Research Article

Bessel Transform of \((k, \gamma)\)-Bessel Lipschitz Functions

Radouan Daher and Mohamed El Hamma

Department of Mathematics, Faculty of Sciences Ain Chock, University of Hassan II, Casablanca 20100, Morocco

Correspondence should be addressed to Mohamed El Hamma; elmohamed77@yahoo.fr

Received 7 January 2013; Revised 12 March 2013; Accepted 13 March 2013

Academic Editor: Nasser Saad

Copyright © 2013 R. Daher and M. El Hamma. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Using a generalized translation operator, we obtain an analog of Theorem 5.2 in Younis (1986) for the Bessel transform for functions satisfying the \((k, \gamma)\)-Bessel Lipschitz condition in \(L^2(\mathbb{R}^+\)).

1. Introduction and Preliminaries

Younis Theorem 5.2 [1] characterized the set of functions in \(L^2(\mathbb{R})\) satisfying the Cauchy Lipschitz condition by means of an asymptotic estimate growth of the norm of their Fourier transforms; namely, we have the following.

Theorem 1 (see [1]). Let \(f \in L^2(\mathbb{R})\). Then the following are equivalent:

1. \(|f(x + h) - f(x)|_2 = O(h^\alpha/(\log(1/h))^\beta)\) as \(h \to 0, 0 < \alpha < 1, \beta > 0\),
2. \(\int_{|x|\geq r} |\mathcal{F}(f)(x)|^2 dx = O(r^{-2\alpha}(\log r)^{-2\beta})\) as \(r \to \infty\),

where \(\mathcal{F}\) stands for the Fourier transform of \(f\).

In this paper, we obtain a generalization of Theorem 1 for the Bessel transform. For this purpose, we use a generalized translation operator.

Assume that \(L_{2,\alpha}(\mathbb{R}^+)\), \(\alpha > -1/2\) is the Hilbert space of measurable functions \(f(t)\) on \(\mathbb{R}^+_\) with finite norm

\[
\|f\|_{2,\alpha} = \left(\int_0^{\infty} |f(x)|^2 x^{2\alpha+1} \, dx \right)^{1/2}.
\]

Let

\[
B = \frac{d^2}{dt^2} + \frac{(2\alpha + 1)}{t} \frac{d}{dt}
\]

be the Bessel differential operator.

For \(\alpha \geq -1/2\), we introduce the Bessel normalized function of the first kind \(j_\alpha\) defined by

\[
j_\alpha(z) = \Gamma(\alpha + 1) \sum_{n=0}^{\infty} \frac{(-1)^n}{n! \Gamma(n + \alpha + 1)} \left(\frac{z}{2} \right)^{2n},
\]

where \(\Gamma\) is the gamma function (see [2]).

The function \(y = j_\alpha(x)\) satisfies the differential equation

\[
By + y = 0,
\]

with the initial conditions \(y(0) = 1\) and \(y'(0) = 0\). \(j_\alpha(z)\) is function infinitely differentiable, even, and, moreover, entirely analytic.

Lemma 2. For \(x \in \mathbb{R}^+_\), the following inequality is fulfilled:

\[
|1 - j_\alpha(x)| \geq c,
\]

with \(x \geq 1\), where \(c > 0\) is a certain constant which depends only on \(\alpha\).

Proof. Analog of Lemma 2.9 is in [3].

Lemma 3. The following inequalities are valid for Bessel function \(j_\alpha\):

1. \(|j_\alpha(x)| \leq 1, \text{ for all } x \in \mathbb{R}^+_\),
2. \(1 - j_\alpha(x) = O(x^2), 0 \leq x \leq 1\).

Proof. See [4].
The Bessel transform we call the integral transform from
\[f(t) \lambda^{2\alpha+1} dt, \quad \alpha \in \mathbb{R}^+. \] (6)
The inverse Bessel transform is given by the formula
\[f(t) = (2^{\alpha} \Gamma(\alpha + 1))^{-1} \int_0^{\infty} \tilde{f}(\lambda) j_\alpha(\lambda t) \lambda^{2\alpha+1} d\lambda. \] (7)
We have the Parseval's identity
\[\| f \|_{2\alpha} = \frac{2^{\alpha} \Gamma(\alpha + 1)}{\Gamma(1/2) \Gamma(\alpha + (1/2))}. \] (8)

In \(L_{2\alpha}(\mathbb{R}_+), \) consider the generalized translation operator \(T_h \) defined by
\[T_h f(t) = c_\alpha \int_0^t f \left(\sqrt{t^2 + h^2 - 2th \cos \varphi} \right) \sin^{2\alpha} \varphi d\varphi, \] (9)
where
\[c_\alpha = \left(\int_0^\pi \sin^{2\alpha} \varphi d\varphi \right)^{-1} = \frac{\Gamma(\alpha + 1)}{\Gamma(1/2) \Gamma(\alpha + (1/2))}. \] (10)

The following relations connect the generalized translation operator and the Bessel transform; in [7] we have
\[(T_h \tilde{f})(\lambda) = j_\alpha(\lambda h) \tilde{f}(\lambda). \] (11)

2. Main Result

In this section we give the main result of this paper. We need first to define \((k, \gamma)\)-Bessel Lipschitz class.

Definition 4. Let \(0 < k < 1 \) and \(\gamma \geq 0. \) A function \(f \in L_{2\alpha}(\mathbb{R}_+) \) is said to be in the \((k, \gamma)\)-Bessel Lipschitz class, denoted by Lip\((k, \gamma, 2)\), if
\[\| T_h f(t) - f(t) \|_{2\alpha} = O \left(\frac{h^k}{(\log(1/h))^{2\gamma}} \right), \quad h \to 0. \] (12)

Our main result is as follows.

Theorem 5. Let \(f \in L_{2\alpha}(\mathbb{R}_+) \). Then the following are equivalents

1. \(f \in \text{Lip}(k, \gamma, 2) \).
2. \(\int_0^\infty |\tilde{f}(\lambda)|^2 \lambda^{2\alpha+1} d\lambda = O(r^{-2k} / (\log r)^{2\gamma}), \quad r \to +\infty. \)

Proof. (1) \(\Rightarrow \) (2) Assume that \(f \in \text{Lip}(k, \gamma, 2) \). Then we have
\[\| T_h f(t) - f(t) \|_{2\alpha}^2 = \frac{1}{(2^{\alpha} \Gamma(\alpha + 1))^{2\gamma}} \int_0^\infty |1 - j_\alpha(\lambda h)|^2 |\tilde{f}(\lambda)|^2 \lambda^{2\alpha+1} d\lambda. \] (13)

If \(\lambda \in [1/h, 2/h] \) then \(\lambda h \geq 1 \) and Lemma 2 implies that
\[1 \leq \frac{1}{c_\alpha} |1 - j_\alpha(\lambda h)|. \] (14)

Then
\[\int_0^{2/h} \left| \tilde{f}(\lambda) \right|^2 \lambda^{2\alpha+1} d\lambda \]
\[= \frac{1}{c_\alpha} \int_0^{2/h} |1 - j_\alpha(\lambda h)|^2 |\tilde{f}(\lambda)|^2 \lambda^{2\alpha+1} d\lambda \]
\[\leq \frac{1}{c_\alpha} \int_0^{\infty} |1 - j_\alpha(\lambda h)|^2 |\tilde{f}(\lambda)|^2 \lambda^{2\alpha+1} d\lambda \]
\[= O \left(\frac{h^k}{(\log(1/h))^{2\gamma}} \right). \] (15)

We obtain
\[\int_r^{2r} \left| \tilde{f}(\lambda) \right|^2 \lambda^{2\alpha+1} d\lambda \leq C \frac{r^{-2k}}{(\log r)^{2\gamma}}, \] (16)
where \(C \) is a positive constant.

So that
\[\int_0^{\infty} \left| \tilde{f}(\lambda) \right|^2 \lambda^{2\alpha+1} d\lambda = \left[\int_r^{2r} + \int_{2r}^{4r} + \cdots \right] |\tilde{f}(\lambda)|^2 \lambda^{2\alpha+1} d\lambda \]
\[\leq C \frac{r^{-2k}}{(\log r)^{2\gamma}} + C \frac{(2r)^{-2k}}{(\log 2r)^{2\gamma}} + C \frac{(4r)^{-2k}}{(\log 4r)^{2\gamma}} + \cdots \]
\[\leq C \frac{r^{-2k}}{(\log r)^{2\gamma}} \left(1 + 2^{-2k} + (2^{-2k})^2 + (2^{-2k})^3 + \cdots \right) \]
\[\leq CK \frac{r^{-2k}}{(\log r)^{2\gamma}}, \] (17)
where \(K = (1 - 2^{-2k})^{-1} \) since \(2^{-2k} < 1. \)

This proves that
\[\int_0^{\infty} \left| \tilde{f}(\lambda) \right|^2 \lambda^{2\alpha+1} d\lambda = O \left(\frac{r^{-2k}}{(\log r)^{2\gamma}} \right) \quad \text{as } r \to +\infty. \] (18)

(2) \(\Rightarrow \) (1) Suppose now that
\[\int_0^{\infty} \left| \tilde{f}(\lambda) \right|^2 \lambda^{2\alpha+1} d\lambda = O \left(\frac{r^{-2k}}{(\log r)^{2\gamma}} \right) \quad \text{as } r \to +\infty. \] (19)

We write
\[\int_0^{\infty} |1 - j_\alpha(\lambda h)|^2 |\tilde{f}(\lambda)|^2 \lambda^{2\alpha+1} d\lambda = I_1 + I_2, \] (20)
where
\begin{align*}
I_1 &= \int_0^{1/h} \left| 1 - j_a (\lambda h) \right|^2 \left| \tilde{f} (\lambda) \right|^2 \lambda^{2a+1} d\lambda, \\
I_2 &= \int_{1/h}^{\infty} \left| 1 - j_a (\lambda h) \right|^2 \left| \tilde{f} (\lambda) \right|^2 \lambda^{2a+1} d\lambda.
\end{align*}
(21)

Estimate the summands \(I_1\) and \(I_2\) from above. It follows from the inequality \(|j_a (\lambda h)| \leq 1\) that
\begin{align*}
I_2 &= \int_{1/h}^{\infty} \left| 1 - j_a (\lambda h) \right|^2 \left| \tilde{f} (\lambda) \right|^2 \lambda^{2a+1} d\lambda \\
&\leq 4 \int_{1/h}^{\infty} \left| \tilde{f} (\lambda) \right|^2 \lambda^{2a+1} d\lambda = O \left(\frac{h^{2k}}{(\log (1/h))^{2\gamma}} \right).
\end{align*}
(22)

To estimate \(I_1\), we use the inequality (2) of Lemma 3. Set
\begin{equation}
\phi (x) = \int_x^{\infty} \left| \tilde{f} (\lambda) \right|^2 \lambda^{2a+1} d\lambda.
\end{equation}
(23)

Using integration by parts, we obtain
\begin{align*}
I_1 &\leq -C_1 h^2 \int_0^{1/h} s^2 \phi' (s) ds \\
&\leq -C_1 \phi \left(\frac{1}{h} \right) + 2C_1 h^2 \int_0^{1/h} s \phi (s) ds \\
&\leq C_2 h^2 \int_0^{1/h} s \phi (s) ds \\
&\leq C_2 h^2 \int_0^{1/h} s s^{-2k} (\log s)^{-2\gamma} ds \\
&\leq C_2 h^{2k} (\log (1/h))^{-2\gamma},
\end{align*}
(24)

where \(C_1, C_2, \) and \(C_2\) are positive constants and this ends the proof. \(\Box\)

References

