. \tag{20}
\]

Let \(l = |L| \) be the length of \(L \). For example, if \(A \) does not have the eigenvalues on \([1, \infty) \), then one can take \(L = [0,1] \). In this case \(l = 1 \) and

\[
\phi_A = \inf_{x \in [0,1]} |1 - s\lambda_k(A)|. \tag{21}
\]

If the spectral radius \(r_s(\sigma) \) of \(\sigma \) is less than one, then \(l = 1 \), \(\phi_A \geq 1 - r_s(\sigma) \).

Theorem 4. Let \(A \in \Gamma_p (p = 1, 2, \ldots), 1 \notin \sigma(A), \) and condition (20) hold. Then

\[
|\det_p (I - A)| \geq e^{-(\lambda_1 N_p^p(\sigma)/\phi_A)}. \tag{22}
\]

Proof. We have

\[
\det_p (I - zA) = \prod_{j=1}^{\infty} E_p (z\lambda_j) \quad (\lambda_j = \lambda_j (A)). \tag{23}
\]

Clearly,

\[
\frac{d}{dz} \det_p (I - zA) = \sum_{k=1}^{\infty} \frac{d E_p (z\lambda_k)}{dz} \prod_{j=1, j \neq k}^{\infty} E_p (z\lambda_j),
\]

\[
\frac{d E_p (z\lambda_j)}{dz} = \left[-\lambda_j + (1 - z\lambda_j) \sum_{m=0}^{p-2} z^m \lambda_j^{m+1} \right] \exp \left[\sum_{m=1}^{p} \frac{z^m \lambda_j^m}{m} \right]. \tag{24}
\]

But

\[
-\lambda_j + (1 - z\lambda_j) \sum_{m=0}^{p-2} z^m \lambda_j^{m+1} = -z^{p-1} \lambda_j^p, \tag{25}
\]

since

\[
\sum_{m=0}^{p-2} z^m \lambda_j^m = \frac{1 - (z\lambda_j)^{p-1}}{1 - z\lambda_j}. \tag{26}
\]

So

\[
\frac{d E_p (z\lambda_j)}{dz} = -z^{p-1} \lambda_j^p \exp \left[\sum_{m=1}^{p} \frac{z^m \lambda_j^m}{m} \right] = -z^{p-1} \lambda_j^p E_p (z\lambda_j). \tag{27}
\]

Hence,

\[
\frac{d}{dz} \det_p (I - zA) = h(z) \det_p (I - zA), \tag{28}
\]

where

\[
h(z) := -z^{p-1} \sum_{k=1}^{\infty} \frac{\lambda_k^p (A)}{1 - z\lambda_k (A)}. \tag{29}
\]

Consequently,

\[
\det_p (I - A) = \exp \left[\int_L h(s) \, ds \right]. \tag{30}
\]

But \(|s| \leq 1 \) for any \(s \in L \), and thus by (7)

\[
\left| \int_L h(s) \, ds \right| \leq \sum_{k=1}^{\infty} |\lambda_k (A)| \int_L \frac{|s|^{p-1} |ds|}{|1 - s\lambda_k (A)|} \leq \sum_{k=1}^{\infty} |\lambda_k (A)|^p \leq \frac{l}{\phi_A} N_p^p (\sigma). \tag{31}
\]

Therefore,

\[
|\det_p (I - A)| \geq e^{-\frac{l}{\phi_A} N_p^p (\sigma)}. \tag{32}
\]

as claimed. \(\Box \)

Since

\[
|\det_p (I - B)| \geq |\det_p (I - A) - \det_p (I - A) - \det_p (I - B)|, \tag{33}
\]

Theorems 1 and 4 imply the following result.

Corollary 5. Let \(A, B \in \Gamma_p, p \geq 1, 1 \notin \sigma(A), \) and condition (20) hold. If, in addition,

\[
\exp \left[-\frac{a_p L_{N_p^p (A)} (A)}{\phi_A} \right] > N_{\Gamma_p} (A - B)
\]

\[
\times \exp \left[a_p y_p (\Gamma_p) \left(1 + \frac{1}{2} \left(N_{\Gamma_p} (A + B) + N_{\Gamma_p} (A - B) \right) \right) \right], \tag{34}
\]

then \(I - B \) is invertible.

4. Applications

Suppose \(1 \leq p < \infty \) and that \(A \) a linear operator in \(X \). \(A \) is said to be \(p \)-summing, if there is a constant \(\nu \) such that
regardless of a natural number m and regardless of the choice $x_1, \ldots, x_m \in X$ we have
\[
\left[\sum_{k=1}^{m} \| Ax_k \| \right]^{1/p} \leq v \sup \left\{ \left[\sum_{k=1}^{m} (x^*, x_k) \right]^{1/p} : x^* \in X^*, \| x^* \| = 1 \right\},
\]
(35)
cf. [8]. The least v for which this inequality holds is denoted by $\pi_p(A)$. The set of p-summing operators in X with the finite norm π_p is an ideal, cf. [9], which is denoted by Π_p. By the well-known Theorem 3.7.2 in [9, page 159],
\[
\sum_{k=1}^{\infty} | \lambda_k (A) |^p \leq \pi_p^p (A) \quad (A \in \Pi_p; 2 \leq p < \infty)
\]
(36)
(see also Theorem 17.4.3 in [? , page 298]). Since $\pi_p(A)$ is a norm, Theorems 1 and 4 imply the following.

Corollary 6. Let $A, B \in \Pi_p$ for some integer $p \geq 2$. Then
\[
| \det_p (I - A) - \det_p (I - B) | \leq \pi_p (A - B) \exp \left[\gamma_p \left(1 + \frac{1}{2} \left[\pi_p (A - B) + \pi_p (A + B) \right] \right)^p \right].
\]
(37)
If, in addition, (20) holds, then
\[
| \det_p (I - A) | \geq e^{-\left(\ln \pi_p (A)/\lambda_p \right)}.
\]
(38)
Furthermore, let $L^p_{\infty}(\Omega)(\Omega \subset \mathbb{R}^n; 1 < p < \infty)$ be the space of scalar functions f defined on Ω with a finite positive measure μ and the norm
\[
\| f \| = \left[\int_{\Omega} | f (x) |^p d\mu \right]^{1/p}.
\]
(39)
Let $K : L^p_{\infty}(\Omega) \rightarrow L^p_{\infty}(\Omega)$ be the integral operator
\[
(Kf)(t) = \int_{\Omega} k(t, s) f(s) d\mu \quad (Kf)(t) = \int_{\Omega} k(t, s) f(s) d\mu
\]
(40)
whose kernel k defined on $\Omega \times \Omega$ satisfies the condition
\[
\tilde{k}_p (K) := \left[\int_{\Omega} \left(\int_{\Omega} | k(t, s) |^p d\mu (s) \right)^{1/p} d\mu (t) \right]^{1/p} < \infty,
\]
(41)
where $1/p + 1/p' = 1$. Then K is called a (p, p')-Hille-Tamarkin operator. As it is well known [8, page 43], any (p, p')-Hille-Tamarkin operator K is a p-summing operator and
\[
\pi_p (K) \leq \tilde{k}_p (K).
\]
(42)
Since $\tilde{k}_p (\cdot)$ is a norm, by Theorems 1 and 4 we get.

Corollary 7. Let K and \tilde{K} be (p, p')-Hille-Tamarkin operators in $L^p_{\infty}(\Omega)$ for an integer $p \geq 2$. Then $| \det_p (I - K) | \leq \exp | \gamma_p \tilde{k}_p (K) |$ and
\[
| \det_p (I - K) - \det_p (I - \tilde{K}) | \leq \tilde{k}_p \left(\tilde{K} - \tilde{K} \right) \exp \left[\gamma_p \left(1 + \frac{1}{2} \left[\tilde{k}_p \left(\tilde{K} - \tilde{K} \right) + \tilde{k}_p \left(\tilde{K} + \tilde{K} \right) \right] \right]^{p} \right].
\]
(43)
If, in addition, condition (20) holds for $A = K$, then
\[
| \det_p (I - K) | \geq e^{-\left(\ln \pi_p (K)/\lambda_p \right)}.
\]
(44)

Now let us consider a linear operator T in $L^p (1 < p < \infty)$ generated by an infinite matrix $(\gamma_{jk})_{j=1}^{\infty}$, satisfying
\[
\tilde{\gamma}_p (T) := \left[\sum_{j=1}^{\infty} \left(\sum_{k=1}^{\infty} \gamma_{jk} \right)^{p/p'} \right]^{1/p} < \infty.
\]
(45)
Then T is called a (p, p')-Hille-Tamarkin matrix. As it is well known [8, page 43], any (p, p')-Hille-Tamarkin matrix T is a p-summing operator with
\[
\pi_p (T) \leq \tilde{\gamma}_p (T),
\]
(46)
cf. [9, Sections 5.3.2 and 5.3.3, page 230].
Since $\tilde{\gamma}_p (\cdot)$ is a norm, Theorems 1 and 4 imply the following.

Corollary 8. Let T and \tilde{T} be (p, p')-Hille-Tamarkin matrices for an integer $p \geq 2$. Then $| \det_p (I - T) | \leq \exp | \gamma_p \tilde{\gamma}_p (T) |$ and
\[
| \det_p (I - T) - \det_p (I - \tilde{T}) | \leq \tilde{\gamma}_p \left(\tilde{T} - \tilde{T} \right) \exp \left[\gamma_p \left(1 + \frac{1}{2} \left[\tilde{\gamma}_p \left(\tilde{T} - \tilde{T} \right) + \tilde{\gamma}_p \left(\tilde{T} + \tilde{T} \right) \right] \right]^{p} \right].
\]
(47)
If, in addition, condition (20) holds for $A = T$, then
\[
| \det_p (I - T) | \geq e^{-\left(\ln \pi_p (T)/\lambda_p \right)}.
\]
(48)

Now let $X = H$ be a separable Hilbert space and $L^{q, r}_{\infty} (q > 1, 0 < r < q)$ the Lorentz ideal of compact operators T with the finite quasinorm
\[
N_{q,r} (T) = \left[\sum_{k=1}^{\infty} k^{(q/r) - 1} s_k^q (T) \right]^{1/q},
\]
(49)
where $s_k (T)$ are the singular numbers of T taken with their multiplicities. So
\[
N_{q,r} (T + \tilde{T}) \leq c_{q,r} \left(N_{q,r} (T) + N_{q,r} (\tilde{T}) \right)
\]
(50)
\[
(c_{q,r} = \text{const}; T, \tilde{T} \in L_{q,r}).
\]
For the details, see [? , Section 1.1]. By [? , Lemma 1.4],
\[
\sum_{k=1}^{\infty} k^{(q/r) - 1} |\lambda_k(T)|^q \leq c_{q,r} N_{q,r}^p(T).
\] (51)

For an integer \(p \geq 1 \), let \(q > p \) and \(r = qp/(p + q) \). Then simple calculations show that \((q/r) - 1 = q/p \). By the Hölder inequality, for \(d = q/p \), we obtain
\[
\sum_{k=1}^{\infty} |\lambda_k(T)|^p \leq \tau (d) \left(\sum_{k=1}^{\infty} k^d |\lambda_k(T)|^{pd} \right)^{1/d}
\] (52)
with
\[
\tau (d) = \left(\sum_{k=1}^{\infty} k^{-d} \right)^{1/d} \left(\frac{1}{d} + \frac{1}{d} = 1 \right).
\] (53)

So we have
\[
\sum_{k=1}^{\infty} |\lambda_k(T)|^p \leq \tau (q/p) \left(\sum_{k=1}^{\infty} k^{(q/r) - 1} |\lambda_k(T)|^q \right)^{p/q}.
\] (54)

Thus (51) implies the following result.

Lemma 9. For an integer \(p \geq 1 \) and a \(q > p \), let \(T \in L_{q,r} \) with \(r = qp/(p + q) \). Then
\[
\sum_{k=1}^{\infty} |\lambda_k(T)|^p \leq c_{q,r} \tau \left(\frac{q}{p} \right) N_{q,r}^p(T).
\] (55)

Now we can directly apply Theorems 1 and 4.

References

