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Abstract. 
Let 
	
		
			
				ℝ
				=
				(
				−
				∞
				,
				∞
				)
			

		
	
, and let 
	
		
			
				𝑄
				∈
				𝐶
			

			

				1
			

			
				(
				ℝ
				)
				∶
				ℝ
				→
				[
				0
				,
				∞
				)
			

		
	
 be an even function. In this paper, we consider some Lagrange interpolation polynomials and the Gauss-Jacobi quadrature formula of entire functions associated with Erdös-type weights 
	
		
			
				𝑤
				(
				𝑥
				)
				=
				𝑒
			

			
				−
				𝑄
				(
				𝑥
				)
			

		
	
, 
	
		
			
				𝑥
				∈
				ℝ
			

		
	
, and we will estimate the error terms. 


1. Introduction
For a weight 
	
		
			

				𝑤
			

		
	
, we suppose that 
	
		
			

				∫
			

			
				∞
				0
			

			

				𝑥
			

			

				𝑛
			

			

				𝑤
			

			

				2
			

			
				(
				𝑥
				)
				𝑑
				𝑥
				<
				∞
			

		
	
 for all 
	
		
			
				𝑛
				=
				0
				,
				1
				,
				2
				,
				…
			

		
	
. Then we define a unique sequence of orthonormal polynomials 
	
		
			
				{
				𝑝
			

			

				𝑛
			

			
				(
				𝑤
				;
				𝑥
				)
				}
			

		
	
 as follows: 
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			

				
			

			
				∞
				−
				∞
			

			

				𝑝
			

			

				𝑛
			

			
				(
				𝑤
				;
				𝑥
				)
				𝑝
			

			

				𝑚
			

			
				(
				𝑤
				;
				𝑥
				)
				𝑤
				(
				𝑥
				)
				𝑑
				𝑥
				=
				𝛿
			

			
				𝑛
				,
				𝑚
			

			
				(
				t
				h
				e
				K
				r
				o
				n
				e
				c
				k
				e
				r
				s
				y
				m
				b
				o
				l
				)
				,
			

		
	

					where 
	
		
			

				𝑝
			

			

				𝑛
			

			
				(
				𝑤
				;
				𝑥
				)
				∶
				=
				𝛾
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			
				+
				⋯
				,
				𝛾
			

			

				𝑛
			

			
				>
				0
			

		
	
 is a polynomial of degree 
	
		
			

				𝑛
			

		
	
. Furthermore, we denote the zeros of 
	
		
			

				𝑝
			

			

				𝑛
			

			
				(
				𝑤
				;
				𝑥
				)
			

		
	
 by 
	
		
			

				𝑥
			

			
				𝑘
				,
				𝑛
			

		
	
  
	
		
			
				(
				𝑘
				=
				1
				,
				2
				,
				…
				,
				𝑛
				)
			

		
	
,  
	
		
			

				𝑥
			

			
				1
				,
				𝑛
			

			
				>
				𝑥
			

			
				2
				,
				𝑛
			

			
				>
				⋯
				>
				𝑥
			

			
				𝑛
				,
				𝑛
			

		
	
. Hence, 
						
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			

				𝑝
			

			

				𝑛
			

			
				(
				𝑤
				;
				𝑥
				)
				=
				𝛾
			

			

				𝑛
			

			
				
				𝑥
				−
				𝑥
			

			
				𝑛
				,
				𝑛
			

			
				
				⋯
				
				𝑥
				−
				𝑥
			

			
				2
				,
				𝑛
			

			
				
				
				𝑥
				−
				𝑥
			

			
				1
				,
				𝑛
			

			
				
				.
			

		
	

					For a given function 
	
		
			

				𝑓
			

		
	
, the Lagrange interpolation polynomial 
	
		
			

				𝐿
			

			

				𝑛
			

			
				(
				𝑤
				;
				𝑓
				)
			

		
	
 with the weight 
	
		
			

				𝑤
			

		
	
 is defined to be a unique polynomial of degree at most 
	
		
			
				𝑛
				−
				1
			

		
	
 which coincides with 
	
		
			

				𝑓
			

		
	
 at 
	
		
			

				𝑥
			

			
				𝑘
				,
				𝑛
			

		
	
,  
	
		
			
				𝑘
				=
				1
				,
				2
				,
				…
				,
				𝑛
			

		
	
. Then we have the representation
						
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			

				𝐿
			

			

				𝑛
			

			
				(
				𝑤
				;
				𝑓
				;
				𝜉
				)
				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				1
			

			
				𝑓
				
				𝑥
			

			
				𝑘
				,
				𝑛
			

			
				
				𝑙
			

			
				𝑘
				,
				𝑛
			

			
				(
				𝜉
				)
				,
			

		
	

					where 
						
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			

				𝑙
			

			
				𝑘
				,
				𝑛
			

			
				𝑝
				(
				𝜉
				)
				=
			

			

				𝑛
			

			
				(
				𝑤
				;
				𝜉
				)
			

			
				
			
			

				𝑝
			

			
				
				𝑛
			

			
				
				𝑤
				;
				𝑥
			

			
				𝑘
				,
				𝑛
			

			
				
				
				𝜉
				−
				𝑥
			

			
				𝑘
				,
				𝑛
			

			
				
				,
				𝑘
				=
				1
				,
				2
				,
				…
				,
				𝑛
				.
			

		
	

					The Gauss-Jacobi quadrature formula to the function 
	
		
			

				𝑓
			

		
	
 is defined by 
						
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			

				𝑄
			

			

				𝑛
			

			
				(
				𝑤
				;
				𝑓
				)
				∶
				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				1
			

			

				𝜆
			

			

				𝑛
			

			
				
				𝑤
				;
				𝑥
			

			
				𝑘
				,
				𝑛
			

			
				
				𝑓
				
				𝑥
			

			
				𝑘
				,
				𝑛
			

			
				
				,
			

		
	

					where the coefficients 
	
		
			

				𝜆
			

			

				𝑛
			

			
				(
				𝑤
				;
				𝑥
			

			
				𝑘
				,
				𝑛
			

			

				)
			

		
	
 are the Christoffel numbers, which are given by 
						
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			

				𝜆
			

			

				𝑛
			

			
				
				(
				𝑤
				;
				𝑥
				)
				∶
				=
			

			
				𝑛
				−
				1
			

			

				
			

			
				𝑘
				=
				1
			

			

				𝑝
			

			

				𝑘
			

			
				(
				𝑤
				;
				𝑥
				)
			

			

				2
			

			

				
			

			
				−
				1
			

			

				.
			

		
	

We denote by 
	
		
			

				𝑊
			

		
	
 a class of all weight functions of the form 
	
		
			
				𝑤
				=
				e
				x
				p
				(
				−
				2
				𝑄
				)
			

		
	
 such that 
	
		
			

				𝑄
			

		
	
 is an even differentiable function on 
	
		
			

				ℝ
			

		
	
, except possibly at 
	
		
			
				𝑥
				=
				0
			

		
	
, increasing for 
	
		
			
				𝑥
				>
				0
			

		
	
, and there exists 
	
		
			
				𝜌
				<
				1
			

		
	
 such that 
	
		
			

				𝑥
			

			

				𝜌
			

			

				𝑄
			

			

				
			

			
				(
				𝑥
				)
			

		
	
 is increasing. In addition, the unique positive sequence 
	
		
			
				{
				𝑞
			

			

				𝑛
			

			

				}
			

		
	
 determined by 
	
		
			

				𝑞
			

			

				𝑛
			

			

				𝑄
			

			

				
			

			
				(
				𝑞
			

			

				𝑛
			

			
				)
				=
				𝑛
			

		
	
 satisfies the condition 
	
		
			

				𝑞
			

			
				2
				𝑛
			

			
				/
				𝑞
			

			

				𝑛
			

			
				≥
				𝐶
				>
				1
				,
				𝑛
				=
				1
				,
				2
				,
				…
			

		
	
, for some constant 
	
		
			

				𝐶
			

		
	
.
For an entire function 
	
		
			

				𝑓
			

		
	
 and 
	
		
			
				𝑅
				>
				0
			

		
	
, we set 
						
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			

				𝑀
			

			

				𝑓
			

			
				(
				𝑅
				)
				∶
				=
				m
				a
				x
			

			
				|
				𝑧
				|
				=
				𝑅
			

			
				|
				|
				|
				|
				𝑓
				(
				𝑧
				)
				,
				𝑧
				∈
				ℂ
				.
			

		
	

					In [1, 2], Al-Jarrah showed the following results (see also [3–5]).
Theorem 1.  Let 
	
		
			
				𝑤
				∈
				𝑊
			

		
	
 and 
	
		
			

				𝑓
			

		
	
 be an entire function. (1)There exists a constant 
	
		
			
				𝐴
				∈
				(
				0
				,
				1
				)
			

		
	
, depending on 
	
		
			

				𝑄
			

		
	
 only, such that if 
	
		
			

				𝑓
			

		
	
 satisfies 
										
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑅
				→
				∞
			

			
				l
				o
				g
				𝑀
			

			

				𝑓
			

			
				(
				𝑅
				)
			

			
				
			
			
				2
				𝑄
				(
				𝑅
				)
				≤
				𝐴
				,
			

		
	

									then, uniformly on compact subsets of 
	
		
			

				ℂ
			

		
	
, 
										
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			
				|
				|
				𝑓
				(
				𝜉
				)
				−
				𝐿
			

			

				𝑛
			

			
				|
				|
				(
				𝑤
				;
				𝑓
				;
				𝜉
				)
			

			
				1
				/
				𝑛
			

			
				<
				1
				,
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			
				|
				|
				|
				|
				
			

			

				ℝ
			

			
				𝑓
				(
				𝑥
				)
				𝑤
				(
				𝑥
				)
				𝑑
				𝑥
				−
				𝑄
			

			

				𝑛
			

			
				|
				|
				|
				|
				(
				𝑤
				;
				𝑓
				)
			

			
				1
				/
				𝑛
			

			
				<
				1
				.
			

		
	
(2)If the entire function 
	
		
			

				𝑓
			

		
	
 satisfies 
										
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑅
				→
				∞
			

			
				l
				o
				g
				𝑀
			

			

				𝑓
			

			
				(
				𝑅
				)
			

			
				
			
			
				2
				𝑄
				(
				𝑅
				)
				=
				0
				,
			

		
	

									then, uniformly on compact subsets of 
	
		
			

				ℂ
			

		
	
, 
										
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				|
				|
				𝑓
				(
				𝜉
				)
				−
				𝐿
			

			

				𝑛
			

			
				|
				|
				(
				𝑤
				;
				𝑓
				;
				𝜉
				)
			

			
				1
				/
				𝑛
			

			
				=
				0
				,
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				|
				|
				|
				|
				
			

			

				ℝ
			

			
				𝑓
				(
				𝑥
				)
				𝑤
				(
				𝑥
				)
				𝑑
				𝑥
				−
				𝑄
			

			

				𝑛
			

			
				|
				|
				|
				|
				(
				𝑤
				;
				𝑓
				)
			

			
				1
				/
				𝑛
			

			
				=
				0
				.
			

		
	

In this paper, we extend the above results to Erdös-type weights. Note that every weight in 
	
		
			

				𝑊
			

		
	
 is not Erdös-type (see Remark 4). In Section 2, we recall the definition of 
	
		
			
				ℱ
				(
				l
				i
				p
				(
				1
				/
				2
				)
				+
				)
			

		
	
, which is the class of weights we discuss here. Our theorems are stated in Section 3.
2. Preliminaries
For any nonzero real valued functions 
	
		
			
				𝑓
				(
				𝑥
				)
			

		
	
 and 
	
		
			
				𝑔
				(
				𝑥
				)
			

		
	
, we write 
	
		
			
				𝑓
				(
				𝑥
				)
				∼
				𝑔
				(
				𝑥
				)
			

		
	
 if there exists a constant 
	
		
			
				𝐶
				>
				1
			

		
	
 such that 
	
		
			

				𝐶
			

			
				−
				1
			

			
				𝑔
				(
				𝑥
				)
				≤
				𝑓
				(
				𝑥
				)
				≤
				𝐶
				𝑔
				(
				𝑥
				)
			

		
	
 for all 
	
		
			

				𝑥
			

		
	
. Throughout this paper, 
	
		
			

				𝐶
			

		
	
 denotes a positive constant independent of 
	
		
			
				𝑛
				,
				𝑥
				,
				𝑡
			

		
	
. The same symbol does not necessarily denote the same constant in different occurrences. We say that 
	
		
			
				𝑓
				∶
				ℝ
			

			

				+
			

			
				∶
				=
				[
				0
				,
				∞
				)
				→
				ℝ
			

			

				+
			

		
	
 is quasi-increasing if there exists 
	
		
			
				𝐶
				>
				0
			

		
	
 such that 
	
		
			
				𝑓
				(
				𝑥
				)
				≤
				𝐶
				𝑓
				(
				𝑦
				)
				,
				0
				<
				𝑥
				<
				𝑦
			

		
	
.
First, we recall a class of weights.
Definition 2 (see cf. [6, Definition 1.2]). Let 
	
		
			
				𝑄
				∶
				ℝ
				→
				[
				0
				,
				∞
				)
			

		
	
 be a continuous even function. We write 
	
		
			
				𝑤
				=
				e
				x
				p
				(
				−
				𝑄
				)
				∈
				ℱ
				(
				l
				i
				p
				(
				1
				/
				2
				)
				+
				)
			

		
	
 if 
	
		
			

				𝑄
			

		
	
 satisfies the following properties.(a)
	
		
			

				𝑄
			

			

				
			

			
				(
				𝑥
				)
			

		
	
 is continuous in 
	
		
			

				ℝ
			

		
	
, with 
	
		
			
				𝑄
				(
				0
				)
				=
				0
			

		
	
. (b)
	
		
			

				𝑄
			

			

				
			

			
				(
				𝑥
				)
			

		
	
 is nondecreasing in 
	
		
			

				ℝ
			

		
	
. (c)
	
		
			
				l
				i
				m
			

			
				𝑥
				→
				∞
			

			
				𝑄
				(
				𝑥
				)
				=
				∞
			

		
	
. (d)The function 
	
		
			
				𝑇
				(
				𝑥
				)
				∶
				=
				𝑥
				𝑄
			

			

				
			

			
				(
				𝑥
				)
				/
				𝑄
				(
				𝑥
				)
			

		
	
, 
	
		
			
				𝑥
				≠
				0
			

		
	
, is quasi-increasing in 
	
		
			
				(
				0
				,
				∞
				)
			

		
	
 and 
	
		
			
				𝑇
				(
				𝑥
				)
				⩾
				Λ
				>
				1
			

		
	
, 
	
		
			
				𝑥
				∈
				ℝ
				⧵
				{
				0
				}
			

		
	
. (e)There exists 
	
		
			

				𝜀
			

			

				0
			

			
				∈
				(
				0
				,
				1
				)
			

		
	
 such that for 
	
		
			
				𝑥
				∈
				ℝ
				⧵
				{
				0
				}
			

		
	
, 
	
		
			
				𝑇
				(
				𝑥
				)
				∼
				𝑇
				(
				𝑥
				(
				1
				−
				(
				𝜀
			

			

				0
			

			
				/
				𝑇
				(
				𝑥
				)
				)
				)
				)
			

		
	
. (f)For any 
	
		
			
				𝜀
				>
				0
			

		
	
, there exists 
	
		
			
				𝛿
				>
				0
			

		
	
 such that for any 
	
		
			
				𝑥
				∈
				ℝ
				⧵
				{
				0
				}
			

		
	
, 
										
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			

				
			

			
				𝑥
				+
				𝛿
				|
				𝑥
				|
				/
				𝑇
				(
				𝑥
				)
				𝑥
				−
				𝛿
				|
				𝑥
				|
				/
				𝑇
				(
				𝑥
				)
			

			

				𝑄
			

			

				
			

			
				(
				𝑠
				)
				−
				𝑄
			

			

				
			

			
				(
				𝑥
				)
			

			
				
			
			
				|
				𝑠
				−
				𝑥
				|
			

			
				3
				/
				2
			

			
				|
				|
				𝑄
				𝑑
				𝑠
				≤
				𝜀
			

			

				
			

			
				|
				|
				
				(
				𝑥
				)
			

			
				
			
			
				𝑇
				(
				𝑥
				)
			

			
				
			
			
				.
				|
				𝑥
				|
			

		
	

Example 3. Let 
	
		
			
				𝑤
				=
				e
				x
				p
				(
				−
				𝑄
				)
				∈
				ℱ
				(
				l
				i
				p
				(
				1
				/
				2
				)
				+
				)
			

		
	
.(1)If 
	
		
			
				𝑇
				(
				𝑥
				)
			

		
	
 is bounded, then the weight 
	
		
			
				𝑤
				(
				𝑥
				)
			

		
	
 is called a Freud-type weight (see [5]). We see that 
	
		
			
				𝑤
				(
				𝑥
				)
				=
				e
				x
				p
				(
				−
				|
				𝑥
				|
			

			

				𝛼
			

			

				)
			

		
	
, 
	
		
			
				𝛼
				>
				1
			

		
	
, is a Freud-type weight.(2)If 
	
		
			
				𝑇
				(
				𝑥
				)
			

		
	
 is unbounded, then 
	
		
			
				𝑤
				(
				𝑥
				)
			

		
	
 is called an Erdös-type weight. The following 
	
		
			

				𝑄
			

		
	
s give Erdös-type weights 
	
		
			
				𝑤
				=
				e
				x
				p
				(
				−
				𝑄
				)
			

		
	
 (see [7, Example 1.2], [8, Theorem 3.1]). Let 
	
		
			
				e
				x
				p
			

			

				𝑙
			

			
				(
				𝑥
				)
				∶
				=
				e
				x
				p
				(
				e
				x
				p
				(
				e
				x
				p
				⋯
				e
				x
				p
				𝑥
				)
				⋯
				)
				(
				𝑙
				t
				i
				m
				e
				s
				)
			

		
	
 for 
	
		
			
				𝑙
				=
				1
				,
				2
				,
				…
			

		
	
. Then for 
	
		
			
				𝛼
				+
				𝛽
				>
				1
			

		
	
, 
	
		
			
				𝛼
				>
				0
			

		
	
, and 
	
		
			
				𝛽
				≥
				0
			

		
	
, we set 
										
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			
				𝑄
				(
				𝑥
				)
				=
				𝑄
			

			
				𝑙
				,
				𝛼
				,
				𝛽
			

			
				(
				𝑥
				)
				∶
				=
				|
				𝑥
				|
			

			

				𝛽
			

			
				
				e
				x
				p
			

			

				𝑙
			

			
				(
				|
				𝑥
				|
			

			

				𝛼
			

			
				)
				−
				e
				x
				p
			

			

				𝑙
			

			
				
				.
				(
				0
				)
			

		
	
Also, for 
	
		
			
				𝛼
				>
				1
			

		
	
, put 
	
		
			
				𝑄
				(
				𝑥
				)
				=
				𝑄
			

			

				𝛼
			

			
				(
				𝑥
				)
				∶
				=
				(
				1
				+
				|
				𝑥
				|
				)
			

			
				|
				𝑥
				|
			

			

				𝛼
			

			
				−
				1
			

		
	
.
Remark 4. Every weight 
	
		
			

				𝑤
			

		
	
 in 
	
		
			

				𝑊
			

		
	
 is Freud type. In fact, by definition, 
	
		
			

				𝑞
			

			

				2
			

			

				𝑘
			

			
				≥
				𝐶
			

			

				𝑘
			

			

				𝑞
			

			

				1
			

		
	
. On the other hand, if we assume that 
	
		
			

				𝑤
			

		
	
 is Erdös type, then for any given 
	
		
			
				𝑀
				>
				0
			

		
	
, there exists a constant 
	
		
			
				𝐶
				>
				0
			

		
	
 such that 
	
		
			

				𝑄
			

			

				
			

			
				(
				𝑥
				)
				/
				𝑄
				(
				𝑥
				)
				=
				𝑇
				(
				𝑥
				)
				/
				𝑥
				≥
				(
				𝑀
				+
				1
				)
				/
				𝑥
			

		
	
 for 
	
		
			
				𝑥
				>
				𝐶
			

		
	
. By integration, we see 
							
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			

				𝑥
			

			
				𝑀
				+
				1
			

			
				≤
				𝐶
				𝑄
				(
				𝑥
				)
			

		
	

						for 
	
		
			
				𝑥
				>
				𝐶
			

		
	
. Since 
	
		
			

				𝑞
			

			

				𝑛
			

			
				𝑄
				(
				𝑞
			

			

				𝑛
			

			
				)
				=
				𝑛
			

		
	
, 
	
		
			

				𝑞
			

			
				𝑛
				𝑀
				+
				1
			

			
				≤
				𝐶
				𝑄
				(
				𝑞
			

			

				𝑛
			

			
				)
				=
				𝐶
				𝑛
				/
				𝑞
			

			

				𝑛
			

		
	
; that is, 
	
		
			

				𝑞
			

			

				𝑛
			

			
				≤
				𝐶
				𝑛
			

			
				1
				/
				(
				𝑀
				+
				2
				)
			

		
	
. If we take 
	
		
			
				𝑀
				>
				0
			

		
	
 sufficiently large, this contradicts the fact that 
	
		
			

				𝑞
			

			

				2
			

			

				𝑘
			

			
				≥
				𝐶
			

			

				𝑘
			

			

				𝑞
			

			

				1
			

		
	
 (cf. [7, Lemma 3.2]).
For 
	
		
			
				𝑢
				>
				0
			

		
	
, we define the Mhaskar-Rakhmanov-Saff number 
	
		
			

				𝑎
			

			

				𝑢
			

		
	
 by
						
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			
				2
				𝑢
				=
			

			
				
			
			
				𝜋
				
			

			
				1
				0
			

			

				𝑎
			

			

				𝑢
			

			
				𝑡
				𝑄
			

			

				
			

			
				
				𝑎
			

			

				𝑢
			

			
				𝑡
				
			

			
				
			
			
				
				1
				−
				𝑡
			

			

				2
			

			

				
			

			
				1
				/
				2
			

			
				𝑑
				𝑡
				.
			

		
	

Lemma 5.  Let 
	
		
			
				𝑤
				=
				e
				x
				p
				(
				−
				𝑄
				)
				∈
				ℱ
				(
				l
				i
				p
				(
				1
				/
				2
				)
				+
				)
			

		
	
. (1)([6, Lemma  3.4 (3.18)]) For 
	
		
			
				𝑡
				>
				0
			

		
	
, 
	
		
			
				𝑄
				(
				𝑎
			

			

				𝑡
			

			
				√
				)
				∼
				𝑡
				/
			

			
				
			
			
				𝑇
				(
				𝑎
			

			

				𝑡
			

			

				)
			

		
	
.(2)([6, Theorem 1.19 (f)]) There exists 
	
		
			

				𝑛
			

			

				0
			

			
				>
				0
			

		
	
 such that for 
	
		
			
				𝑛
				⩾
				𝑛
			

			

				0
			

		
	
, 
	
		
			
				1
				−
				𝑥
			

			
				1
				,
				𝑛
			

			
				/
				𝑎
			

			

				𝑛
			

			
				∼
				1
				/
				(
				𝑛
				𝑇
				(
				𝑎
			

			

				𝑛
			

			
				)
				)
			

			
				2
				/
				3
			

		
	
. In particular 
	
		
			

				𝑥
			

			
				1
				,
				𝑛
			

			
				≤
				𝑎
			

			

				𝑛
			

		
	
 holds.(3)([6, Theorem 15.2 (15.8)]) There exists 
	
		
			
				𝐶
				>
				0
			

		
	
 such that 
	
		
			

				𝛾
			

			
				𝑛
				−
				1
			

			
				/
				𝛾
			

			

				𝑛
			

			
				≤
				𝐶
				𝑎
			

			

				𝑛
			

		
	
 for all 
	
		
			
				𝑛
				=
				1
				,
				2
				,
				…
			

		
	
.
For an entire function 
	
		
			

				𝑓
			

		
	
 and 
	
		
			
				𝑛
				=
				1
				,
				2
				,
				…
			

		
	
, we set 
						
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			

				𝐸
			

			

				𝑛
			

			
				(
				𝜉
				)
				∶
				=
				𝑓
				(
				𝜉
				)
				−
				𝐿
			

			

				𝑛
			

			
				(
				𝑤
				;
				𝑓
				;
				𝜉
				)
				.
			

		
	

					Then by the residue theorem, for 
	
		
			
				𝜉
				∈
				𝐷
			

			

				𝑛
			

		
	
, we have 
						
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			

				𝐸
			

			

				𝑛
			

			
				𝑝
				(
				𝜉
				)
				=
			

			

				𝑛
			

			
				(
				𝑤
				;
				𝜉
				)
			

			
				
			
			
				
				2
				𝜋
				𝑖
			

			

				𝐶
			

			

				𝑛
			

			
				𝑓
				(
				𝑧
				)
				𝑑
				𝑧
			

			
				
			
			

				𝑝
			

			

				𝑛
			

			
				,
				(
				𝑤
				;
				𝑧
				)
				(
				𝑧
				−
				𝜉
				)
			

		
	

					where 
	
		
			

				𝐷
			

			

				𝑛
			

		
	
 is a simply connected domain containing all zeros of 
	
		
			

				𝑝
			

			

				𝑛
			

			
				(
				𝑤
				)
			

		
	
 and 
	
		
			

				𝐶
			

			

				𝑛
			

		
	
 is its boundary. Note that for any 
	
		
			
				𝜉
				∈
				ℂ
			

		
	
, there exists 
	
		
			

				𝑛
			

		
	
 such that 
	
		
			
				𝜉
				∈
				𝐷
			

			

				𝑛
			

		
	
. For each 
	
		
			
				𝑚
				=
				1
				,
				2
				,
				…
			

		
	
 we also set 
						
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			

				𝐿
			

			
				𝑛
				,
				𝑚
			

			
				(
				𝑤
				;
				𝑓
				;
				𝜉
				)
				∶
				=
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
				𝑚
				−
				1
			

			

				
			

			
				𝑠
				=
				0
			

			

				1
			

			
				
			
			
				
				(
				𝑚
				−
				1
				−
				𝑠
				)
				!
				𝑓
				(
				𝑧
				)
			

			
				
			
			

				𝛾
			

			
				𝑚
				𝑛
			

			

				∏
			

			
				𝑘
				≠
				𝑗
			

			
				
				𝑧
				−
				𝑥
			

			
				𝑘
				,
				𝑛
			

			

				
			

			

				𝑚
			

			

				
			

			
				(
				𝑚
				−
				1
				−
				𝑠
				)
			

			
				|
				|
				|
				|
				|
			

			
				𝑧
				=
				𝑥
			

			
				𝑗
				,
				𝑛
			

			
				×
				𝑝
			

			

				𝑛
			

			
				(
				𝑤
				;
				𝜉
				)
			

			

				𝑚
			

			
				
			
			
				
				𝜉
				−
				𝑥
			

			
				𝑗
				,
				𝑛
			

			

				
			

			
				𝑠
				+
				1
			

			
				,
				𝐸
			

			
				𝑛
				,
				𝑚
			

			
				(
				𝜉
				)
				∶
				=
				𝑓
				(
				𝜉
				)
				−
				𝐿
			

			
				𝑛
				,
				𝑚
			

			
				(
				𝑤
				;
				𝑓
				;
				𝜉
				)
				.
			

		
	

					Then 
	
		
			

				𝐿
			

			
				𝑛
				,
				𝑚
			

			
				(
				𝑤
				;
				𝑓
				;
				𝜉
				)
			

		
	
 is a polynomial of degree at most 
	
		
			
				𝑛
				𝑚
				−
				1
			

		
	
 such that 
						
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			

				𝐿
			

			
				(
				𝑗
				)
				𝑛
				,
				𝑚
			

			
				
				𝑤
				;
				𝑓
				;
				𝑥
			

			
				𝑘
				,
				𝑛
			

			
				
				=
				𝑓
			

			
				(
				𝑗
				)
			

			
				
				𝑥
			

			
				𝑘
				,
				𝑛
			

			
				
				,
				𝑘
				=
				1
				,
				2
				,
				…
				,
				𝑛
				,
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑚
				−
				1
			

		
	

					holds. By the residue theorem again, we see 
						
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			

				𝐸
			

			
				𝑛
				,
				𝑚
			

			
				𝑝
				(
				𝜉
				)
				=
			

			

				𝑛
			

			
				(
				𝑤
				;
				𝜉
				)
			

			

				𝑚
			

			
				
			
			
				
				2
				𝜋
				𝑖
			

			

				𝐶
			

			

				𝑛
			

			
				𝑓
				(
				𝑧
				)
				𝑑
				𝑧
			

			
				
			
			

				𝑝
			

			

				𝑛
			

			
				(
				𝑤
				;
				𝑧
				)
			

			

				𝑚
			

			
				(
				𝑧
				−
				𝜉
				)
			

		
	

					for 
	
		
			
				𝜉
				∈
				𝐷
			

			

				𝑛
			

		
	
.
For the Gauss-Jacobi quadrature, we set 
						
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			

				𝐸
			

			
				𝑛
				,
				∗
			

			
				
				∶
				=
			

			

				ℝ
			

			
				𝑓
				(
				𝑥
				)
				𝑤
				(
				𝑥
				)
				𝑑
				𝑥
				−
				𝑄
			

			

				𝑛
			

			
				(
				𝑤
				;
				𝑓
				)
				.
			

		
	

					Then, we also see 
						
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			

				𝐸
			

			
				𝑛
				,
				∗
			

			

				=
			

			

				∞
			

			

				
			

			
				𝑘
				=
				𝑛
			

			

				𝛾
			

			
				𝑘
				+
				1
			

			
				
			
			

				𝛾
			

			

				𝑘
			

			

				1
			

			
				
			
			
				
				2
				𝜋
				𝑖
			

			

				𝐶
			

			

				𝑘
			

			
				𝑓
				(
				𝑧
				)
				𝑑
				𝑧
			

			
				
			
			

				𝑝
			

			

				𝑘
			

			
				(
				𝑤
				;
				𝑧
				)
				p
			

			
				𝑘
				+
				1
			

			
				,
				(
				𝑤
				;
				𝑧
				)
			

		
	

					(cf. [1–5]).
3. Theorems and Proofs
We state our theorems. Throughout this section, we assume 
	
		
			
				𝑤
				=
				e
				x
				p
				(
				−
				𝑄
				)
				∈
				ℱ
				(
				l
				i
				p
				(
				1
				/
				2
				)
				+
				)
			

		
	
, and let
						
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			
				𝜂
				∶
				=
				l
				i
				m
				s
				u
				p
			

			
				𝑡
				→
				∞
			

			
				𝑄
				
				𝑎
			

			

				𝑡
			

			
				
				
			

			
				
			
			
				𝑇
				
				𝑎
			

			

				𝑡
			

			

				
			

			
				
			
			
				𝑡
				.
			

		
	

					Note that 
	
		
			

				𝜂
			

		
	
 is determined finitely by Lemma 5(1). 
Theorem 6.  (1) If an entire function 
	
		
			

				𝑓
			

		
	
 satisfies 
							
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑅
				→
				∞
			

			
				l
				o
				g
				𝑀
			

			

				𝑓
			

			
				(
				5
				𝑅
				)
			

			
				
			
			

				√
			

			
				
			
			
				≤
				1
				𝑇
				(
				𝑅
				)
				𝑄
				(
				𝑅
				)
			

			
				
			
			
				𝜂
				,
			

		
	

						then 
							
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			
				|
				|
				𝑓
				(
				𝜉
				)
				−
				𝐿
			

			

				𝑛
			

			
				|
				|
				(
				𝑤
				;
				𝑓
				;
				𝜉
				)
			

			
				1
				/
				𝑛
			

			
				<
				1
			

		
	

						uniformly on compact subsets; that is, for any compact subset 
	
		
			

				𝐾
			

		
	
 in 
	
		
			

				ℂ
			

		
	
, there exists a constant 
	
		
			
				0
				<
				𝑐
				<
				1
			

		
	
 such that           
							
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			
				|
				|
				𝑓
				(
				𝜉
				)
				−
				𝐿
			

			

				𝑛
			

			
				|
				|
				(
				𝑤
				;
				𝑓
				;
				𝜉
				)
			

			
				1
				/
				𝑛
			

			
				≤
				𝑐
			

		
	

						for 
	
		
			
				𝜉
				∈
				𝐾
			

		
	
. Moreover, for any 
	
		
			
				𝑚
				=
				1
				,
				2
				,
				…
			

		
	
, 
							
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			
				|
				|
				𝑓
				(
				𝜉
				)
				−
				𝐿
			

			
				𝑛
				,
				𝑚
			

			
				|
				|
				(
				𝑤
				;
				𝑓
				;
				𝜉
				)
			

			
				1
				/
				𝑛
			

			
				<
				1
			

		
	

						holds also uniformly on compact subsets. (2) If an entire function 
	
		
			

				𝑓
			

		
	
 satisfies 
							
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑅
				→
				∞
			

			
				l
				o
				g
				𝑀
				(
				1
				0
				𝑅
				)
			

			
				
			
			

				√
			

			
				
			
			
				≤
				1
				𝑇
				(
				𝑅
				)
				𝑄
				(
				𝑅
				)
			

			
				
			
			
				𝜂
				,
			

		
	

						then for any 
	
		
			
				𝑗
				=
				1
				,
				2
				,
				3
				,
				…
			

		
	
,
							
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			
				|
				|
				𝑓
			

			
				(
				𝑗
				)
			

			
				(
				𝜉
				)
				−
				𝐿
			

			

				𝑛
			

			
				
				𝑤
				;
				𝑓
			

			
				(
				𝑗
				)
			

			
				
				|
				|
				;
				𝜉
			

			
				1
				/
				𝑛
			

			
				<
				1
			

		
	

						uniformly on compact subsets. Moreover, for any 
	
		
			
				𝑚
				=
				1
				,
				2
				,
				…
			

		
	
,
							
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			
				|
				|
				𝑓
			

			
				(
				𝑗
				)
			

			
				(
				𝜉
				)
				−
				𝐿
			

			
				𝑛
				,
				𝑚
			

			
				
				𝑤
				;
				𝑓
			

			
				(
				𝑗
				)
			

			
				
				|
				|
				;
				𝜉
			

			
				1
				/
				𝑛
			

			
				<
				1
			

		
	

						holds also uniformly on compact subsets.
As for the Gauss-Jacobi quadrature, we have the following theorem.
Theorem 7.  Let 
	
		
			

				𝑓
			

		
	
 be an entire function. If 
							
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑅
				→
				∞
			

			
				l
				o
				g
				𝑀
			

			

				𝑓
			

			
				
				𝜆
			

			

				0
			

			
				𝑅
				
			

			
				
			
			

				√
			

			
				
			
			
				≤
				1
				𝑇
				(
				𝑅
				)
				𝑄
				(
				𝑅
				)
			

			
				
			
			

				𝜂
			

		
	

						holds for some 
	
		
			

				𝜆
			

			

				0
			

			
				>
				1
			

		
	
 large enough, then 
							
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			
				|
				|
				|
				|
				
			

			

				ℝ
			

			
				𝑓
				(
				𝑥
				)
				𝑤
				(
				𝑥
				)
				𝑑
				𝑥
				−
				𝑄
			

			

				𝑛
			

			
				|
				|
				|
				|
				(
				𝑤
				;
				𝑓
				)
			

			
				1
				/
				𝑛
			

			
				≤
				𝑐
				<
				1
				,
			

		
	

						for a constant 
	
		
			
				𝑐
				>
				0
			

		
	
. Further, if 
							
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑅
				→
				∞
			

			
				l
				o
				g
				𝑀
			

			

				𝑓
			

			
				
				2
				𝜆
			

			

				0
			

			
				𝑅
				
			

			
				
			
			

				√
			

			
				
			
			
				≤
				1
				𝑇
				(
				𝑅
				)
				𝑄
				(
				𝑅
				)
			

			
				
			
			

				𝜂
			

		
	

						holds, then for any 
	
		
			
				𝑗
				=
				1
				,
				2
				,
				3
				,
				…
			

		
	
,
							
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			
				|
				|
				|
				|
				
			

			

				ℝ
			

			

				𝑓
			

			
				(
				𝑗
				)
			

			
				(
				𝑥
				)
				𝑤
				(
				𝑥
				)
				𝑑
				𝑥
				−
				𝑄
			

			

				𝑛
			

			
				
				𝑤
				;
				𝑓
			

			
				(
				𝑗
				)
			

			
				
				|
				|
				|
				|
			

			
				1
				/
				𝑛
			

			
				≤
				𝑐
				<
				1
				.
			

		
	

Theorem 8.  Let 
	
		
			

				𝑓
			

		
	
 be an entire function. Suppose that 
							
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑅
				→
				∞
			

			
				l
				o
				g
				𝑀
			

			

				𝑓
			

			
				(
				𝜆
				𝑅
				)
			

			
				
			
			

				√
			

			
				
			
			
				𝑇
				(
				𝑅
				)
				𝑄
				(
				𝑅
				)
				=
				0
				,
			

		
	

						for every 
	
		
			
				𝜆
				>
				0
			

		
	
 large enough. Then 
							
	
 		
 			
				(
				3
				6
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				|
				|
				𝑓
				(
				𝜉
				)
				−
				𝐿
			

			

				𝑛
			

			
				|
				|
				(
				𝑤
				;
				𝑓
				;
				𝜉
				)
			

			
				1
				/
				𝑛
			

			
				=
				0
			

		
	

						holds uniformly on compact subsets of 
	
		
			

				ℂ
			

		
	
 and for any 
	
		
			
				𝑗
				=
				1
				,
				2
				,
				3
				,
				…
			

		
	
, 
							
	
 		
 			
				(
				3
				7
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				|
				|
				𝑓
			

			
				(
				𝑗
				)
			

			
				(
				𝜉
				)
				−
				𝐿
			

			
				𝑛
				,
				𝑚
			

			
				
				𝑤
				;
				𝑓
			

			
				(
				𝑗
				)
			

			
				
				|
				|
				;
				𝜉
			

			
				1
				/
				𝑛
			

			
				=
				0
			

		
	

						also holds uniformly on compact subsets of 
	
		
			

				ℂ
			

		
	
. Moreover for any 
	
		
			
				𝑗
				=
				1
				,
				2
				,
				3
				,
				…
			

		
	
,
							
	
 		
 			
				(
				3
				8
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				|
				|
				|
				|
				
			

			

				ℝ
			

			

				𝑓
			

			
				(
				𝑗
				)
			

			
				(
				𝑥
				)
				𝑤
				(
				𝑥
				)
				𝑑
				𝑥
				−
				𝑄
			

			

				𝑛
			

			
				
				𝑤
				;
				𝑓
			

			
				(
				𝑗
				)
			

			
				
				|
				|
				|
				|
			

			
				1
				/
				𝑛
			

			
				=
				0
			

		
	

						holds true.
Remark 9. The order of an entire function 
	
		
			

				𝑓
			

		
	
 is given by 
							
	
 		
 			
				(
				3
				9
				)
			
 		
	

	
		
			
				𝜇
				(
				𝑓
				)
				∶
				=
				l
				i
				m
				s
				u
				p
			

			
				𝑅
				→
				∞
			

			
				l
				o
				g
				l
				o
				g
				𝑀
			

			

				𝑓
			

			
				(
				𝑅
				)
			

			
				
			
			
				.
				l
				o
				g
				𝑅
			

		
	

						Also the type of 
	
		
			

				𝑓
			

		
	
 with order 
	
		
			
				𝜇
				<
				∞
			

		
	
 is given by 
							
	
 		
 			
				(
				4
				0
				)
			
 		
	

	
		
			
				𝜏
				(
				𝑓
				)
				∶
				=
				𝜏
			

			

				𝜇
			

			
				(
				𝑓
				)
				=
				l
				i
				m
				s
				u
				p
			

			
				𝑅
				→
				∞
			

			
				l
				o
				g
				𝑀
			

			

				𝑓
			

			
				(
				𝑅
				)
			

			
				
			
			

				𝑅
			

			

				𝜇
			

			

				.
			

		
	

						If 
	
		
			
				𝑤
				=
				e
				x
				p
				(
				−
				𝑄
				)
			

		
	
 is an Erdös-type weight and 
	
		
			
				𝜇
				(
				𝑓
				)
				,
				𝜏
				(
				𝑓
				)
				<
				∞
			

		
	
, then (35) holds for every 
	
		
			
				𝜆
				>
				0
			

		
	
. In fact, by (14),
							
	
 		
 			
				(
				4
				1
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑅
				→
				∞
			

			
				l
				o
				g
				𝑀
			

			

				𝑓
			

			
				(
				𝜆
				𝑅
				)
			

			
				
			
			

				√
			

			
				
			
			
				𝑇
				(
				𝑅
				)
				𝑄
				(
				𝑅
				)
				=
				l
				i
				m
			

			
				𝑅
				→
				∞
			

			
				l
				o
				g
				𝑀
			

			

				𝑓
			

			
				(
				𝜆
				𝑅
				)
			

			
				
			
			
				(
				𝜆
				𝑅
				)
			

			

				𝜇
			

			
				(
				𝜆
				𝑅
				)
			

			

				𝜇
			

			
				
			
			

				√
			

			
				
			
			
				𝑇
				(
				𝑅
				)
				𝑄
				(
				𝑅
				)
				=
				0
				.
			

		
	
The following lemma was proved in [2, Lemmas 3.3 and 3.4]. Its proof is available for our case.
Lemma 10.   Let 
	
		
			
				𝑤
				=
				e
				x
				p
				(
				−
				𝑄
				)
				∈
				ℱ
				(
				l
				i
				p
				(
				1
				/
				2
				)
				+
				)
			

		
	
, and let 
	
		
			

				𝑝
			

			

				𝑛
			

			
				(
				𝑤
				;
				𝑧
				)
			

		
	
 be the 
	
		
			
				𝑛
				t
				h
			

		
	
 orthonormal polynomial generated by 
	
		
			

				𝑤
			

		
	
. Then 
							
	
 		
 			
				(
				4
				2
				)
			
 		
	

	
		
			
				|
				|
				𝑝
			

			

				𝑛
			

			
				|
				|
				(
				𝑤
				;
				𝑧
				)
				≤
				𝛾
			

			

				𝑛
			

			

				2
			

			
				𝑛
				/
				2
			

			

				𝑥
			

			
				𝑛
				1
				,
				𝑛
			

			

				,
			

		
	

						for all 
	
		
			

				𝑧
			

		
	
 such that 
	
		
			
				|
				𝑧
				|
				≤
				𝑥
			

			
				1
				,
				𝑛
			

		
	
, and 
							
	
 		
 			
				(
				4
				3
				)
			
 		
	

	
		
			
				|
				|
				𝑝
			

			

				𝑛
			

			
				|
				|
				(
				𝑤
				;
				𝑧
				)
			

			
				−
				1
			

			
				≤
				1
			

			
				
			
			

				𝛾
			

			

				𝑛
			

			
				|
				𝑧
				|
			

			

				𝑛
			

			
				⎛
				⎜
				⎜
				⎝
				e
				x
				p
				𝑛
				𝑥
			

			
				2
				1
				,
				𝑛
			

			
				
			
			
				2
				
				|
				𝑧
				|
			

			

				2
			

			
				−
				𝑥
			

			
				2
				1
				,
				𝑛
			

			
				
				⎞
				⎟
				⎟
				⎠
			

		
	

						for all 
	
		
			

				𝑧
			

		
	
 such that 
	
		
			
				|
				𝑧
				|
				>
				𝑥
			

			
				1
				,
				𝑛
			

		
	
. Also we have 
							
	
 		
 			
				(
				4
				4
				)
			
 		
	

	
		
			
				[
				𝑛
				/
				2
				]
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑥
			

			
				2
				𝑗
				,
				𝑛
			

			

				=
			

			
				𝑛
				−
				1
			

			

				
			

			
				𝑗
				=
				1
			

			
				
				𝛾
			

			
				𝑗
				−
				1
			

			
				
			
			

				𝛾
			

			

				𝑗
			

			

				
			

			

				2
			

			

				.
			

		
	

Proof of Theorem 6. (1) We estimate the error form 
	
		
			

				𝐸
			

			

				𝑛
			

			
				(
				𝜉
				)
			

		
	
 given by the formula (17). For a given compact subset 
	
		
			

				𝐾
			

		
	
, choose a number 
	
		
			

				𝑛
			

		
	
 such that 
	
		
			
				|
				𝜉
				|
				≤
				𝑥
			

			
				1
				,
				𝑛
			

		
	
 for 
	
		
			
				𝜉
				∈
				𝐾
			

		
	
. We may take the path of integration 
	
		
			

				𝐶
			

			

				𝑛
			

		
	
 to be the circle 
	
		
			
				|
				𝑧
				|
				=
				5
				𝑎
			

			

				𝑛
			

		
	
 because 
	
		
			

				𝑥
			

			
				1
				,
				𝑛
			

			
				≤
				𝑎
			

			

				𝑛
			

		
	
. By (42), we see 
	
		
			
				|
				𝑝
			

			

				𝑛
			

			
				(
				𝑤
				;
				𝜉
				)
				|
				≤
				𝛾
			

			

				𝑛
			

			

				2
			

			
				𝑛
				/
				2
			

			

				𝑎
			

			
				𝑛
				𝑛
			

		
	
. From the definition of 
	
		
			

				𝜂
			

		
	
 and (24), for any 
	
		
			
				𝜀
				>
				0
			

		
	
, there exists 
	
		
			

				𝑁
			

			

				𝜀
			

			
				>
				0
			

		
	
 such that for 
	
		
			
				𝑛
				≥
				𝑁
			

			

				𝜀
			

		
	
, 
							
	
 		
 			
				(
				4
				5
				)
			
 		
	

	
		
			
				𝑄
				
				𝑎
			

			

				𝑛
			

			
				
				
			

			
				
			
			
				𝑇
				
				𝑎
			

			

				𝑛
			

			
				
				≤
				(
				𝜂
				+
				𝜀
				)
				𝑛
				,
				l
				o
				g
				𝑀
			

			

				𝑓
			

			
				
				5
				𝑎
			

			

				𝑛
			

			
				
				≤
				
				1
			

			
				
			
			
				𝜂
				
				
				+
				𝜀
			

			
				
			
			
				𝑇
				
				𝑎
			

			

				𝑛
			

			
				
				𝑄
				
				𝑎
			

			

				𝑛
			

			
				
				.
			

		
	

						Hence by (43), for 
	
		
			

				𝑛
			

		
	
 large enough, 
							
	
 		
 			
				(
				4
				6
				)
			
 		
	

	
		
			
				|
				|
				𝐸
			

			

				𝑛
			

			
				|
				|
				(
				𝜉
				)
				≤
				𝐶
				𝛾
			

			

				𝑛
			

			

				2
			

			
				𝑛
				/
				2
			

			

				𝑎
			

			
				𝑛
				𝑛
			

			

				1
			

			
				
			
			

				𝛾
			

			

				𝑛
			

			
				|
				|
				5
				𝑎
			

			

				𝑛
			

			
				|
				|
			

			

				𝑛
			

			
				⎛
				⎜
				⎜
				⎝
				×
				e
				x
				p
				𝑛
				𝑥
			

			
				2
				1
				,
				𝑛
			

			
				
			
			
				2
				
				
				5
				𝑎
			

			

				𝑛
			

			

				
			

			

				2
			

			
				−
				𝑥
			

			
				2
				1
				,
				𝑛
			

			
				
				⎞
				⎟
				⎟
				⎠
				𝑀
			

			

				𝑓
			

			
				
				5
				𝑎
			

			

				𝑛
			

			

				
			

			
				
			
			
				
				2
				𝜋
			

			

				𝐶
			

			

				𝑛
			

			
				|
				|
				|
				|
				𝑑
				𝑧
			

			
				
			
			
				4
				𝑎
			

			

				𝑛
			

			
				≤
				𝐶
				2
			

			
				𝑛
				/
				2
			

			

				1
			

			
				
			
			

				5
			

			

				𝑛
			

			
				
				𝑛
				e
				x
				p
			

			
				
			
			
				
				1
				4
				8
				e
				x
				p
				
				
			

			
				
			
			
				𝜂
				
				𝑄
				
				𝑎
				+
				𝜀
			

			

				𝑛
			

			
				
				
			

			
				
			
			
				𝑇
				
				𝑎
			

			

				𝑛
			

			
				
				
				≤
				𝐶
				2
			

			
				𝑛
				/
				2
			

			

				1
			

			
				
			
			

				5
			

			

				𝑛
			

			
				
				𝑛
				e
				x
				p
			

			
				
			
			
				
				1
				4
				8
				e
				x
				p
				
				
			

			
				
			
			
				𝜂
				
				
				.
				+
				𝜀
				(
				𝜂
				+
				𝜀
				)
				𝑛
			

		
	

						Here we select 
	
		
			
				𝜀
				>
				0
			

		
	
 such as
							
	
 		
 			
				(
				4
				7
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				+
				
				1
				4
				8
			

			
				
			
			
				𝜂
				
				+
				𝜀
				(
				𝜂
				+
				𝜀
				)
				≤
				2
				5
			

			
				
			
			
				.
				2
				4
			

		
	

						Then we have for 
	
		
			
				𝑛
				≥
				𝑁
			

			

				𝜀
			

		
	
 and any 
	
		
			
				𝜉
				∈
				𝐾
			

		
	
, 
							
	
 		
 			
				(
				4
				8
				)
			
 		
	

	
		
			
				|
				|
				𝐸
			

			

				𝑛
			

			
				|
				|
				
				√
				(
				𝜉
				)
				≤
				𝐶
			

			
				
			
			

				2
			

			
				
			
			
				5
				
			

			

				𝑛
			

			
				
				e
				x
				p
				2
				5
				𝑛
			

			
				
			
			
				
				√
				2
				4
				=
				𝐶
				
				
			

			
				
			
			

				2
			

			
				
			
			
				5
				
				
				e
				x
				p
				2
				5
			

			
				
			
			
				
				
				2
				4
			

			

				𝑛
			

			

				.
			

		
	

						Since 
	
		
			
				(
				√
			

			
				
			
			
				2
				/
				5
				)
				e
				x
				p
				(
				2
				5
				/
				2
				4
				)
				=
				∶
				𝑐
				<
				1
			

		
	
, we conclude (26). In the above proof, we only exchange (48) for 
							
	
 		
 			
				(
				4
				9
				)
			
 		
	

	
		
			
				|
				|
				𝐸
			

			
				𝑛
				,
				𝑚
			

			
				|
				|
				
				√
				(
				𝜉
				)
				≤
				𝐶
			

			
				
			
			

				2
			

			
				
			
			
				5
				
			

			
				𝑛
				𝑚
			

			
				
				e
				x
				p
				4
				9
				𝑛
				+
				𝑛
				𝑚
			

			
				
			
			
				
				√
				4
				8
				≤
				𝐶
				
				
			

			
				
			
			

				2
			

			
				
			
			
				5
				
				
				e
				x
				p
				2
				5
			

			
				
			
			
				
				
				2
				4
			

			
				𝑛
				𝑚
			

			

				.
			

		
	

						Then (27) follows.(2) Since 
							
	
 		
 			
				(
				5
				0
				)
			
 		
	

	
		
			

				𝑓
			

			
				(
				𝑗
				)
			

			
				(
				𝑧
				)
				=
				𝑗
				!
			

			
				
			
			
				
				2
				𝜋
				𝑖
			

			

				𝐶
			

			
				2
				𝑅
			

			
				𝑓
				(
				𝜁
				)
			

			
				
			
			
				(
				𝜁
				−
				𝑧
				)
			

			
				𝑗
				+
				1
			

			
				𝑑
				𝜁
				,
			

		
	

						where 
	
		
			

				𝐶
			

			
				2
				𝑅
			

			
				=
				{
				𝜁
				;
				|
				𝜁
				|
				=
				2
				𝑅
				}
			

		
	
, we see 
	
		
			

				𝑀
			

			

				𝑓
			

			
				(
				𝑗
				)
			

			
				(
				𝑅
				)
				≤
				2
				(
				𝑗
				!
				)
				𝑀
			

			

				𝑓
			

			
				(
				2
				𝑅
				)
				/
				𝑅
			

			

				𝑗
			

		
	
. Hence, (28) gives us 
							
	
 		
 			
				(
				5
				1
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑅
				→
				∞
			

			
				l
				o
				g
				𝑀
			

			

				𝑓
			

			
				(
				𝑗
				)
			

			
				(
				5
				𝑅
				)
			

			
				
			
			

				√
			

			
				
			
			
				𝑇
				(
				𝑅
				)
				𝑄
				(
				𝑅
				)
				≤
				l
				i
				m
				s
				u
				p
			

			
				𝑅
				→
				∞
			

			
				
				l
				o
				g
				2
				(
				𝑗
				!
				)
				/
				𝑅
			

			

				𝑗
			

			
				
				
				𝑀
				+
				l
				o
				g
			

			

				𝑓
			

			
				
				(
				1
				0
				𝑅
				)
			

			
				
			
			

				√
			

			
				
			
			
				𝑇
				(
				𝑅
				)
				𝑄
				(
				𝑅
				)
				≤
				l
				i
				m
				s
				u
				p
			

			
				𝑅
				→
				∞
			

			
				l
				o
				g
				𝑀
			

			

				𝑓
			

			
				(
				1
				0
				𝑅
				)
			

			
				
			
			

				√
			

			
				
			
			
				≤
				1
				𝑇
				(
				𝑅
				)
				𝑄
				(
				𝑅
				)
			

			
				
			
			
				𝜂
				.
			

		
	

						Thus, (29) and (30) follow from (26) and (27), respectively.    
Proof of Theorem 7. First, we show the case 
	
		
			
				𝑗
				=
				0
			

		
	
. From Lemma 5(3) and (44), we have 
							
	
 		
 			
				(
				5
				2
				)
			
 		
	

	
		
			
				[
				𝑛
				/
				2
				]
			

			

				
			

			
				𝑘
				=
				1
			

			

				𝑥
			

			
				2
				𝑘
				,
				𝑛
			

			
				≤
				𝐶
			

			
				𝑛
				−
				1
			

			

				
			

			
				𝑘
				=
				1
			

			

				𝑎
			

			
				2
				𝑘
			

			
				≤
				𝐶
				𝑎
			

			
				2
				𝑛
				−
				1
			

			
				(
				𝑛
				−
				1
				)
				,
			

		
	

						where 
	
		
			
				𝐶
				>
				0
			

		
	
 is an absolutely constant. Also by Lemma 5(3), we see 
							
	
 		
 			
				(
				5
				3
				)
			
 		
	

	
		
			

				1
			

			
				
			
			

				𝛾
			

			

				𝑛
			

			
				𝑎
				≤
				𝐶
			

			

				𝑛
			

			
				
			
			

				𝛾
			

			
				𝑛
				−
				1
			

			
				≤
				⋯
				≤
				𝐶
			

			

				𝑛
			

			
				
				𝑎
			

			

				𝑛
			

			

				𝑎
			

			
				𝑛
				−
				1
			

			
				⋯
				𝑎
			

			

				1
			

			
				
				≤
				
				𝐶
				𝑎
			

			

				𝑛
			

			

				
			

			

				𝑛
			

			

				.
			

		
	

						Now let 
	
		
			
				|
				𝑧
				|
				>
				𝑥
			

			
				1
				,
				𝑛
			

		
	
. Since 
							
	
 		
 			
				(
				5
				4
				)
			
 		
	

	
		
			
				|
				|
				𝑝
			

			

				𝑛
			

			
				|
				|
				(
				𝑤
				;
				𝑧
				)
			

			
				−
				1
			

			
				≤
				1
			

			
				
			
			

				𝛾
			

			

				𝑛
			

			
				|
				𝑧
				|
			

			

				𝑛
			

			
				
				1
				e
				x
				p
			

			
				
			
			
				|
				𝑧
				|
			

			

				2
			

			
				−
				𝑥
			

			
				2
				1
				,
				𝑛
				[
				𝑛
				/
				2
				]
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑥
			

			
				2
				𝑗
				,
				𝑛
			

			
				
				,
			

		
	

						(see [3, page 131]), (52) gives us 
							
	
 		
 			
				(
				5
				5
				)
			
 		
	

	
		
			
				|
				|
				𝑝
			

			

				𝑛
			

			
				|
				|
				(
				𝑤
				∶
				𝑧
				)
			

			
				−
				1
			

			
				≤
				1
			

			
				
			
			

				𝛾
			

			

				𝑛
			

			
				|
				𝑧
				|
			

			

				𝑛
			

			
				
				e
				x
				p
				𝐶
				𝑎
			

			
				2
				𝑛
				−
				1
			

			
				(
				𝑛
				−
				1
				)
			

			
				
			
			
				|
				𝑧
				|
			

			

				2
			

			
				−
				𝑥
			

			
				2
				1
				,
				𝑛
			

			
				
				.
			

		
	

						Therefore, for 
	
		
			
				|
				𝑧
				|
				>
				𝑥
			

			
				1
				,
				𝑛
				+
				1
			

		
	
, we conclude that 
							
	
 		
 			
				(
				5
				6
				)
			
 		
	

	
		
			
				|
				|
				𝑝
			

			

				𝑛
			

			
				(
				𝑤
				;
				𝑧
				)
				𝑝
			

			
				𝑛
				+
				1
			

			
				|
				|
				(
				𝑤
				;
				𝑧
				)
			

			
				−
				1
			

			
				≤
				1
			

			
				
			
			

				𝛾
			

			

				𝑛
			

			

				𝛾
			

			
				𝑛
				+
				1
			

			
				|
				𝑧
				|
			

			
				2
				𝑛
				+
				1
			

			
				
				e
				x
				p
				2
				𝐶
				𝑎
			

			
				2
				𝑛
			

			

				𝑛
			

			
				
			
			
				|
				𝑧
				|
			

			

				2
			

			
				−
				𝑥
			

			
				2
				1
				,
				𝑛
				+
				1
			

			
				
				.
			

		
	

						We consider the circle 
	
		
			

				𝐶
			

			

				𝑛
			

			
				=
				{
				𝑧
				;
				|
				𝑧
				|
				=
				𝜆
			

			

				0
			

			

				𝑎
			

			

				𝑛
			

			

				}
			

		
	
, where we will choose 
	
		
			

				𝜆
			

			

				0
			

			
				>
				0
			

		
	
 large enough later. Now we estimate 
							
	
 		
 			
				(
				5
				7
				)
			
 		
	

	
		
			

				𝐼
			

			

				𝑛
			

			
				𝛾
				∶
				=
			

			
				𝑛
				+
				1
			

			
				
			
			

				𝛾
			

			

				𝑛
			

			

				1
			

			
				
			
			
				
				2
				𝜋
				𝑖
			

			

				𝐶
			

			

				𝑛
			

			
				𝑓
				(
				𝑧
				)
				𝑑
				𝑧
			

			
				
			
			

				𝑝
			

			

				𝑛
			

			
				(
				𝑤
				;
				𝑧
				)
				𝑝
			

			
				𝑛
				+
				1
			

			
				.
				(
				𝑤
				;
				𝑧
				)
			

		
	

						From Lemma 5(1), (53), (56), and our assumption (31), we have for 
	
		
			
				𝛿
				>
				0
			

		
	
 small enough, 
							
	
 		
 			
				(
				5
				8
				)
			
 		
	

	
		
			
				|
				|
				𝐼
			

			

				𝑛
			

			
				|
				|
				≤
				1
			

			
				
			
			

				𝛾
			

			
				2
				𝑛
			

			

				1
			

			
				
			
			
				|
				|
				𝜆
			

			

				0
			

			

				𝑎
			

			

				𝑛
			

			
				|
				|
			

			
				2
				𝑛
				+
				1
			

			

				𝑀
			

			

				𝑓
			

			
				
				𝜆
			

			

				0
			

			

				𝑎
			

			

				𝑛
			

			
				
				⎛
				⎜
				⎜
				⎝
				e
				x
				p
				2
				𝐶
				𝑎
			

			
				2
				𝑛
			

			

				𝑛
			

			
				
			
			
				|
				|
				𝜆
			

			

				0
			

			

				𝑎
			

			

				𝑛
			

			
				|
				|
			

			

				2
			

			
				−
				𝑥
			

			
				2
				1
				,
				𝑛
			

			
				⎞
				⎟
				⎟
				⎠
				𝜆
			

			

				0
			

			

				𝑎
			

			

				𝑛
			

			
				≤
				
				𝐶
				𝑎
			

			

				𝑛
			

			

				
			

			
				2
				𝑛
			

			
				e
				x
				p
				{
				(
				1
				/
				𝜂
				+
				𝛿
				)
				(
				𝜂
				+
				𝛿
				)
				𝑛
				}
			

			
				
			
			
				
				𝜆
			

			

				0
			

			

				𝑎
			

			

				𝑛
			

			

				
			

			
				2
				𝑛
			

			
				
				e
				x
				p
				2
				𝐶
				𝑛
			

			
				
			
			

				𝜆
			

			
				2
				0
			

			
				
				≤
				
				
				𝐶
				−
				1
			

			
				
			
			

				𝜆
			

			

				0
			

			

				
			

			

				2
			

			
				1
				e
				x
				p
				
				
			

			
				
			
			
				𝜂
				
				
				
				𝐶
				+
				𝛿
				(
				𝜂
				+
				𝛿
				)
				e
				x
				p
			

			
				
			
			

				𝜆
			

			
				2
				0
			

			
				−
				1
				
				
			

			

				𝑛
			

			

				.
			

		
	

						Here we select 
	
		
			

				𝜆
			

			

				0
			

		
	
 as 
							
	
 		
 			
				(
				5
				9
				)
			
 		
	

	
		
			
				
				𝐶
				0
				<
				𝑐
				∶
				=
			

			
				
			
			

				𝜆
			

			

				0
			

			

				
			

			

				2
			

			
				
				
				1
				e
				x
				p
			

			
				
			
			
				𝜂
				
				𝐶
				+
				𝛿
				(
				𝜂
				+
				𝛿
				)
				+
			

			
				
			
			

				𝜆
			

			
				2
				0
			

			
				
				−
				1
				<
				1
				.
			

		
	

						Then we have 
							
	
 		
 			
				(
				6
				0
				)
			
 		
	

	
		
			
				|
				|
				𝐸
			

			
				𝑛
				,
				∗
			

			
				|
				|
				≤
			

			

				∞
			

			

				
			

			
				𝑗
				=
				𝑛
			

			
				|
				|
				𝐼
			

			

				𝑗
			

			
				|
				|
				≤
				𝑐
			

			

				𝑛
			

			
				
			
			
				,
				1
				−
				𝑐
			

		
	

						which shows that 
							
	
 		
 			
				(
				6
				1
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			
				|
				|
				𝐸
			

			
				𝑛
				,
				∗
			

			
				|
				|
			

			
				1
				/
				𝑛
			

			
				≤
				𝑐
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			
				
				1
			

			
				
			
			
				
				1
				−
				𝑐
			

			
				1
				/
				𝑛
			

			
				=
				𝑐
				<
				1
				.
			

		
	

						For the case of 
	
		
			
				𝑗
				⩾
				1
			

		
	
, as in the proof of (2) of Theorem 6, (33) gives us 
							
	
 		
 			
				(
				6
				2
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑅
				→
				∞
			

			
				l
				o
				g
				𝑀
			

			

				𝑓
			

			
				(
				𝑗
				)
			

			
				
				𝜆
			

			

				0
			

			
				𝑅
				
			

			
				
			
			

				√
			

			
				
			
			
				𝑇
				(
				𝑅
				)
				𝑄
				(
				𝑅
				)
				≤
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				i
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				s
				u
				p
			

			
				𝑅
				→
				∞
			

			

				𝑀
			

			

				𝑓
			

			
				
				2
				𝜆
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				𝑅
				
			

			
				
			
			

				√
			

			
				
			
			
				≤
				1
				𝑇
				(
				𝑅
				)
				𝑄
				(
				𝑅
				)
			

			
				
			
			
				𝜂
				.
			

		
	

						Hence, (34) follows from (32).    
Proof of Theorem 8. In (17), we take the path of integration 
	
		
			

				𝐶
			

			

				𝑛
			

		
	
 to be the circle 
	
		
			
				|
				𝑧
				|
				=
				𝜆
				𝑎
			

			

				𝑛
			

		
	
  
	
		
			
				(
				𝜆
				>
				0
				)
			

		
	
. Then we have 
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				6
				3
				)
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				𝑛
			

			
				|
				|
				√
				(
				𝜉
				)
				≤
				𝐶
				
				
			

			
				
			
			

				2
			

			
				
			
			
				𝜆
				
				
				𝜆
				e
				x
				p
			

			

				2
			

			
				
			
			

				𝜆
			

			

				2
			

			
				
				
				−
				1
			

			

				𝑛
			

			

				.
			

		
	

						In this right-hand side, we can take 
	
		
			

				𝜆
			

		
	
 as large as we like because of our assumption (35). Hence, we have (36). Similarly as above, (37) follows from (36). Also Theorem 7 shows (38).    
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