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Abstract. 
For any finite abelian group 
	
		
			
				(
				𝑅
				,
				+
				)
			

		
	
, we define a binary operation or “multiplication” on 
	
		
			

				𝑅
			

		
	
 and give necessary and sufficient conditions on this multiplication for 
	
		
			

				𝑅
			

		
	
 to extend to a ring. Then we show when two rings made on the same group are isomorphic. In particular, it is shown that there are 
	
		
			
				𝑛
				+
				1
			

		
	
 rings of order 
	
		
			

				𝑝
			

			

				𝑛
			

		
	
 with characteristic 
	
		
			

				𝑝
			

			

				𝑛
			

		
	
, where 
	
		
			

				𝑝
			

		
	
 is a prime number. Also, all finite rings of order 
	
		
			

				𝑝
			

			

				6
			

		
	
 are described by generators and relations. Finally, we give an algorithm for the computation of all finite rings based on their additive group.


1. Introduction
The problem of determining and classifying up to isomorphism finite rings has received considerable attention, both old and new, see [1–4]. It is well known that if 
	
		
			

				𝑅
			

		
	
 is a finite ring (with identity), then the additive group of 
	
		
			

				𝑅
			

		
	
 splits as the direct of its 
	
		
			

				𝑝
			

		
	
-primary components 
	
		
			
				𝑅
				(
				𝑝
				)
			

		
	
, where 
	
		
			

				𝑝
			

		
	
 is a prime number, and these are pairwise orthogonal ideals. Thus 
	
		
			

				𝑅
			

		
	
 is the direct sum of the rings 
	
		
			
				𝑅
				(
				𝑝
				)
			

		
	
. We provide a new proof of this fact in the paper.
Now let 
	
		
			

				𝑝
			

		
	
 be a prime number. It is easy to see that there are two rings of order 
	
		
			

				𝑝
			

		
	
, 
	
		
			

				ℤ
			

			

				𝑝
			

		
	
 and the null ring of order 
	
		
			

				𝑝
			

		
	
. In [5], Raghavendran (1969) proved that there exist eleven rings of order 
	
		
			

				𝑝
			

			

				2
			

		
	
, only four of these rings have identity. Also in [6], Gilmer and Mott (1973) showed that there exist 
	
		
			
				4
				𝑝
				+
				4
				8
			

		
	
 rings of order 
	
		
			

				𝑝
			

			

				3
			

			
				(
				𝑝
				≠
				2
				)
			

		
	
, only twelve of these rings have identity, and 59 rings of order 8, only eleven of these rings have identity. For 
	
		
			

				𝑝
			

			

				4
			

		
	
, a comprehensive list of noncommutative rings was first only drawn up in [7]. Commutative rings of order 
	
		
			

				𝑝
			

			

				4
			

		
	
 have been characterized by Wilson [4]. Finally, Corbas and Williams (2000) in [1, 8], determined all rings of order 
	
		
			

				𝑝
			

			

				5
			

		
	
. The rings of upper order are not still characterized. 
Throughout the paper, all rings are associative (not necessarily commutative or with identity). For a set 
	
		
			

				𝑋
			

		
	
, 
	
		
			
				|
				𝑋
				|
			

		
	
 denotes the cardinal of 
	
		
			

				𝑋
			

		
	
. For two integers 
	
		
			
				𝑎
				,
				𝑏
			

		
	
 and positive integer 
	
		
			

				𝑛
			

		
	
, we denote 
	
		
			
				𝑎
				≡
			

			

				𝑛
			

			

				𝑏
			

		
	
 in case 
	
		
			

				𝑎
			

		
	
 and 
	
		
			

				𝑏
			

		
	
 are congruent modulo 
	
		
			

				𝑛
			

		
	
, and 
	
		
			
				𝑎
				∣
				𝑏
			

		
	
 in case 
	
		
			

				𝑎
			

		
	
 divides 
	
		
			

				𝑏
			

		
	
. Also, for two integers 
	
		
			

				𝑎
			

		
	
 and 
	
		
			

				𝑏
			

		
	
, gcd
	
		
			
				(
				𝑎
				,
				𝑏
				)
			

		
	
 denotes the greatest common divisor of 
	
		
			

				𝑎
			

		
	
 and 
	
		
			

				𝑏
			

		
	
. In [9], the authors introduced a multiplication (similar to Theorem 3) on a finitely generated 
	
		
			

				𝑆
			

		
	
-module to extend to an 
	
		
			

				𝑆
			

		
	
-algebra, where 
	
		
			

				𝑆
			

		
	
 is a commutative ring. Also a number of necessary and sufficient conditions for any 
	
		
			

				𝑆
			

		
	
-module to extend to an 
	
		
			

				𝑆
			

		
	
-algebra, where 
	
		
			

				𝑆
			

		
	
 is a commutative ring, is given by Behboodi et al. [9]. Here instead of modules over a commutative ring, we focus our attention to the 
	
		
			

				ℤ
			

		
	
-modules. In Section 2, by using the method in [9], we define a binary operation or “multiplication" on a finite abelian group and extend to a ring. In particular, we prove that there are 
	
		
			
				𝑛
				+
				1
			

		
	
 rings (up to isomorphism) of order 
	
		
			

				𝑝
			

			

				𝑛
			

		
	
 whose abelian group is cyclic. Also, all rings of order 
	
		
			

				𝑝
			

			

				6
			

		
	
 whose abelian group is 
	
		
			

				ℤ
			

			

				𝑝
			

			
				⊕
				ℤ
			

			

				𝑝
			

			

				5
			

		
	
 are determined. In Section 3, an algorithm for the computation of all finite rings based on their additive group is given.
2. A Representation of Finite Rings and Fundamental Theorems
We begin the paper with the following well known fact and give a new proof of this fact.
Theorem 1.  Let 
	
		
			

				𝑅
			

		
	
 be a ring of order 
	
		
			

				𝑝
			

			

				𝑛
			

			

				1
			

			

				1
			

			

				𝑝
			

			

				𝑛
			

			

				2
			

			

				2
			

			
				⋯
				𝑝
			

			

				𝑛
			

			

				𝑘
			

			

				𝑘
			

		
	
, where the 
	
		
			

				𝑝
			

			

				𝑖
			

		
	
 are distinct primes and the 
	
		
			

				𝑛
			

			

				𝑖
			

		
	
 are positive integers. Then 
	
		
			

				𝑅
			

		
	
 is expressible, in a unique manner, as the direct sum of rings 
	
		
			

				𝑅
			

			

				𝑖
			

		
	
, where 
	
		
			
				|
				𝑅
			

			

				𝑖
			

			
				|
				=
				𝑝
			

			

				𝑛
			

			

				𝑖
			

			

				𝑖
			

			
				,
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑘
			

		
	
.
Proof. We know that the additive group 
	
		
			

				𝑅
			

		
	
 is expressible, in a unique manner, as the direct sum of groups 
	
		
			

				𝑅
			

			

				𝑖
			

		
	
, where 
	
		
			
				|
				𝑅
			

			

				𝑖
			

			
				|
				=
				𝑝
			

			

				𝑛
			

			

				𝑖
			

			

				𝑖
			

			
				,
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑘
			

		
	
. We claim that 
	
		
			

				𝑅
			

			

				𝑖
			

		
	
 is an ideal of 
	
		
			

				𝑅
			

		
	
, for 
	
		
			
				𝑖
				=
				1
				,
				…
				,
				𝑘
			

		
	
. Suppose that 
	
		
			

				𝑎
			

			

				𝑖
			

			
				,
				𝑏
			

			

				𝑖
			

			
				∈
				𝑅
			

			

				𝑖
			

		
	
 and 
	
		
			

				𝑎
			

			

				𝑖
			

			

				𝑏
			

			

				𝑖
			

			
				=
				𝑥
			

			

				1
			

			
				+
				𝑥
			

			

				2
			

			
				+
				⋯
				+
				𝑥
			

			

				𝑘
			

		
	
 where 
	
		
			

				𝑥
			

			

				𝑗
			

			
				∈
				𝑅
			

			

				𝑗
			

		
	
, for 
	
		
			
				1
				≤
				𝑗
				≤
				𝑘
			

		
	
. Then 
	
		
			

				𝑎
			

			

				𝑖
			

			

				𝑏
			

			

				𝑖
			

			
				−
				𝑥
			

			

				𝑖
			

		
	
 
	
		
			

				=
			

		
	
 
	
		
			

				𝑥
			

			

				1
			

		
	
 + 
	
		
			

				⋯
			

		
	
 + 
	
		
			

				𝑥
			

			
				𝑖
				−
				1
			

		
	
 + 
	
		
			

				𝑥
			

			
				𝑖
				+
				1
			

		
	
 + 
	
		
			

				⋯
			

		
	
 + 
	
		
			

				𝑥
			

			

				𝑘
			

		
	
. Since 
	
		
			

				𝑝
			

			

				𝑛
			

			

				1
			

			

				1
			

		
	
 
	
		
			

				⋯
			

		
	
 
	
		
			

				𝑝
			

			

				𝑛
			

			
				𝑖
				−
				1
			

			
				𝑖
				−
				1
			

		
	
 
	
		
			

				𝑝
			

			

				𝑛
			

			
				𝑖
				+
				1
			

			
				𝑖
				+
				1
			

		
	
 
	
		
			

				⋯
			

		
	
 
	
		
			

				𝑝
			

			

				𝑛
			

			

				𝑘
			

			

				𝑘
			

			
				(
				𝑥
			

			

				1
			

			
				+
				⋯
				+
				𝑥
			

			
				𝑖
				−
				1
			

			
				+
				𝑥
			

			
				𝑖
				+
				1
			

			
				+
				⋯
				+
				𝑥
			

			

				𝑘
			

			
				)
				=
				0
			

		
	
, 
	
		
			

				𝑝
			

			

				𝑛
			

			

				1
			

			

				1
			

		
	
 
	
		
			

				⋯
			

		
	
 
	
		
			

				𝑝
			

			

				𝑛
			

			
				𝑖
				−
				1
			

			
				𝑖
				−
				1
			

		
	
 
	
		
			

				𝑝
			

			

				𝑛
			

			
				𝑖
				+
				1
			

			
				𝑖
				+
				1
			

		
	
 
	
		
			

				⋯
			

		
	
 
	
		
			

				𝑝
			

			

				𝑛
			

			

				𝑘
			

			

				𝑘
			

			
				(
				𝑎
			

			

				𝑖
			

			

				𝑏
			

			

				𝑖
			

			
				−
				𝑥
			

			

				𝑖
			

			
				)
				=
				0
			

		
	
. If 
	
		
			

				𝑎
			

			

				𝑖
			

			

				𝑏
			

			

				𝑖
			

			
				−
				𝑥
			

			

				𝑖
			

			
				≠
				0
			

		
	
, then we must have 
	
		
			

				𝑝
			

			

				𝑖
			

			
				∣
				𝑝
			

			

				𝑛
			

			

				1
			

			

				1
			

			
				⋯
				𝑝
			

			

				𝑛
			

			
				𝑖
				−
				1
			

			
				𝑖
				−
				1
			

			

				𝑝
			

			

				𝑛
			

			
				𝑖
				+
				1
			

			
				𝑖
				+
				1
			

			
				⋯
				𝑝
			

			

				𝑛
			

			

				𝑘
			

			

				𝑘
			

		
	
, a contradiction. Thus 
	
		
			

				𝑎
			

			

				𝑖
			

			

				𝑏
			

			

				𝑖
			

			
				−
				𝑥
			

			

				𝑖
			

			
				=
				0
			

		
	
 and so 
	
		
			

				𝑎
			

			

				𝑖
			

			

				𝑏
			

			

				𝑖
			

			
				∈
				𝑅
			

			

				𝑖
			

		
	
. Now suppose that 
	
		
			

				𝑎
			

			

				𝑖
			

			
				∈
				𝑅
			

			

				𝑖
			

		
	
 and 
	
		
			

				𝑎
			

			

				𝑗
			

			
				∈
				𝑅
			

			

				𝑗
			

		
	
 where 
	
		
			
				𝑖
				≠
				𝑗
			

		
	
 and 
	
		
			
				1
				≤
				𝑖
				,
				𝑗
				≤
				𝑘
			

		
	
. We show that 
	
		
			

				𝑎
			

			

				𝑖
			

			

				𝑎
			

			

				𝑗
			

			
				=
				0
			

		
	
. Let 
	
		
			

				𝑎
			

			

				𝑖
			

			

				𝑎
			

			

				𝑗
			

			
				=
				𝑥
			

			

				1
			

			
				+
				𝑥
			

			

				2
			

			
				+
				⋯
				+
				𝑥
			

			

				𝑘
			

		
	
, where 
	
		
			

				𝑥
			

			

				𝑡
			

			
				∈
				𝑅
			

			

				𝑡
			

		
	
, for 
	
		
			
				1
				≤
				𝑡
				≤
				𝑘
			

		
	
. Then 
	
		
			

				𝑝
			

			

				𝑛
			

			

				𝑖
			

			

				𝑖
			

			

				𝑎
			

			

				𝑖
			

			

				𝑎
			

			

				𝑗
			

			
				=
				(
				𝑝
			

			

				𝑛
			

			

				𝑖
			

			

				𝑖
			

			

				𝑎
			

			

				𝑖
			

			
				)
				𝑎
			

			

				𝑗
			

			
				=
				0
			

		
	
 implies that 
	
		
			

				𝑝
			

			

				𝑛
			

			

				𝑖
			

			

				𝑖
			

			
				(
				𝑥
			

			

				1
			

			
				+
				𝑥
			

			

				2
			

			
				+
				⋯
				+
				𝑥
			

			

				𝑘
			

			
				)
				=
				0
			

		
	
 and hence 
	
		
			

				𝑝
			

			

				𝑛
			

			

				𝑖
			

			

				𝑖
			

			

				𝑥
			

			

				𝑡
			

			
				=
				0
			

		
	
 for 
	
		
			
				1
				≤
				𝑡
				≤
				𝑘
			

		
	
. Now for any 
	
		
			
				𝑡
				≠
				𝑖
			

		
	
, if 
	
		
			

				𝑥
			

			

				𝑡
			

			
				≠
				0
			

		
	
, then 
	
		
			

				𝑝
			

			

				𝑡
			

			
				∣
				𝑝
			

			

				𝑛
			

			

				𝑖
			

			

				𝑖
			

		
	
, a contradiction. Thus for all 
	
		
			
				𝑡
				≠
				𝑖
			

		
	
, 
	
		
			

				𝑥
			

			

				𝑡
			

			
				=
				0
			

		
	
. On the other hand, since 
	
		
			

				𝑝
			

			

				𝑛
			

			

				𝑗
			

			

				𝑗
			

			

				𝑎
			

			

				𝑖
			

			

				𝑎
			

			

				𝑗
			

			
				=
				𝑎
			

			

				𝑖
			

			
				(
				𝑝
			

			

				𝑛
			

			

				𝑗
			

			

				𝑗
			

			

				𝑎
			

			

				𝑗
			

			
				)
				=
				0
			

		
	
, by a similar argument, we conclude that for all 
	
		
			
				𝑡
				≠
				𝑗
				,
				𝑥
			

			

				𝑡
			

			
				=
				0
			

		
	
. Thus 
	
		
			

				𝑥
			

			

				1
			

			
				=
				𝑥
			

			

				2
			

			
				=
				⋯
				=
				𝑥
			

			

				𝑘
			

			
				=
				0
			

		
	
 and so for all 
	
		
			
				1
				≤
				𝑖
				≤
				𝑘
			

		
	
, 
	
		
			

				𝑅
			

			

				𝑖
			

		
	
 is an ideal of 
	
		
			

				𝑅
			

		
	
, and the proof is complete.
Remark 2. If 
	
		
			

				𝑅
			

		
	
 is a finite ring, then its additive group is a finite abelian group and is thus a direct product of cyclic groups. Suppose these have generators 
	
		
			

				𝑎
			

			

				1
			

			
				,
				𝑎
			

			

				2
			

			
				,
				…
				,
				𝑎
			

			

				𝑛
			

		
	
 of orders 
	
		
			

				𝑚
			

			

				1
			

			
				,
				𝑚
			

			

				2
			

			
				,
				…
				,
				𝑚
			

			

				𝑛
			

		
	
. Then the ring structure is determined by the 
	
		
			

				𝑛
			

			

				2
			

		
	
 products  
							
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			

				𝑎
			

			

				𝑖
			

			

				𝑎
			

			

				𝑗
			

			

				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				1
			

			

				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

			

				𝑎
			

			

				𝑘
			

			
				w
				i
				t
				h
			

			

				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

			
				∈
				ℤ
			

		
	

						and thus by the 
	
		
			

				𝑛
			

			

				3
			

		
	
 structure constants 
	
		
			

				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

		
	
. As [6] we introduce a convenient notation, motivated by group theory, for giving the structure of a finite ring. A presentation for a finite ring 
	
		
			

				𝑅
			

		
	
 consists of a set of generators 
	
		
			

				𝑎
			

			

				1
			

			
				,
				𝑎
			

			

				2
			

			
				,
				…
				,
				𝑎
			

			

				𝑛
			

		
	
 of the additive group of 
	
		
			

				𝑅
			

		
	
 together with relations. The relations are of two types: (i)
	
		
			

				𝑚
			

			

				𝑖
			

			

				𝑎
			

			

				𝑖
			

			
				=
				0
			

		
	
 for 
	
		
			
				𝑖
				=
				1
				,
				…
				,
				𝑛
			

		
	
; (ii)
	
		
			

				𝑎
			

			

				𝑖
			

			

				𝑎
			

			

				𝑗
			

			
				=
				∑
			

			
				𝑛
				𝑘
				=
				1
			

			

				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

			

				𝑎
			

			

				𝑘
			

		
	
 with 
	
		
			

				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

			
				∈
				ℤ
			

		
	
 for 
	
		
			
				𝑖
				,
				𝑗
				=
				1
				,
				…
				,
				𝑛
			

		
	
.If the ring 
	
		
			

				𝑅
			

		
	
 has the presentation above we write 
							
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			
				𝑅
				=
				
				𝑎
			

			

				1
			

			
				,
				…
				,
				𝑎
			

			

				𝑛
			

			
				∶
				𝑚
			

			

				𝑖
			

			

				𝑎
			

			

				𝑖
			

			
				=
				0
				,
				𝑎
			

			

				𝑖
			

			

				𝑎
			

			

				𝑗
			

			

				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				1
			

			

				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

			

				𝑎
			

			

				𝑘
			

			
				
				.
				,
				𝑖
				,
				𝑗
				=
				1
				,
				…
				,
				𝑛
			

		
	

Theorem 3.  Let 
	
		
			

				𝑅
			

		
	
 be a finite ring with additive group 
	
		
			

				⊕
			

			
				𝑛
				𝑖
				=
				1
			

			

				𝐴
			

			

				𝑖
			

		
	
, where 
	
		
			

				𝐴
			

			

				𝑖
			

			
				=
				⟨
				𝑎
			

			

				𝑖
			

			

				⟩
			

		
	
 
	
		
			
				(
				1
				≤
				𝑖
				≤
				𝑛
				)
			

		
	
 are cyclic subgroups of orders 
	
		
			

				𝑚
			

			

				𝑖
			

		
	
, respectively. Assume 
	
		
			

				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

			
				∈
				ℤ
			

		
	
, 
	
		
			

				𝜆
			

			
				𝑖
				𝑗
			

			
				=
				(
				𝑚
			

			

				𝑖
			

			
				,
				𝑚
			

			

				𝑗
			

			

				)
			

		
	
, where 
	
		
			
				1
				≤
				𝑖
				,
				𝑗
				,
				𝑘
				≤
				𝑛
			

		
	
, and “
	
		
			

				⋅
			

		
	
” is the following operation
							
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			
				
				⋅
				∶
				𝑅
				×
				𝑅
				→
				𝑅
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑠
			

			

				𝑖
			

			

				𝑎
			

			

				𝑖
			

			

				,
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑡
			

			

				𝑗
			

			

				𝑎
			

			

				𝑗
			

			
				
				→
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				1
			

			

				
			

			

				𝑛
			

			

				
			

			
				𝑖
				,
				𝑗
				=
				1
			

			

				𝑠
			

			

				𝑖
			

			

				𝑡
			

			

				𝑗
			

			

				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

			
				
				𝑎
			

			

				𝑘
			

			

				.
			

		
	

						Then (1)“
	
		
			

				⋅
			

		
	
” is well-defined if and only if 
										
	
		
			

				𝑚
			

			

				𝑘
			

			
				∣
				𝜆
			

			
				𝑖
				𝑗
			

			

				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

			
				∀
				1
				≤
				𝑖
				,
				𝑗
				,
				𝑘
				≤
				𝑛
				;
			

			
				(
				∗
				)
			

		
	

	
		
			

				𝑚
			

			

				𝑘
			

			
				∣
				𝜆
			

			
				𝑖
				𝑗
			

			

				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

			
				∀
				1
				≤
				𝑖
				,
				𝑗
				,
				𝑘
				≤
				𝑛
				;
			

		
	
(2)“
	
		
			

				⋅
			

		
	
” is always distributive, in the case when “
	
		
			

				⋅
			

		
	
” is well-defined;(3)“
	
		
			

				⋅
			

		
	
” is associative if and only if 
										
	
		
			

				𝑛
			

			

				
			

			
				𝛼
				=
				1
			

			

				𝑤
			

			
				𝑖
				𝑗
				𝛼
			

			

				𝑤
			

			
				𝛼
				𝑙
				𝑘
			

			

				≡
			

			

				𝑚
			

			

				𝑘
			

			

				𝑛
			

			

				
			

			
				𝛼
				=
				1
			

			

				𝑤
			

			
				𝑗
				𝑙
				𝛼
			

			

				𝑤
			

			
				𝑖
				𝛼
				𝑘
			

			
				∀
				1
				≤
				𝑖
				,
				𝑗
				,
				𝑘
				,
				𝑙
				≤
				𝑛
				.
			

			
				(
				∗
				∗
				)
			

		
	

	
		
			

				𝑛
			

			

				
			

			
				𝛼
				=
				1
			

			

				𝑤
			

			
				𝑖
				𝑗
				𝛼
			

			

				𝑤
			

			
				𝛼
				𝑙
				𝑘
			

			

				≡
			

			

				𝑚
			

			

				𝑘
			

			

				𝑛
			

			

				
			

			
				𝛼
				=
				1
			

			

				𝑤
			

			
				𝑗
				𝑙
				𝛼
			

			

				𝑤
			

			
				𝑖
				𝛼
				𝑘
			

			
				∀
				1
				≤
				𝑖
				,
				𝑗
				,
				𝑘
				,
				𝑙
				≤
				𝑛
				.
			

		
	
Consequently, 
							
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			
				
				𝑎
			

			

				1
			

			
				,
				…
				,
				𝑎
			

			

				𝑛
			

			
				∶
				𝑚
			

			

				𝑖
			

			

				𝑎
			

			

				𝑖
			

			
				=
				0
				,
				𝑎
			

			

				𝑖
			

			

				𝑎
			

			

				𝑗
			

			

				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				1
			

			

				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

			

				𝑎
			

			

				𝑘
			

			
				
				,
				𝑖
				,
				𝑗
				=
				1
				,
				…
				,
				𝑛
			

		
	

						is a ring if and only if 
	
		
			
				(
				∗
				)
			

		
	
 and 
	
		
			
				(
				∗
				∗
				)
			

		
	
 above hold.
Proof. (1) (
	
		
			

				⇒
			

		
	
). Assume “
	
		
			

				⋅
			

		
	
” is well-defined and fix 
	
		
			
				𝑖
				,
				𝑗
			

		
	
 where 
	
		
			
				1
				≤
				𝑖
				,
				𝑗
				≤
				𝑛
			

		
	
. Let 
	
		
			
				𝑥
				∈
				𝑚
			

			

				𝑖
			

			

				ℤ
			

		
	
. Then by definition of “
	
		
			

				⋅
			

		
	
”, we have 
							
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			

				𝑛
			

			

				
			

			
				𝑘
				=
				1
			

			
				𝑥
				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

			

				𝑎
			

			

				𝑘
			

			
				=
				
				𝑥
				𝑎
			

			

				𝑖
			

			
				
				⋅
				
				𝑎
			

			

				𝑗
			

			
				
				
				𝑎
				=
				(
				0
				)
				⋅
			

			

				𝑗
			

			
				
				=
				0
				.
			

		
	

						Thus for each 
	
		
			
				𝑘
				=
				1
				,
				…
				,
				𝑛
			

		
	
, we deduce 
	
		
			
				𝑥
				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

			

				𝑎
			

			

				𝑘
			

			
				=
				0
			

			
				t
				h
				a
				t
				i
				s
			

			
				,
				𝑚
			

			

				𝑖
			

			

				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

			
				ℤ
				⊆
				𝑚
			

			

				𝑘
			

			

				ℤ
			

		
	
, for 
	
		
			
				𝑘
				=
				1
				,
				…
				,
				𝑛
			

		
	
. Similarly, 
	
		
			

				𝑚
			

			

				𝑗
			

			

				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

			
				ℤ
				⊆
				𝑚
			

			

				𝑘
			

			

				ℤ
			

		
	
, for 
	
		
			
				𝑘
				=
				1
				,
				…
				,
				𝑛
			

		
	
. Therefore, 
							
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			
				
				𝑚
			

			

				𝑖
			

			
				ℤ
				+
				𝑚
			

			

				𝑗
			

			
				ℤ
				
				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

			
				⊆
				𝑚
			

			

				𝑘
			

			
				ℤ
				∀
				1
				≤
				𝑖
				,
				𝑗
				,
				𝑘
				≤
				𝑛
				.
			

		
	

						Now one can easily check that the last relation holds if and only if 
	
		
			
				(
				∗
				)
			

		
	
 holds.(1) (
	
		
			

				⇐
			

		
	
). Assume 
							
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑠
			

			

				𝑖
			

			

				𝑎
			

			

				𝑖
			

			

				=
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑢
			

			

				𝑖
			

			

				𝑎
			

			

				𝑖
			

			

				,
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑡
			

			

				𝑗
			

			

				𝑎
			

			

				𝑗
			

			

				=
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑣
			

			

				𝑗
			

			

				𝑎
			

			

				𝑗
			

			

				,
			

		
	

						where 
	
		
			

				𝑠
			

			

				𝑖
			

			
				,
				𝑢
			

			

				𝑖
			

			
				,
				𝑡
			

			

				𝑗
			

			
				,
				𝑣
			

			

				𝑗
			

			
				∈
				ℤ
			

		
	
. Then 
	
		
			

				𝑠
			

			

				𝑖
			

			

				𝑎
			

			

				𝑖
			

			
				=
				𝑢
			

			

				𝑖
			

			

				𝑎
			

			

				𝑖
			

		
	
 and 
	
		
			

				𝑡
			

			

				𝑗
			

			

				𝑎
			

			

				𝑗
			

			
				=
				𝑣
			

			

				𝑗
			

			

				𝑎
			

			

				𝑗
			

		
	
 for all 
	
		
			
				𝑖
				,
				𝑗
			

		
	
. Let 
	
		
			

				𝑥
			

			

				𝑖
			

			
				=
				𝑢
			

			

				𝑖
			

			
				−
				𝑠
			

			

				𝑖
			

		
	
 and 
	
		
			

				𝑦
			

			

				𝑗
			

			
				=
				𝑣
			

			

				𝑗
			

			
				−
				𝑡
			

			

				𝑗
			

		
	
. Then 
	
		
			

				𝑢
			

			

				𝑖
			

			
				=
				𝑥
			

			

				𝑖
			

			
				+
				𝑠
			

			

				𝑖
			

		
	
, 
	
		
			

				𝑣
			

			

				𝑗
			

			
				=
				𝑦
			

			

				𝑗
			

			
				+
				𝑡
			

			

				𝑗
			

		
	
, 
	
		
			

				𝑥
			

			

				𝑖
			

			
				∈
				𝑚
			

			

				𝑖
			

			

				ℤ
			

		
	
 and 
	
		
			

				𝑦
			

			

				𝑗
			

			
				∈
				𝑚
			

			

				𝑗
			

			

				ℤ
			

		
	
. Hence 
							
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			

				𝑢
			

			

				𝑖
			

			

				𝑣
			

			

				𝑗
			

			
				−
				𝑠
			

			

				𝑖
			

			

				𝑡
			

			

				𝑗
			

			
				=
				𝑠
			

			

				𝑖
			

			

				𝑦
			

			

				𝑗
			

			
				+
				𝑥
			

			

				𝑖
			

			

				𝑡
			

			

				𝑗
			

			
				+
				𝑥
			

			

				𝑖
			

			

				𝑦
			

			

				𝑗
			

			
				=
				𝑥
			

			

				𝑖
			

			

				𝑡
			

			

				𝑗
			

			
				+
				
				𝑠
			

			

				𝑖
			

			
				+
				𝑥
			

			

				𝑖
			

			
				
				𝑦
			

			

				𝑗
			

			
				∈
				
				𝑚
			

			

				𝑖
			

			
				ℤ
				+
				𝑚
			

			

				𝑗
			

			
				ℤ
				
			

		
	

						and so 
							
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			
				
				𝑢
			

			

				𝑖
			

			

				𝑣
			

			

				𝑗
			

			
				−
				𝑠
			

			

				𝑖
			

			

				𝑡
			

			

				𝑗
			

			
				
				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

			
				∈
				
				𝑚
			

			

				𝑖
			

			
				ℤ
				+
				𝑚
			

			

				𝑗
			

			
				ℤ
				
				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

			
				∀
				𝑘
				(
				1
				≤
				𝑘
				≤
				𝑛
				)
				.
			

		
	

						Now by condition 
	
		
			
				(
				∗
				)
			

		
	
 we have 
							
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			
				
				𝑢
			

			

				𝑖
			

			

				𝑣
			

			

				𝑗
			

			
				−
				𝑠
			

			

				𝑖
			

			

				𝑡
			

			

				𝑗
			

			
				
				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

			

				𝑎
			

			

				𝑘
			

			
				=
				0
				∀
				𝑘
				(
				1
				≤
				𝑘
				≤
				𝑛
				)
				.
			

		
	

						It follows that
							
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			

				𝑛
			

			

				
			

			
				𝑘
				=
				1
			

			

				
			

			

				𝑛
			

			

				
			

			
				𝑖
				,
				𝑗
				=
				1
			

			

				𝑠
			

			

				𝑖
			

			

				𝑡
			

			

				𝑗
			

			

				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

			
				
				𝑎
			

			

				𝑘
			

			

				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				1
			

			

				
			

			

				𝑛
			

			

				
			

			
				𝑖
				,
				𝑗
				=
				1
			

			

				𝑢
			

			

				𝑖
			

			

				𝑣
			

			

				𝑗
			

			

				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

			
				
				𝑎
			

			

				𝑘
			

			

				,
			

		
	

						that is, 
							
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑠
			

			

				𝑖
			

			

				𝑎
			

			

				𝑖
			

			

				⋅
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑡
			

			

				𝑗
			

			

				𝑎
			

			

				𝑗
			

			

				=
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑢
			

			

				𝑖
			

			

				𝑎
			

			

				𝑖
			

			

				⋅
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑣
			

			

				𝑗
			

			

				𝑎
			

			

				𝑗
			

			

				.
			

		
	

						Thus the operation “
	
		
			

				⋅
			

		
	
” is well-defined.(2) Suppose the operation “
	
		
			

				⋅
			

		
	
” is well-defined. Then 
							
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			

				
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑠
			

			

				𝑖
			

			

				𝑎
			

			

				𝑖
			

			

				+
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑢
			

			

				𝑖
			

			

				𝑎
			

			

				𝑖
			

			
				
				⋅
				
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑡
			

			

				𝑗
			

			

				𝑎
			

			

				𝑗
			

			
				
				=
				
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			
				
				𝑠
			

			

				𝑖
			

			
				+
				𝑢
			

			

				𝑖
			

			
				
				𝑎
			

			

				𝑖
			

			
				
				⋅
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑡
			

			

				𝑗
			

			

				𝑎
			

			

				𝑗
			

			

				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				1
			

			

				
			

			

				𝑛
			

			

				
			

			
				𝑖
				,
				𝑗
				=
				1
			

			
				
				𝑠
			

			

				𝑖
			

			
				+
				𝑢
			

			

				𝑖
			

			
				
				𝑡
			

			

				𝑗
			

			

				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

			
				
				𝑎
			

			

				𝑘
			

			

				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				1
			

			

				
			

			

				𝑛
			

			

				
			

			
				𝑖
				,
				𝑗
				=
				1
			

			

				𝑠
			

			

				𝑖
			

			

				𝑡
			

			

				𝑗
			

			

				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

			
				
				𝑎
			

			

				𝑘
			

			

				+
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				1
			

			

				
			

			

				𝑛
			

			

				
			

			
				𝑖
				,
				𝑗
				=
				1
			

			

				𝑢
			

			

				𝑖
			

			

				𝑡
			

			

				𝑗
			

			

				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

			
				
				𝑎
			

			

				𝑘
			

			
				=
				
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑠
			

			

				𝑖
			

			

				𝑎
			

			

				𝑖
			

			
				
				⋅
				
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑡
			

			

				𝑗
			

			

				𝑎
			

			

				𝑗
			

			
				
				+
				
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑢
			

			

				𝑖
			

			

				𝑎
			

			

				𝑖
			

			
				
				⋅
				
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑡
			

			

				𝑗
			

			

				𝑎
			

			

				𝑗
			

			
				
				.
			

		
	
On the other hand
							
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			

				
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑠
			

			

				𝑖
			

			

				𝑎
			

			

				𝑖
			

			
				
				⋅
				
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑡
			

			

				𝑗
			

			

				𝑎
			

			

				𝑗
			

			

				+
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑣
			

			

				𝑗
			

			

				𝑎
			

			

				𝑗
			

			
				
				=
				
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑠
			

			

				𝑖
			

			

				𝑎
			

			

				𝑖
			

			
				
				⋅
				
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			
				
				𝑡
			

			

				𝑗
			

			
				+
				𝑣
			

			

				𝑗
			

			
				
				𝑎
			

			

				𝑗
			

			
				
				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				1
			

			

				
			

			

				𝑛
			

			

				
			

			
				𝑖
				,
				𝑗
				=
				1
			

			

				𝑠
			

			

				𝑖
			

			
				
				𝑡
			

			

				𝑗
			

			
				+
				𝑣
			

			

				𝑗
			

			
				
				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

			
				
				𝑎
			

			

				𝑘
			

			

				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				1
			

			

				
			

			

				𝑛
			

			

				
			

			
				𝑖
				,
				𝑗
				=
				1
			

			

				𝑠
			

			

				𝑖
			

			

				𝑡
			

			

				𝑗
			

			

				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

			
				
				𝑎
			

			

				𝑘
			

			

				+
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				1
			

			

				
			

			

				𝑛
			

			

				
			

			
				𝑖
				,
				𝑗
				=
				1
			

			

				𝑠
			

			

				𝑖
			

			

				𝑣
			

			

				𝑗
			

			

				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

			
				
				𝑎
			

			

				𝑘
			

			
				=
				
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑠
			

			

				𝑖
			

			

				𝑎
			

			

				𝑖
			

			
				
				⋅
				
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑡
			

			

				𝑗
			

			

				𝑎
			

			

				𝑗
			

			
				
				+
				
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑠
			

			

				𝑖
			

			

				𝑎
			

			

				𝑖
			

			
				
				⋅
				
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑣
			

			

				𝑗
			

			

				𝑎
			

			

				𝑗
			

			
				
				.
			

		
	

						Thus “
	
		
			

				⋅
			

		
	
” is a distributive operation.(3) By definition of “
	
		
			

				⋅
			

		
	
”, we have 
							
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			

				𝑎
			

			

				𝑖
			

			
				⋅
				𝑎
			

			

				𝑗
			

			

				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				1
			

			

				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

			

				𝑎
			

			

				𝑘
			

			
				∀
				1
				≤
				𝑖
				,
				𝑗
				≤
				𝑛
			

		
	

						and so 
							
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			
				
				𝑎
			

			

				𝑖
			

			
				⋅
				𝑎
			

			

				𝑗
			

			
				
				⋅
				𝑎
			

			

				𝑙
			

			
				=
				
			

			

				𝑛
			

			

				
			

			
				𝛼
				=
				1
			

			

				𝑤
			

			
				𝑖
				𝑗
				𝛼
			

			

				𝑎
			

			

				𝛼
			

			
				
				⋅
				𝑎
			

			

				𝑙
			

			

				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				1
			

			

				
			

			

				𝑛
			

			

				
			

			
				𝛼
				=
				1
			

			

				𝑤
			

			
				𝑖
				𝑗
				𝛼
			

			

				𝑤
			

			
				𝛼
				𝑙
				𝑘
			

			
				
				𝑎
			

			

				𝑘
			

		
	

						and also 
							
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			

				𝑎
			

			

				𝑖
			

			
				⋅
				
				𝑎
			

			

				𝑗
			

			
				⋅
				𝑎
			

			

				𝑙
			

			
				
				=
				𝑎
			

			

				𝑖
			

			
				⋅
				
			

			

				𝑛
			

			

				
			

			
				𝛼
				=
				1
			

			

				𝑤
			

			
				𝑗
				𝑙
				𝛼
			

			

				𝑎
			

			

				𝛼
			

			
				
				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				1
			

			

				
			

			

				𝑛
			

			

				
			

			
				𝛼
				=
				1
			

			

				𝑤
			

			
				𝑗
				𝑙
				𝛼
			

			

				𝑤
			

			
				𝑖
				𝛼
				𝑘
			

			
				
				𝑎
			

			

				𝑘
			

			

				.
			

		
	

						Now, it is clear that “
	
		
			

				⋅
			

		
	
” is associative if and only if 
	
		
			
				(
				𝑎
			

			

				𝑖
			

			
				⋅
				𝑎
			

			

				𝑗
			

			
				)
				⋅
				𝑎
			

			

				𝑙
			

			
				=
				𝑎
			

			

				𝑖
			

			
				⋅
				(
				𝑎
			

			

				𝑗
			

			
				⋅
				𝑎
			

			

				𝑙
			

			

				)
			

		
	
 for all 
	
		
			
				1
				≤
				𝑖
				,
				𝑗
				,
				𝑙
				≤
				𝑛
			

		
	
, if and only if 
							
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			

				𝑛
			

			

				
			

			
				𝛼
				=
				1
			

			

				𝑤
			

			
				𝑖
				𝑗
				𝛼
			

			

				𝑤
			

			
				𝛼
				𝑙
				𝑘
			

			

				≡
			

			

				𝑚
			

			

				𝑘
			

			

				𝑛
			

			

				
			

			
				𝛼
				=
				1
			

			

				𝑤
			

			
				𝑗
				𝑙
				𝛼
			

			

				𝑤
			

			
				𝑖
				𝛼
				𝑘
			

			
				∀
				1
				≤
				𝑖
				,
				𝑗
				,
				𝑘
				,
				𝑙
				≤
				𝑛
				⋅
			

		
	

Theorem 4.  For 
	
		
			
				𝑛
				∈
				ℕ
			

		
	
, let 
							
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			

				𝑅
			

			

				1
			

			
				=
				
				𝑎
			

			

				1
			

			
				,
				…
				,
				𝑎
			

			

				𝑛
			

			
				∶
				𝑚
			

			

				𝑖
			

			

				𝑎
			

			

				𝑖
			

			
				=
				0
				,
				𝑎
			

			

				𝑖
			

			

				𝑎
			

			

				𝑗
			

			

				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				1
			

			

				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

			

				𝑎
			

			

				𝑘
			

			
				
				,
				𝑅
				,
				𝑖
				,
				𝑗
				=
				1
				,
				…
				,
				𝑛
			

			

				2
			

			
				=
				
				𝑎
			

			

				1
			

			
				,
				…
				,
				𝑎
			

			

				𝑛
			

			
				∶
				𝑚
			

			

				𝑖
			

			

				𝑎
			

			

				𝑖
			

			
				=
				0
				,
				𝑎
			

			

				𝑖
			

			

				𝑎
			

			

				𝑗
			

			

				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				1
			

			

				𝑧
			

			
				𝑖
				𝑗
				𝑘
			

			

				𝑎
			

			

				𝑘
			

			
				
				,
				𝑖
				,
				𝑗
				=
				1
				,
				…
				𝑛
			

		
	

						be two presentations with suitable 
	
		
			

				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

			
				,
				𝑧
			

			
				𝑖
				𝑗
				𝑘
			

			
				∈
				ℤ
			

		
	
, 
	
		
			
				(
				1
				≤
				𝑖
				,
				𝑗
				,
				𝑘
				≤
				𝑛
				)
			

		
	
. Assume 
	
		
			

				𝑝
			

			
				𝑖
				𝑗
			

			
				∈
				ℤ
			

		
	
 where 
	
		
			
				1
				≤
				𝑖
				,
				𝑗
				≤
				𝑛
			

		
	
 and 
	
		
			

				𝑓
			

		
	
 is the following map: 
							
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			
				𝑓
				∶
				𝑅
			

			

				1
			

			
				→
				𝑅
			

			

				2
			

			
				,
				𝑓
				
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑠
			

			

				𝑖
			

			

				𝑎
			

			

				𝑖
			

			
				
				=
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑠
			

			

				𝑖
			

			

				𝑝
			

			
				𝑖
				𝑗
			

			
				
				𝑏
			

			

				𝑗
			

			

				.
			

		
	

						Then (1)
	
		
			

				𝑓
			

		
	
 is well-defined if and only if for 
	
		
			
				1
				≤
				𝑖
				,
				𝑗
				≤
				𝑛
			

		
	
, 
										
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			

				𝑚
			

			

				𝑗
			

			
				∣
				𝑚
			

			

				𝑖
			

			

				𝑝
			

			
				𝑖
				𝑗
			

			

				.
			

		
	
(2)If 
	
		
			

				𝑓
			

		
	
 is well-defined, then(a)
	
		
			

				𝑓
			

		
	
 is an 
	
		
			

				ℤ
			

		
	
-module homomorphism,(b)
	
		
			

				𝑓
			

		
	
 is one to one if and only if for each 
	
		
			

				𝑠
			

			

				1
			

			
				,
				𝑠
			

			

				2
			

			
				,
				…
				,
				𝑠
			

			

				𝑛
			

			
				∈
				ℤ
				,
				𝑚
			

			

				𝑗
			

			
				∣
				∑
			

			
				𝑚
				𝑖
				=
				1
			

			

				𝑠
			

			

				𝑖
			

			

				𝑝
			

			
				𝑖
				𝑗
			

		
	
 implies that 
	
		
			

				𝑚
			

			

				𝑗
			

			
				∣
				𝑠
			

			

				𝑗
			

		
	
 for all 
	
		
			
				1
				≤
				𝑗
				≤
				𝑛
			

		
	
, and (c)
	
		
			

				𝑓
			

		
	
 is a ring homomorphism if and only if for 
	
		
			
				1
				≤
				𝑖
				,
				𝑗
				,
				𝑘
				≤
				𝑛
			

		
	
,
													
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			

				𝑛
			

			

				
			

			
				𝛼
				,
				𝛽
				=
				1
			

			

				𝑝
			

			
				𝑖
				𝛼
			

			

				𝑝
			

			
				𝑗
				𝛽
			

			

				𝑤
			

			
				𝛼
				𝛽
				𝑘
			

			

				≡
			

			

				𝑚
			

			

				𝑘
			

			

				𝑛
			

			

				
			

			
				𝑙
				=
				1
			

			

				𝑧
			

			
				𝑖
				𝑗
				𝑙
			

			

				𝑝
			

			
				𝑙
				𝑘
			

			

				.
			

		
	

Proof. (1) (
	
		
			

				⇒
			

		
	
). Assume 
	
		
			
				𝑠
				∈
				𝑚
			

			

				𝑖
			

			

				ℤ
			

		
	
, where 
	
		
			
				1
				≤
				𝑖
				≤
				𝑛
			

		
	
. Then by definition 
	
		
			

				𝑓
			

		
	
 we have 
							
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			
				𝑠
				𝑝
			

			
				𝑖
				𝑗
			

			

				𝑏
			

			

				𝑗
			

			
				
				=
				𝑓
				𝑠
				𝑎
			

			

				𝑖
			

			
				
				=
				𝑓
				(
				0
				)
				=
				0
				.
			

		
	

						It follows that 
	
		
			
				𝑠
				𝑝
			

			
				𝑖
				𝑗
			

			

				𝑏
			

			

				𝑗
			

			
				=
				0
			

		
	
 for all 
	
		
			
				1
				≤
				𝑗
				≤
				𝑛
			

		
	
. Therefore, 
	
		
			

				𝑚
			

			

				𝑖
			

			

				𝑝
			

			
				𝑖
				𝑗
			

			
				ℤ
				⊆
				𝑚
			

			

				𝑗
			

			

				ℤ
			

		
	
, for all 
	
		
			
				1
				≤
				𝑗
				≤
				𝑛
			

		
	
 and so for 
	
		
			
				1
				≤
				𝑖
				,
				𝑗
				≤
				𝑛
			

		
	
, 
							
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			

				𝑚
			

			

				𝑗
			

			
				∣
				𝑚
			

			

				𝑖
			

			

				𝑝
			

			
				𝑖
				𝑗
			

			

				.
			

		
	
 (1) (
	
		
			

				⇐
			

		
	
). Suppose 
	
		
			

				∑
			

			
				𝑛
				𝑖
				=
				1
			

			

				𝑠
			

			

				𝑖
			

			

				𝑎
			

			

				𝑖
			

			
				=
				∑
			

			
				𝑛
				𝑖
				=
				1
			

			

				𝑡
			

			

				𝑖
			

			

				𝑎
			

			

				𝑖
			

		
	
 where 
	
		
			

				𝑠
			

			

				𝑖
			

			
				,
				𝑡
			

			

				𝑖
			

			
				∈
				ℤ
			

		
	
. Then 
	
		
			

				𝑠
			

			

				𝑖
			

			
				−
				𝑡
			

			

				𝑖
			

			
				∈
				𝑚
			

			

				𝑖
			

			

				ℤ
			

		
	
 for all 
	
		
			

				𝑖
			

		
	
 
	
		
			
				(
				1
				≤
				𝑖
				≤
				𝑛
			

		
	
) and so 
	
		
			
				(
				𝑠
			

			

				𝑖
			

			
				−
				𝑡
			

			

				𝑖
			

			
				)
				𝑝
			

			
				𝑖
				𝑗
			

			
				∈
				𝑚
			

			

				𝑖
			

			

				𝑝
			

			
				𝑖
				𝑗
			

			

				ℤ
			

		
	
. Now by our hypothesis 
	
		
			

				𝑚
			

			

				𝑗
			

			
				∣
				(
				𝑠
			

			

				𝑖
			

			
				−
				𝑡
			

			

				𝑖
			

			
				)
				𝑝
			

			
				𝑖
				𝑗
			

			
				t
				h
				a
				t
				i
				s
			

			
				,
				𝑠
			

			

				𝑖
			

			

				𝑝
			

			
				𝑖
				𝑗
			

			

				𝑏
			

			

				𝑗
			

			
				=
				𝑡
			

			

				𝑖
			

			

				𝑝
			

			
				𝑖
				𝑗
			

			

				𝑏
			

			

				𝑗
			

		
	
 for all 
	
		
			
				1
				≤
				𝑖
				,
				𝑗
				≤
				𝑛
			

		
	
. Therefore, 
							
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑠
			

			

				𝑖
			

			

				𝑝
			

			
				𝑖
				𝑗
			

			
				
				𝑏
			

			

				𝑗
			

			

				=
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑡
			

			

				𝑖
			

			

				𝑝
			

			
				𝑖
				𝑗
			

			
				
				𝑏
			

			

				𝑗
			

			

				.
			

		
	

						This means that 
							
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			
				𝑓
				
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑠
			

			

				𝑖
			

			

				𝑎
			

			

				𝑖
			

			
				
				
				=
				𝑓
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑡
			

			

				𝑖
			

			

				𝑎
			

			

				𝑖
			

			

				
			

		
	

						and hence 
	
		
			

				𝑓
			

		
	
 is well-defined.(2) (a) Assume 
	
		
			
				𝑟
				,
				𝑠
			

			

				𝑖
			

			
				,
				𝑡
			

			

				𝑖
			

			
				∈
				ℤ
			

		
	
, for 
	
		
			
				𝑖
				=
				1
				,
				…
				,
				𝑛
			

		
	
. Clearly, 
							
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			
				𝑓
				
				𝑟
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑠
			

			

				𝑖
			

			

				𝑎
			

			

				𝑖
			

			

				+
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑡
			

			

				𝑖
			

			

				𝑎
			

			

				𝑖
			

			
				
				
				=
				𝑓
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			
				
				𝑟
				𝑠
			

			

				𝑖
			

			
				+
				𝑡
			

			

				𝑖
			

			
				
				𝑎
			

			

				𝑖
			

			
				
				=
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			
				
				𝑟
				𝑠
			

			

				𝑖
			

			
				+
				𝑡
			

			

				𝑖
			

			
				
				𝑝
			

			
				𝑖
				𝑗
			

			
				
				𝑏
			

			

				𝑗
			

			

				=
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			
				𝑟
				𝑠
			

			

				𝑖
			

			

				𝑝
			

			
				𝑖
				𝑗
			

			
				
				𝑏
			

			

				𝑗
			

			

				+
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
			

			

				
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑡
			

			

				𝑖
			

			

				𝑝
			

			
				𝑖
				𝑗
			

			
				
				𝑏
			

			

				𝑗
			

			
				
				=
				𝑟
				𝑓
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑠
			

			

				𝑖
			

			

				𝑎
			

			

				𝑖
			

			
				
				
				+
				𝑓
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑡
			

			

				𝑖
			

			

				𝑎
			

			

				𝑖
			

			
				
				.
			

		
	

						Thus 
	
		
			

				𝑓
			

		
	
 is an 
	
		
			

				ℤ
			

		
	
-module homomorphism.(2) (b) By definition 
	
		
			

				𝑓
			

		
	
, (b) is clear.(2) (c) By (2) (a), 
	
		
			

				𝑓
			

		
	
 is always a group homomorphism. Thus it is sufficient to show that 
	
		
			
				𝑓
				(
				𝑎
			

			

				𝑖
			

			

				𝑎
			

			

				𝑗
			

			

				)
			

		
	
 
	
		
			

				=
			

		
	
 
	
		
			
				𝑓
				(
				𝑎
			

			

				𝑖
			

			
				)
				𝑓
				(
				𝑎
			

			

				𝑗
			

			

				)
			

		
	
 for each 
	
		
			
				𝑖
				,
				𝑗
				(
				1
				≤
				𝑖
				,
				𝑗
				≤
				𝑛
				)
			

		
	
. However by multiplications of 
	
		
			

				𝑅
			

			

				1
			

		
	
, 
	
		
			

				𝑅
			

			

				2
			

		
	
 and definition of 
	
		
			

				𝑓
			

		
	
 we have 
							
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			
				𝑓
				
				𝑎
			

			

				𝑖
			

			

				𝑎
			

			

				𝑗
			

			
				
				
				=
				𝑓
			

			

				𝑛
			

			

				
			

			
				𝑙
				=
				1
			

			

				𝑤
			

			
				𝑖
				𝑗
				𝑙
			

			

				𝑎
			

			

				𝑙
			

			
				
				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				1
			

			

				
			

			

				𝑛
			

			

				
			

			
				𝑙
				=
				1
			

			

				𝑤
			

			
				𝑖
				𝑗
				𝑙
			

			

				𝑝
			

			
				𝑙
				𝑘
			

			
				
				𝑏
			

			

				𝑘
			

		
	

						and also 
							
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			
				𝑓
				
				𝑎
			

			

				𝑖
			

			
				
				𝑓
				
				𝑎
			

			

				𝑗
			

			
				
				=
				
			

			

				𝑛
			

			

				
			

			
				𝑠
				=
				1
			

			

				𝑝
			

			
				𝑖
				𝑠
			

			

				𝑏
			

			

				𝑠
			

			
				
				
			

			

				𝑛
			

			

				
			

			
				𝑡
				=
				1
			

			

				𝑝
			

			
				𝑗
				𝑡
			

			

				𝑏
			

			

				𝑡
			

			
				
				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				1
			

			

				
			

			

				𝑛
			

			

				
			

			
				𝑠
				,
				𝑡
				=
				1
			

			

				𝑝
			

			
				𝑖
				𝑠
			

			

				𝑝
			

			
				𝑗
				𝑡
			

			

				𝑧
			

			
				𝑠
				𝑡
				𝑘
			

			
				
				𝑏
			

			

				𝑘
			

			

				.
			

		
	

						Thus 
	
		
			

				𝑓
			

		
	
 is a ring homomorphism if and only if for all 
	
		
			
				1
				≤
				𝑖
				,
				𝑗
				,
				𝑘
				≤
				𝑛
			

		
	
,
							
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			

				𝑛
			

			

				
			

			
				𝛼
				,
				𝛽
				=
				1
			

			

				𝑝
			

			
				𝑖
				𝛼
			

			

				𝑝
			

			
				𝑗
				𝛽
			

			

				𝑤
			

			
				𝛼
				𝛽
				𝑘
			

			

				≡
			

			

				𝑚
			

			

				𝑘
			

			

				𝑛
			

			

				
			

			
				𝑙
				=
				1
			

			

				𝑧
			

			
				𝑖
				𝑗
				𝑙
			

			

				𝑝
			

			
				𝑙
				𝑘
			

			

				.
			

		
	

Corollary 5.  Let 
	
		
			

				𝑛
			

		
	
 be a positive integer and let 
	
		
			

				𝐴
			

			

				𝑖
			

			
				=
				⟨
				𝑎
			

			

				𝑖
			

			

				⟩
			

		
	
 
	
		
			
				(
				1
				≤
				𝑖
				≤
				𝑛
				)
			

		
	
 be cyclic additive groups of orders 
	
		
			

				𝑚
			

			

				𝑖
			

		
	
, respectively. If 
							
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			

				𝑅
			

			

				1
			

			
				=
				
				𝑎
			

			

				1
			

			
				,
				…
				,
				𝑎
			

			

				𝑛
			

			
				∶
				𝑚
			

			

				𝑖
			

			

				𝑎
			

			

				𝑖
			

			
				=
				0
				,
				𝑎
			

			

				𝑖
			

			

				𝑎
			

			

				𝑗
			

			

				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				1
			

			

				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

			

				𝑎
			

			

				𝑘
			

			
				
				,
				𝑅
				,
				𝑖
				,
				𝑗
				=
				1
				,
				…
				,
				𝑛
			

			

				2
			

			
				=
				
				𝑎
			

			

				1
			

			
				,
				…
				,
				𝑎
			

			

				𝑛
			

			
				∶
				𝑚
			

			

				𝑖
			

			

				𝑎
			

			

				𝑖
			

			
				=
				0
				,
				𝑎
			

			

				𝑖
			

			

				𝑎
			

			

				𝑗
			

			

				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				1
			

			

				𝑧
			

			
				𝑖
				𝑗
				𝑘
			

			

				𝑎
			

			

				𝑘
			

			
				
				,
				𝑖
				,
				𝑗
				=
				1
				,
				…
				,
				𝑛
			

		
	

						are two presentations with suitable 
	
		
			

				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

			
				,
				𝑧
			

			
				𝑖
				𝑗
				𝑘
			

			
				∈
				ℤ
			

		
	
 
	
		
			
				(
				1
				≤
				𝑖
				,
				𝑗
				,
				𝑘
				≤
				𝑛
				)
			

		
	
, then 
	
		
			

				𝑅
			

			

				1
			

			
				≅
				𝑅
			

			

				2
			

		
	
 if and only if there exist 
	
		
			

				𝑝
			

			
				𝑖
				𝑗
			

			
				∈
				ℤ
			

		
	
 (
	
		
			
				1
				≤
				𝑖
				,
				𝑗
				≤
				𝑛
			

		
	
) such that (1)
	
		
			

				𝑚
			

			

				𝑗
			

			
				∣
				𝑚
			

			

				𝑖
			

			

				𝑝
			

			
				𝑖
				𝑗
			

		
	
, for 
	
		
			
				1
				≤
				𝑖
				,
				𝑗
				≤
				𝑛
			

		
	
; (2)for all 
	
		
			

				𝑠
			

			

				𝑖
			

			
				∈
				ℤ
			

		
	
 and 
	
		
			
				1
				≤
				𝑗
				≤
				𝑛
			

		
	
, 
	
		
			

				𝑚
			

			

				𝑗
			

			
				∣
				∑
			

			
				𝑚
				𝑖
				=
				1
			

			

				𝑠
			

			

				𝑖
			

			

				𝑝
			

			
				𝑖
				𝑗
			

		
	
 implies that 
	
		
			

				𝑚
			

			

				𝑗
			

			
				∣
				𝑠
			

			

				𝑗
			

		
	
 for all 
	
		
			
				1
				≤
				𝑗
				≤
				𝑛
			

		
	
, and (3)
	
		
			

				∑
			

			
				𝑛
				𝛼
				,
				𝛽
				=
				1
			

			

				𝑝
			

			
				𝑖
				𝛼
			

			

				𝑝
			

			
				𝑗
				𝛽
			

			

				𝑤
			

			
				𝛼
				𝛽
				𝑘
			

			

				≡
			

			

				𝑚
			

			

				𝑘
			

			

				∑
			

			
				𝑛
				𝑙
				=
				1
			

			

				𝑧
			

			
				𝑖
				𝑗
				𝑙
			

			

				𝑝
			

			
				𝑙
				𝑘
			

		
	
, for 
	
		
			
				1
				≤
				𝑖
				,
				𝑗
				,
				𝑘
				≤
				𝑛
			

		
	
.
Proof. It is clear by Theorem 4.
3. Finite Rings of Order 
	
		
			

				𝑝
			

			

				6
			

		
	
 with Characteristic 
	
		
			

				𝑝
			

			

				6
			

		
	
 and 
	
		
			

				𝑝
			

			

				5
			

		
	

In this section, we first classify all finite rings of order 
	
		
			

				𝑝
			

			

				6
			

		
	
 with characteristic 
	
		
			

				𝑝
			

			

				6
			

		
	
. Then this classification is extended to the rings order 
	
		
			

				𝑝
			

			

				𝑛
			

		
	
 with characteristic 
	
		
			

				𝑝
			

			

				𝑛
			

		
	
.
Proposition 6.  
          (i) Let 
	
		
			
				𝑅
				=
				⟨
				𝑎
				⟩
			

		
	
 be an additive cyclic group of order 
	
		
			

				𝑝
			

			

				6
			

		
	
 and 
	
		
			
				𝑤
				∈
				ℤ
			

		
	
. Then 
	
		
			

				𝑅
			

		
	
 
	
		
			

				=
			

		
	
 
	
		
			
				⟨
				𝑎
				∶
				𝑝
			

			

				6
			

			
				𝑎
				=
				0
				,
				𝑎
			

			

				2
			

			
				=
				𝑤
				𝑎
				⟩
			

		
	
 is always a ring. 
          (ii) Let 
	
		
			

				𝑅
			

			

				1
			

			
				=
				⟨
				𝑎
				∶
				𝑝
			

			

				6
			

			
				𝑎
				=
				0
				,
				𝑎
			

			

				2
			

			
				=
				𝑤
				𝑎
				⟩
			

		
	
 and 
	
		
			

				𝑅
			

			

				2
			

			
				=
				⟨
				𝑎
				∶
				𝑝
			

			

				6
			

			
				𝑎
				=
				0
				,
				𝑎
			

			

				2
			

			
				=
				𝑧
				𝑎
				⟩
			

		
	
 be two presentations with 
	
		
			
				𝑤
				,
				𝑧
				∈
				ℤ
			

		
	
. Assume 
	
		
			
				𝑞
				∈
				ℤ
			

		
	
 and 
	
		
			

				𝑓
			

		
	
 is the following map:  
							
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			
				𝑓
				∶
				𝑅
			

			

				1
			

			
				→
				𝑅
			

			

				2
			

			
				,
				𝑓
				(
				𝑟
				𝑎
				)
				=
				𝑟
				𝑞
				𝑎
				.
			

		
	

						Then (1)
	
		
			

				𝑓
			

		
	
 is well-defined;(2)
	
		
			

				𝑓
			

		
	
 is a ring homomorphism if and only if for 
	
		
			
				𝑤
				𝑞
				≡
			

			

				𝑝
			

			

				6
			

			
				𝑧
				𝑞
			

			

				2
			

		
	
;(3)
	
		
			

				𝑓
			

		
	
 is one to one if and only if for each 
	
		
			
				𝑟
				∈
				ℤ
				,
				𝑝
			

			

				6
			

			
				∣
				𝑟
				𝑞
			

		
	
 implies that 
	
		
			

				𝑝
			

			

				6
			

			
				∣
				𝑟
			

		
	
.
Proof. (i) It is straightforward by relations 
	
		
			
				(
				∗
				)
			

		
	
 and 
	
		
			
				(
				∗
				∗
				)
			

		
	
 in Theorem 3.(ii) The proof is obtained by simplification of the relations in Theorem 4.
Since the function introduced in preceding proposition is multiplication by some 
	
		
			
				𝑞
				∈
				ℤ
			

		
	
, and is always well-defined, we have the following corollary.
Corollary 7.  Let 
	
		
			

				𝑅
			

			

				1
			

			
				=
				⟨
				𝑎
				∶
				𝑝
			

			

				6
			

			
				𝑎
				=
				0
				,
				𝑎
			

			

				2
			

			
				=
				𝑤
				𝑎
				⟩
			

		
	
 and 
	
		
			

				𝑅
			

			

				2
			

			
				=
				⟨
				𝑎
				∶
				𝑝
			

			

				6
			

			
				𝑎
				=
				0
				,
				𝑎
			

			

				2
			

			
				=
				𝑧
				𝑎
				⟩
			

		
	
 be two presentations with 
	
		
			
				𝑤
				,
				𝑧
				∈
				ℤ
			

		
	
. Then 
	
		
			

				𝑅
			

			

				1
			

			
				≅
				𝑅
			

			

				2
			

		
	
 if and only if there exists 
	
		
			
				𝑞
				∈
				ℤ
			

		
	
 such that (1)
	
		
			
				𝑤
				𝑞
				≡
			

			

				𝑝
			

			

				6
			

			
				𝑧
				𝑞
			

			

				2
			

		
	
;(2)for each 
	
		
			
				𝑟
				∈
				ℤ
				,
				𝑝
			

			

				6
			

			
				∣
				𝑟
				𝑞
			

		
	
 implies that 
	
		
			

				𝑝
			

			

				6
			

			
				∣
				𝑟
			

		
	
.
Proof. It is clear by Proposition 6. 
Theorem 8.  For any prime number 
	
		
			

				𝑝
			

		
	
, there are exactly seven rings of order 
	
		
			

				𝑝
			

			

				6
			

		
	
 whose additive group is cyclic, only one of these rings have identity. However all of these are commutative.
Proof. Let 
	
		
			

				𝑅
			

			

				1
			

			
				=
				⟨
				𝑎
				∶
				𝑝
			

			

				6
			

			
				𝑎
				=
				0
				,
				𝑎
			

			

				2
			

			
				=
				𝑤
				𝑎
				⟩
			

		
	
 and 
	
		
			

				𝑅
			

			

				2
			

			
				=
				⟨
				𝑎
				∶
				𝑝
			

			

				6
			

			
				𝑎
				=
				0
				,
				𝑎
			

			

				2
			

			
				=
				𝑧
				𝑎
				⟩
			

		
	
 be two presentations with 
	
		
			
				𝑤
				,
				𝑧
				∈
				ℤ
			

		
	
. The relation 
	
		
			
				(
				2
				)
			

		
	
 in Corollary 7 implies that 
	
		
			

				𝑝
			

		
	
 is relatively prime to 
	
		
			

				𝑞
			

		
	
 and so by the relation 
	
		
			
				(
				1
				)
			

		
	
 in Corollary 7, we deduce that 
	
		
			
				𝑤
				≡
			

			

				𝑝
			

			

				6
			

			
				𝑧
				𝑞
			

		
	
. Since the relation 
	
		
			
				𝑤
				≡
			

			

				𝑝
			

			

				6
			

			
				𝑧
				𝑥
			

		
	
 has a solution, gcd
	
		
			
				(
				𝑝
			

			

				6
			

			
				,
				𝑧
				)
				∣
				𝑤
			

		
	
. Now we proceed by cases.Case  1. gcd
	
		
			
				(
				𝑝
				,
				𝑤
				)
				=
				1
			

		
	
, that is, 
	
		
			

				𝑤
			

		
	
 is relatively prime to 
	
		
			

				𝑝
			

		
	
. Since gcd
	
		
			
				(
				𝑝
			

			

				6
			

			
				,
				𝑧
				)
				∣
				𝑤
			

		
	
, 
	
		
			

				𝑧
			

		
	
 is also relatively prime to 
	
		
			

				𝑝
			

		
	
. Thus 
	
		
			

				𝑅
			

			

				1
			

			
				≅
				𝑅
			

			

				2
			

		
	
 where both 
	
		
			

				𝑤
			

		
	
 and 
	
		
			

				𝑧
			

		
	
 are relatively prime to 
	
		
			

				𝑝
			

		
	
.Case  2. gcd
	
		
			
				(
				𝑝
			

			

				2
			

			
				,
				𝑤
				)
				=
				𝑝
			

		
	
. Then the relation 
	
		
			
				(
				𝑝
			

			

				6
			

			
				,
				𝑧
				)
				∣
				𝑤
			

		
	
 shows that either gcd
	
		
			
				(
				𝑧
				,
				𝑝
				)
				=
				1
			

		
	
 or 
	
		
			
				𝑧
				∈
				{
				𝑝
				,
				2
				𝑝
				,
				3
				𝑝
				,
				…
				,
				(
				𝑝
				−
				1
				)
				𝑝
				}
			

		
	
. But the relation 
	
		
			
				𝑤
				≡
			

			

				𝑝
			

			

				6
			

			
				𝑧
				𝑞
			

		
	
 follows that 
	
		
			
				𝑤
				≡
			

			

				𝑝
			

			
				𝑧
				𝑞
			

		
	
 and hence 
	
		
			
				𝑝
				∣
				𝑧
				𝑞
			

		
	
 because gcd
	
		
			
				(
				𝑝
			

			

				2
			

			
				,
				𝑤
				)
				=
				𝑝
			

		
	
. Since gcd
	
		
			
				(
				𝑝
				,
				𝑞
				)
				=
				1
			

		
	
, 
	
		
			
				𝑝
				∣
				𝑧
			

		
	
. Therefore we obtain that 
	
		
			
				𝑧
				∈
				{
				𝑝
				,
				2
				𝑝
				,
				3
				𝑝
				,
				…
				,
				(
				𝑝
				−
				1
				)
				𝑝
				}
			

		
	
 and so gcd
	
		
			
				(
				𝑝
			

			

				2
			

			
				,
				𝑧
				)
				=
				𝑝
			

		
	
. Thus 
	
		
			

				𝑅
			

			

				1
			

			
				≅
				𝑅
			

			

				2
			

		
	
 where both gcd
	
		
			
				(
				𝑝
			

			

				2
			

			
				,
				𝑤
				)
				=
				𝑝
			

		
	
 and gcd
	
		
			
				(
				𝑝
			

			

				2
			

			
				,
				𝑧
				)
				=
				𝑝
			

		
	
.Case  3. gcd
	
		
			
				(
				𝑝
			

			

				3
			

			
				,
				𝑤
				)
				=
				𝑝
			

			

				2
			

		
	
. Then the relation gcd
	
		
			
				(
				𝑝
			

			

				6
			

			
				,
				𝑧
				)
				∣
				𝑤
			

		
	
 shows that either gcd
	
		
			
				(
				𝑧
				,
				𝑝
				)
				=
				1
			

		
	
 or 
	
		
			
				𝑧
				∈
				{
				𝑝
				,
				2
				𝑝
				,
				3
				𝑝
				,
				…
				,
				(
				𝑝
				−
				1
				)
				𝑝
				,
				𝑝
			

			

				2
			

			
				,
				2
				𝑝
			

			

				2
			

			
				,
				3
				𝑝
			

			

				2
			

			
				,
				…
				,
				(
				𝑝
				−
				1
				)
				𝑝
			

			

				2
			

			

				}
			

		
	
. But the relation 
	
		
			
				𝑤
				≡
			

			

				𝑝
			

			

				6
			

			
				𝑧
				𝑞
			

		
	
 follows that 
	
		
			
				𝑤
				≡
			

			

				𝑝
			

			

				2
			

			
				𝑧
				𝑞
			

		
	
 and hence 
	
		
			

				𝑝
			

			

				2
			

			
				|
				𝑧
				𝑞
			

		
	
 because gcd
	
		
			
				(
				𝑝
			

			

				2
			

			
				,
				𝑤
				)
				=
				𝑝
			

		
	
. Since gcd
	
		
			
				(
				𝑝
				,
				𝑞
				)
				=
				1
			

		
	
, 
	
		
			

				𝑝
			

			

				2
			

			
				∣
				𝑧
			

		
	
. Therefore we obtain that 
	
		
			
				𝑧
				∈
				{
				𝑝
			

			

				2
			

			
				,
				2
				𝑝
			

			

				2
			

			
				,
				3
				𝑝
			

			

				2
			

			
				,
				…
				,
				(
				𝑝
				−
				1
				)
				𝑝
			

			

				2
			

			

				}
			

		
	
 and so gcd
	
		
			
				(
				𝑝
			

			

				3
			

			
				,
				𝑧
				)
				=
				𝑝
			

			

				2
			

		
	
. Thus 
	
		
			

				𝑅
			

			

				1
			

			
				≅
				𝑅
			

			

				2
			

		
	
 where both gcd
	
		
			
				(
				𝑝
			

			

				3
			

			
				,
				𝑤
				)
				=
				𝑝
			

			

				2
			

		
	
 and gcd
	
		
			
				(
				𝑝
			

			

				3
			

			
				,
				𝑧
				)
				=
				𝑝
			

			

				2
			

		
	
.Case  4. gcd
	
		
			
				(
				𝑝
			

			

				4
			

			
				,
				𝑤
				)
				=
				𝑝
			

			

				3
			

		
	
. Then the relation gcd
	
		
			
				(
				𝑝
			

			

				6
			

			
				,
				𝑧
				)
				∣
				𝑤
			

		
	
 shows that either gcd
	
		
			
				(
				𝑧
				,
				𝑝
				)
				=
				1
			

		
	
 or 
							
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			
				
				𝑧
				∈
				𝑝
				,
				2
				𝑝
				,
				3
				𝑝
				,
				…
				,
				(
				𝑝
				−
				1
				)
				𝑝
				,
				𝑝
			

			

				2
			

			
				,
				2
				𝑝
			

			

				2
			

			
				,
				3
				𝑝
			

			

				2
			

			
				,
				…
				,
				(
				𝑝
				−
				1
				)
				𝑝
			

			

				2
			

			
				,
				𝑝
			

			

				3
			

			
				,
				2
				𝑝
			

			

				3
			

			
				,
				3
				𝑝
			

			

				3
			

			
				,
				…
				,
				(
				𝑝
				−
				1
				)
				𝑝
			

			

				3
			

			
				
				.
			

		
	

						But the relation 
	
		
			
				𝑤
				≡
			

			

				𝑝
			

			

				6
			

			
				𝑧
				𝑞
			

		
	
 follows that 
	
		
			
				𝑤
				≡
			

			

				𝑝
			

			

				3
			

			
				𝑧
				𝑞
			

		
	
 and hence 
	
		
			

				𝑝
			

			

				3
			

			
				∣
				𝑧
				𝑞
			

		
	
 because gcd
	
		
			
				(
				𝑝
			

			

				4
			

			
				,
				𝑤
				)
				=
				𝑝
			

			

				3
			

		
	
. Since gcd
	
		
			
				(
				𝑝
				,
				𝑞
				)
				=
				1
			

		
	
, 
	
		
			

				𝑝
			

			

				3
			

			
				∣
				𝑧
			

		
	
. Therefore we obtain that 
	
		
			
				𝑧
				∈
				{
				𝑝
			

			

				3
			

			
				,
				2
				𝑝
			

			

				3
			

			
				,
				3
				𝑝
			

			

				3
			

			
				,
				…
				,
				(
				𝑝
				−
				1
				)
				𝑝
			

			

				3
			

			

				}
			

		
	
 and so gcd
	
		
			
				(
				𝑝
			

			

				4
			

			
				,
				𝑧
				)
				=
				𝑝
			

			

				3
			

		
	
. Thus 
	
		
			

				𝑅
			

			

				1
			

			
				≅
				𝑅
			

			

				2
			

		
	
 where both gcd
	
		
			
				(
				𝑝
			

			

				4
			

			
				,
				𝑤
				)
				=
				𝑝
			

			

				3
			

		
	
 and gcd
	
		
			
				(
				𝑝
			

			

				4
			

			
				,
				𝑧
				)
				=
				𝑝
			

			

				3
			

		
	
.Case  5. gcd
	
		
			
				(
				𝑝
			

			

				5
			

			
				,
				𝑤
				)
				=
				𝑝
			

			

				4
			

		
	
. By a similar argument, we deduce 
	
		
			

				𝑅
			

			

				1
			

			
				≅
				𝑅
			

			

				2
			

		
	
 where both gcd
	
		
			
				(
				𝑝
			

			

				5
			

			
				,
				𝑤
				)
				=
				𝑝
			

			

				4
			

		
	
 and gcd
	
		
			
				(
				𝑝
			

			

				5
			

			
				,
				𝑧
				)
				=
				𝑝
			

			

				4
			

		
	
.Case  6. gcd
	
		
			
				(
				𝑝
			

			

				6
			

			
				,
				𝑤
				)
				=
				𝑝
			

			

				5
			

		
	
. By a similar argument, we deduce 
	
		
			

				𝑅
			

			

				1
			

			
				≅
				𝑅
			

			

				2
			

		
	
 where both gcd
	
		
			
				(
				𝑝
			

			

				6
			

			
				,
				𝑤
				)
				=
				𝑝
			

			

				5
			

		
	
 and gcd
	
		
			
				(
				𝑝
			

			

				6
			

			
				,
				𝑧
				)
				=
				𝑝
			

			

				5
			

		
	
.Case  7. gcd
	
		
			
				(
				𝑝
			

			

				6
			

			
				,
				𝑤
				)
				=
				𝑝
			

			

				6
			

		
	
. By a similar argument, we deduce 
	
		
			

				𝑅
			

			

				1
			

			
				≅
				𝑅
			

			

				2
			

		
	
 where both gcd
	
		
			
				(
				𝑝
			

			

				6
			

			
				,
				𝑤
				)
				=
				𝑝
			

			

				6
			

		
	
 and gcd
	
		
			
				(
				𝑝
			

			

				6
			

			
				,
				𝑧
				)
				=
				𝑝
			

			

				6
			

		
	
.
An analysis similar to that in the proof of Theorem 8 shows that there are exactly 
	
		
			
				𝑛
				+
				1
			

		
	
 rings of order 
	
		
			

				𝑝
			

			

				𝑛
			

		
	
 with characteristic 
	
		
			

				𝑝
			

			

				𝑛
			

		
	
. These rings are 
						
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			
				
				𝑎
				∶
				𝑝
			

			

				𝑛
			

			
				𝑎
				=
				0
				,
				𝑎
			

			

				2
			

			
				
				,
				=
				𝑤
				𝑎
			

		
	


	
		
			
				𝑤
				∈
				{
				1
				,
				𝑝
				,
				𝑝
			

			

				2
			

			
				,
				…
				,
				𝑝
			

			

				𝑛
			

			

				}
			

		
	
We can obtain the following result by applying relations 
	
		
			
				(
				∗
				)
			

		
	
 and 
	
		
			
				(
				∗
				∗
				)
			

		
	
 in Theorem 3, for the rings of order 
	
		
			

				𝑝
			

			

				6
			

		
	
 with characteristic 
	
		
			

				𝑝
			

			

				5
			

		
	
. Also, this manner may be used for obtaining all finite rings of order 
	
		
			

				𝑝
			

			

				6
			

		
	
 with characteristic 
	
		
			

				𝑝
			

			

				𝑘
			

		
	
, where 
	
		
			
				1
				≤
				𝑘
				≤
				4
			

		
	
.
Corollary 9.  Let 
	
		
			
				𝑅
				=
				𝐴
			

			

				1
			

			
				⊕
				𝐴
			

			

				2
			

		
	
 where A1 = <a1> and A2 = <a2> be cyclic groups of order 
	
		
			

				𝑝
			

		
	
 and 
	
		
			

				𝑝
			

			

				5
			

		
	
, respectively. Assume 
	
		
			

				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

			
				∈
				ℤ
			

		
	
 where 
	
		
			
				1
				≤
				𝑖
				,
				𝑗
				,
				𝑘
				≤
				2
			

		
	
. Then 
	
		
			
				𝑅
				=
				⟨
				𝑎
			

			

				1
			

			
				,
				𝑎
			

			

				2
			

			
				∶
				𝑝
				𝑎
			

			

				1
			

			
				=
				𝑝
			

			

				5
			

			

				𝑎
			

			

				2
			

			
				=
				0
				,
				𝑎
			

			

				𝑖
			

			

				𝑎
			

			

				𝑗
			

			
				=
				∑
			

			
				2
				𝑘
				=
				1
			

			

				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

			

				𝑎
			

			

				𝑘
			

			
				,
				𝑖
				,
				𝑗
				=
				1
				,
				2
				⟩
			

		
	
 is a ring if and only if the following hold. (1)
	
		
			

				𝑝
			

			

				4
			

			
				∣
				𝑤
			

			
				1
				1
				2
			

			
				,
				𝑝
			

			

				4
			

			
				∣
				𝑤
			

			
				1
				2
				2
			

		
	
 and 
	
		
			

				𝑝
			

			

				4
			

			
				∣
				𝑤
			

			
				2
				1
				2
			

		
	
; (2)
	
		
			

				𝑤
			

			
				1
				1
				1
			

			

				𝑤
			

			
				1
				2
				2
			

			

				≡
			

			

				𝑝
			

			

				5
			

			

				𝑤
			

			
				1
				2
				1
			

			

				𝑤
			

			
				1
				1
				2
			

		
	
;(3)
	
		
			

				𝑤
			

			
				2
				1
				1
			

			

				𝑤
			

			
				2
				1
				2
			

			

				≡
			

			

				𝑝
			

			

				5
			

			

				𝑤
			

			
				1
				2
				1
			

			

				𝑤
			

			
				1
				2
				2
			

			

				≡
			

			

				𝑝
			

			

				5
			

			

				𝑤
			

			
				2
				2
				1
			

			

				𝑤
			

			
				1
				1
				2
			

		
	
;(4)
	
		
			

				𝑤
			

			
				2
				1
				1
			

			

				𝑤
			

			
				1
				1
				2
			

			

				≡
			

			

				𝑝
			

			

				5
			

			

				𝑤
			

			
				1
				1
				1
			

			

				𝑤
			

			
				2
				1
				2
			

			
				+
				𝑤
			

			
				1
				1
				2
			

			

				𝑤
			

			
				2
				2
				2
			

		
	
;(5)
	
		
			

				𝑤
			

			
				2
				1
				1
			

			

				𝑤
			

			
				1
				2
				2
			

			
				+
				𝑤
			

			
				2
				1
				2
			

			

				𝑤
			

			
				2
				2
				2
			

			

				≡
			

			

				𝑝
			

			

				5
			

			

				𝑤
			

			
				1
				2
				1
			

			

				𝑤
			

			
				2
				1
				2
			

			
				+
				𝑤
			

			
				1
				2
				2
			

			

				𝑤
			

			
				2
				2
				2
			

		
	
;(6)
	
		
			

				𝑤
			

			
				2
				2
				1
			

			

				𝑤
			

			
				1
				2
				2
			

			

				≡
			

			

				𝑝
			

			

				5
			

			

				𝑤
			

			
				2
				1
				2
			

			

				𝑤
			

			
				2
				2
				1
			

		
	
.
Application and simplification of the relations (1), (2), and (3) in Corollary 5, for the rings of order 
	
		
			

				𝑝
			

			

				6
			

		
	
 with characteristic 
	
		
			

				𝑝
			

			

				5
			

		
	
, give us the following result.
Corollary 10.  Let
							
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			
				
				𝑎
				𝑅
				=
			

			

				1
			

			
				,
				𝑎
			

			

				2
			

			
				∶
				𝑝
				𝑎
			

			

				1
			

			
				=
				𝑝
			

			

				5
			

			

				𝑎
			

			

				2
			

			
				=
				0
				,
				𝑎
			

			

				𝑖
			

			

				𝑎
			

			

				𝑗
			

			

				=
			

			

				2
			

			

				
			

			
				𝑘
				=
				1
			

			

				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

			

				𝑎
			

			

				𝑘
			

			
				
				,
				
				𝑎
				,
				𝑖
				,
				𝑗
				=
				1
				,
				2
				𝑆
				=
			

			

				1
			

			
				,
				𝑎
			

			

				2
			

			
				∶
				𝑝
				𝑎
			

			

				1
			

			
				=
				𝑝
			

			

				5
			

			

				𝑎
			

			

				2
			

			
				=
				0
				,
				𝑎
			

			

				𝑖
			

			

				𝑎
			

			

				𝑗
			

			

				=
			

			

				2
			

			

				
			

			
				𝑘
				=
				1
			

			

				𝑧
			

			
				𝑖
				𝑗
				𝑘
			

			

				𝑎
			

			

				𝑘
			

			
				
				,
				𝑖
				,
				𝑗
				=
				1
				,
				2
			

		
	

						be two rings with suitable integers 
	
		
			

				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

		
	
 and 
	
		
			

				𝑧
			

			
				𝑖
				𝑗
				𝑘
			

		
	
 satisfied in Theorem 3, for 
	
		
			
				1
				≤
				𝑖
				,
				𝑗
				,
				𝑘
				≤
				2
			

		
	
. Then 
	
		
			
				𝑅
				≅
				𝑆
			

		
	
 if and only if there exist 
	
		
			

				𝑝
			

			
				𝑖
				𝑗
			

			
				∈
				ℤ
			

		
	
 such that the following hold. (1)
	
		
			

				𝑝
			

			

				4
			

			
				∣
				𝑝
			

			
				1
				2
			

		
	
;
								(2)If 
	
		
			
				𝑝
				∣
				𝑠
			

			

				1
			

			

				𝑝
			

			
				1
				1
			

			
				+
				𝑠
			

			

				2
			

			

				𝑝
			

			
				2
				1
			

		
	
 and 
	
		
			

				𝑝
			

			

				5
			

			
				∣
				𝑠
			

			

				1
			

			

				𝑝
			

			
				1
				2
			

			
				+
				𝑠
			

			

				2
			

			

				𝑝
			

			
				2
				2
			

		
	
, then 
	
		
			
				𝑝
				∣
				𝑠
			

			

				1
			

		
	
 and 
	
		
			

				𝑝
			

			

				5
			

			
				∣
				𝑠
			

			

				2
			

		
	
; (3)
	
		
			

				𝑝
			

			
				2
				1
				1
			

			

				≡
			

			

				𝑝
			

			

				𝑧
			

			
				1
				1
				1
			

			
				(
				𝑝
			

			
				1
				1
			

			
				+
				𝑝
			

			
				2
				1
			

			

				)
			

		
	
;
								(4)
	
		
			

				𝑝
			

			
				1
				1
			

			

				𝑝
			

			
				2
				1
			

			

				𝑤
			

			
				1
				1
				1
			

			
				+
				𝑝
			

			
				1
				1
			

			

				𝑝
			

			
				2
				2
			

			

				𝑤
			

			
				1
				2
				1
			

			

				≡
			

			

				𝑝
			

			

				𝑧
			

			
				1
				2
				1
			

			
				(
				𝑝
			

			
				1
				1
			

			
				+
				𝑝
			

			
				2
				1
			

			

				)
			

		
	
;
								(5)
	
		
			

				𝑝
			

			
				2
				2
				1
			

			

				𝑤
			

			
				1
				1
				1
			

			
				+
				𝑝
			

			
				2
				2
			

			

				𝑝
			

			
				2
				1
			

			

				𝑤
			

			
				2
				1
				1
			

			
				+
				𝑝
			

			
				2
				2
				2
			

			

				𝑤
			

			
				2
				2
				1
			

			

				≡
			

			

				𝑝
			

			

				𝑧
			

			
				2
				2
				1
			

			
				(
				𝑝
			

			
				1
				1
			

			
				+
				𝑝
			

			
				2
				1
			

			

				)
			

		
	
;
								(6)
	
		
			

				𝑝
			

			
				2
				1
				1
			

			

				𝑤
			

			
				1
				1
				2
			

			

				≡
			

			

				𝑝
			

			

				5
			

			

				𝑧
			

			
				1
				1
				2
			

			

				𝑝
			

			
				2
				2
			

		
	
;
								(7)
	
		
			

				𝑝
			

			
				2
				1
			

			

				𝑝
			

			
				1
				1
			

			

				𝑤
			

			
				1
				1
				2
			

			
				+
				𝑝
			

			
				2
				2
			

			

				𝑝
			

			
				1
				1
			

			

				𝑤
			

			
				2
				1
				2
			

			
				+
				𝑝
			

			
				2
				2
			

			

				𝑝
			

			
				1
				2
			

			

				𝑤
			

			
				2
				2
				2
			

			

				≡
			

			

				𝑝
			

			

				5
			

			

				𝑧
			

			
				2
				1
				2
			

			

				𝑝
			

			
				2
				2
			

		
	
;
								(8)
	
		
			

				𝑝
			

			
				1
				1
			

			

				𝑝
			

			
				2
				1
			

			

				𝑤
			

			
				1
				1
				2
			

			
				+
				𝑝
			

			
				1
				1
			

			

				𝑝
			

			
				2
				2
			

			

				𝑤
			

			
				1
				2
				2
			

			
				+
				𝑝
			

			
				1
				2
			

			

				𝑝
			

			
				2
				2
			

			

				𝑤
			

			
				2
				2
				2
			

			

				≡
			

			

				𝑝
			

			

				5
			

			

				𝑧
			

			
				1
				2
				2
			

			

				𝑝
			

			
				2
				2
			

		
	
;
								(9)
	
		
			

				𝑝
			

			
				2
				2
				1
			

			

				𝑤
			

			
				1
				1
				2
			

			
				+
				𝑝
			

			
				2
				2
			

			

				𝑝
			

			
				2
				1
			

			
				(
				𝑤
			

			
				2
				1
				2
			

			
				+
				𝑤
			

			
				1
				2
				2
			

			
				)
				+
				𝑝
			

			
				2
				2
				2
			

			

				𝑤
			

			
				2
				2
				2
			

			

				≡
			

			

				𝑝
			

			

				5
			

			

				𝑧
			

			
				2
				2
				2
			

			
				(
				𝑝
			

			
				1
				2
			

			
				+
				𝑝
			

			
				2
				2
			

			

				)
			

		
	
. 								
In the following, one gives an algorithm for computing the finite rings whose abelian group is isomorphic to 
	
		
			

				ℤ
			

			

				𝑚
			

			

				1
			

			
				⊕
				ℤ
			

			

				𝑚
			

			

				2
			

			
				⊕
				⋯
				⊕
				ℤ
			

			

				𝑚
			

			

				𝑛
			

		
	
. We represent the algorithm in the form of two sub-algorithms. In Algorithm 11, one lets 
	
		
			
				(
				𝑚
			

			

				1
			

			
				,
				𝑚
			

			

				2
			

			
				,
				…
				,
				𝑚
			

			

				𝑛
			

			

				)
			

		
	
 be the input and 
	
		
			

				𝐴
			

		
	
 be the set of all sequences 
	
		
			
				(
				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

			

				)
			

		
	
 that satisfy the condition 
	
		
			
				0
				≤
				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

			
				≤
				𝑚
			

			

				𝑘
			

			
				−
				1
			

		
	
, for any 
	
		
			
				1
				≤
				𝑖
				,
				𝑗
				,
				𝑘
				≤
				𝑛
			

		
	
. Then one has the sequences 
	
		
			
				(
				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

			

				)
			

		
	
 that satisfy the conditions 
	
		
			
				(
				∗
				)
			

		
	
 and 
	
		
			
				(
				∗
				∗
				)
			

		
	
 in Theorem 3 as the outputs of the algorithm. In fact, any sequence 
	
		
			
				(
				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

			

				)
			

		
	
 that is an output of this algorithm shows a ring as the following:
						
	
 		
 			
				(
				3
				6
				)
			
 		
	

	
		
			
				
				𝑎
			

			

				1
			

			
				,
				𝑎
			

			

				2
			

			
				…
				,
				𝑎
			

			

				𝑛
			

			
				∶
				𝑚
			

			

				𝑖
			

			

				𝑎
			

			

				𝑖
			

			
				=
				0
				,
				𝑎
			

			

				𝑖
			

			

				𝑎
			

			

				𝑗
			

			

				=
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				1
			

			

				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

			

				𝑎
			

			

				𝑘
			

			
				
				.
				,
				𝑖
				,
				𝑗
				=
				1
				,
				…
				𝑛
			

		
	

					In Algorithm 12, one represents the conditions required for the isomorphism of two rings based upon Theorem 4. In fact, one verifies the two sequences 
	
		
			
				(
				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

			

				)
			

		
	
 and 
	
		
			
				(
				𝑧
			

			
				𝑖
				𝑗
				𝑘
			

			

				)
			

		
	
 obtained from Algorithm 11, under isomorphic conditions in Theorem 4. Therefore under Algorithms 11 and 12, one computes all the rings whose abelian group is isomorphic to 
	
		
			

				ℤ
			

			

				𝑚
			

			

				1
			

			
				⊕
				ℤ
			

			

				𝑚
			

			

				2
			

			
				⊕
				⋯
				⊕
				ℤ
			

			

				𝑚
			

			

				𝑛
			

		
	
 and are not isomorphic. We have implemented Algorithms 11 and 12 in 
	
		
			

				𝐶
			

			
				+
				+
			

		
	
 and presents a sample of its responses for the rings whose abelian group is isomorphic to 
	
		
			

				ℤ
			

			

				2
			

			
				⊕
				ℤ
			

			
				3
				2
			

		
	
 in the following example.
Algorithm 11. (1) Input 
	
		
			
				(
				𝑚
			

			

				1
			

			
				,
				𝑚
			

			

				2
			

			
				,
				…
				,
				𝑚
			

			

				𝑛
			

			

				)
			

		
	
(2) Let 
	
		
			
				𝑁
				=
				∶
				{
				1
				,
				2
				,
				…
				,
				𝑛
				}
			

		
	
(3) For all 
	
		
			
				(
				𝑖
				,
				𝑗
				)
				∈
				𝑁
			

			

				2
			

		
	
, let 
	
		
			

				𝜆
			

			
				𝑖
				𝑗
			

			
				=
				∶
			

			
				g
				c
				d
			

			
				(
				𝑚
			

			

				𝑖
			

			
				,
				𝑚
			

			

				𝑗
			

			

				)
			

		
	
(4) Let 
	
		
			
				𝐴
				=
				∶
				{
				𝑤
				=
				(
				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

			

				)
			

			
				(
				𝑖
				,
				𝑗
				,
				𝑘
				)
				∈
				𝑁
			

			

				3
			

		
	
; for all 
	
		
			
				(
				𝑖
				,
				𝑗
				,
				𝑘
				)
				∈
				𝑁
			

			

				3
			

			
				,
				0
				≤
				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

			
				≤
				𝑚
			

			

				𝑘
			

			
				−
				1
				}
			

		
	
(5) 
	
		
			
				𝐵
				=
				∶
				{
				}
			

		
	
(6) If 
	
		
			
				𝐴
				=
				𝐵
			

		
	
, then go to end (7) Choose 
	
		
			
				𝑤
				=
				(
				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

			

				)
			

			
				(
				𝑖
				,
				𝑗
				,
				𝑘
				)
				∈
				𝑁
			

			

				3
			

			
				∈
				𝐴
				⧵
				𝐵
			

		
	
(8) Let 
	
		
			
				𝐵
				=
				∶
				𝐵
				∪
				{
				𝑤
				}
			

		
	
(9) If there is 
	
		
			
				(
				𝑖
				,
				𝑗
				,
				𝑘
				)
				∈
				𝑁
			

			

				3
			

		
	
 such that 
	
		
			

				𝜆
			

			
				𝑖
				𝑗
			

			

				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

			

				≇
			

			

				𝑚
			

			

				𝑘
			

			

				0
			

		
	
, then go to step 6(10) If there is 
	
		
			
				(
				𝑖
				,
				𝑗
				,
				𝑘
				,
				𝑙
				)
				∈
				𝑁
			

			

				4
			

		
	
 such that 
	
		
			

				∑
			

			
				𝑛
				𝛼
				=
				1
			

			

				𝑤
			

			
				𝑖
				𝑗
				𝛼
			

			

				𝑤
			

			
				𝛼
				𝑙
				𝑘
			

			

				≇
			

			

				𝑚
			

			

				𝑘
			

			

				∑
			

			
				𝑛
				𝛼
				=
				1
			

			

				𝑤
			

			
				𝑗
				𝑙
				𝛼
			

			

				𝑤
			

			
				𝑖
				𝛼
				𝑘
			

		
	
, then go to step 6(11) Print 
	
		
			
				𝑤
				=
				(
				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

			

				)
			

			
				(
				𝑖
				,
				𝑗
				,
				𝑘
				)
				∈
				𝑁
			

			

				3
			

		
	
(12) End
Algorithm 12. (1) Input 
	
		
			
				(
				𝑚
			

			

				1
			

			
				,
				𝑚
			

			

				2
			

			
				,
				…
				,
				𝑚
			

			

				𝑛
			

			

				)
			

		
	
(2) Let 
	
		
			
				𝑁
				=
				∶
				{
				1
				,
				2
				,
				…
				,
				𝑛
				}
			

		
	
(3) For all 
	
		
			
				(
				𝑖
				,
				𝑗
				)
				∈
				𝑁
			

			

				2
			

		
	
, let 
	
		
			

				𝜆
			

			
				𝑖
				𝑗
			

			
				=
				∶
			

			
				g
				c
				d
			

			
				(
				𝑚
			

			

				𝑖
			

			
				,
				𝑚
			

			

				𝑗
			

			

				)
			

		
	
(4) Input 
	
		
			
				𝑤
				=
				(
				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

			

				)
			

			
				(
				𝑖
				,
				𝑗
				,
				𝑘
				)
				∈
				𝑁
			

			

				3
			

		
	
 and 
	
		
			
				𝑧
				=
				(
				𝑧
			

			
				𝑖
				𝑗
				𝑘
			

			

				)
			

			
				(
				𝑖
				,
				𝑗
				,
				𝑘
				)
				∈
				𝑁
			

			

				3
			

		
	
 satisfied in Algorithm 11(5) Let 
	
		
			
				𝐴
				=
				∶
				{
				𝑃
				=
				(
				𝑝
			

			
				𝑖
				𝑗
			

			

				)
			

			
				(
				𝑖
				,
				𝑗
				)
				∈
				𝑁
			

			

				2
			

		
	
; for all 
	
		
			
				(
				𝑖
				,
				𝑗
				)
				∈
				𝑁
			

			

				2
			

			
				,
				0
				≤
				𝑝
			

			
				𝑖
				𝑗
			

			
				≤
				𝑚
			

			

				𝑗
			

			
				−
				1
				}
			

		
	
(6) 
	
		
			
				𝐵
				=
				∶
				{
				}
			

		
	
(7) If 
	
		
			
				𝐴
				=
				𝐵
			

		
	
, then go to end (8) Choose 
	
		
			
				𝑃
				=
				(
				𝑝
			

			
				𝑖
				𝑗
			

			

				)
			

			
				(
				𝑖
				,
				𝑗
				)
				∈
				𝑁
			

			

				2
			

			
				∈
				𝐴
				⧵
				𝐵
			

		
	
(9) Let 
	
		
			
				𝐵
				=
				∶
				𝐵
				∪
				{
				𝑃
				}
			

		
	
(10) If there is 
	
		
			
				(
				𝑖
				,
				𝑗
				)
				∈
				𝑁
			

			

				2
			

		
	
 such that 
	
		
			

				𝑚
			

			

				𝑖
			

			

				𝑃
			

			
				𝑖
				𝑗
			

			

				≇
			

			

				𝑚
			

			

				𝑗
			

			

				0
			

		
	
, then go to step 7(11) Let 
	
		
			
				𝐶
				=
				∶
				{
				}
			

		
	
(12) Let 
	
		
			
				𝐷
				=
				∶
				{
				𝑟
				=
				(
				𝑟
			

			

				𝑗
			

			

				)
			

			
				𝑗
				∈
				𝑁
			

		
	
; for all 
	
		
			
				𝑗
				∈
				𝑁
				,
				0
				≤
				𝑟
			

			

				𝑗
			

			
				≤
				𝑚
			

			

				𝑗
			

			
				∑
				−
				1
				,
			

			
				𝑛
				𝑖
				=
				1
			

			

				𝑟
			

			

				𝑖
			

			

				𝑝
			

			
				𝑖
				𝑗
			

			

				≅
			

			

				𝑚
			

			

				𝑗
			

			
				0
				}
			

		
	
(13) Choose 
	
		
			
				𝑟
				∈
				𝐷
			

		
	
(14) Let 
	
		
			
				𝐶
				=
				∶
				𝐶
				∪
				{
				𝑟
				}
			

		
	
(15) If there is 
	
		
			
				𝑖
				∈
				𝑁
			

		
	
 such that 
	
		
			

				𝑟
			

			

				𝑖
			

			

				≇
			

			

				𝑚
			

			

				𝑖
			

			

				0
			

		
	
, then go to step 7(16) If there is 
	
		
			
				(
				𝑖
				,
				𝑗
				,
				𝑘
				)
				∈
				𝑁
			

			

				3
			

		
	
 such that 
	
		
			

				∑
			

			
				𝑛
				𝛼
				,
				𝛽
				=
				1
			

			

				𝑝
			

			
				𝑖
				𝛼
			

			

				𝑝
			

			
				𝑗
				𝛽
			

			

				𝑤
			

			
				𝛼
				𝛽
				𝑘
			

			

				≇
			

			

				𝑚
			

			

				𝑘
			

			

				∑
			

			
				𝑛
				𝑙
				=
				1
			

			

				𝑧
			

			
				𝑖
				𝑗
				𝑙
			

			

				𝑝
			

			
				𝑙
				𝑘
			

		
	
, then go to step 7(17) Print two rings 
	
		
			

				𝑅
			

		
	
 and 
	
		
			

				𝑆
			

		
	
 with representations 
	
		
			
				𝑤
				=
				(
				𝑤
			

			
				𝑖
				𝑗
				𝑘
			

			

				)
			

			
				(
				𝑖
				,
				𝑗
				,
				𝑘
				)
				∈
				𝑁
			

			

				3
			

		
	
 and 
	
		
			
				𝑧
				=
				(
				𝑧
			

			
				𝑖
				𝑗
				𝑘
			

			

				)
			

			
				(
				𝑖
				,
				𝑗
				,
				𝑘
				)
				∈
				𝑁
			

			

				3
			

		
	
, respectively, are isomorphic (18) End
Example 13. We compute the presentations of all finite rings of order 
	
		
			

				2
			

			

				6
			

		
	
, whose abelian group is isomorphic to 
	
		
			

				ℤ
			

			

				2
			

			
				⊕
				ℤ
			

			
				3
				2
			

		
	
. Let 
	
		
			

				𝑅
			

		
	
 be a such ring. Then we write the following presentation for 
	
		
			
				𝑅
				=
				⟨
				𝑎
			

			

				1
			

			
				,
				𝑎
			

			

				2
			

			
				∶
				2
				𝑎
			

			

				1
			

			
				=
				2
			

			

				5
			

			

				𝑎
			

			

				2
			

			
				=
				0
				,
				𝑎
			

			

				𝑖
			

			

				𝑎
			

			

				𝑗
			

			
				=
				𝑤
			

			
				𝑖
				𝑗
				1
			

			

				𝑎
			

			

				1
			

			
				+
				𝑤
			

			
				𝑖
				𝑗
				2
			

			

				𝑎
			

			

				2
			

			
				,
				𝑖
				,
				𝑗
				=
				1
				,
				2
				⟩
			

		
	
:
							
	
 		
 			
				(
				3
				7
				)
			
 		
	

	
		
			
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				𝑤
				𝑅
				=
			

			
				1
				1
				1
			

			

				𝑤
			

			
				1
				1
				2
			

			

				𝑤
			

			
				1
				2
				1
			

			

				𝑤
			

			
				1
				2
				2
			

			

				𝑤
			

			
				2
				1
				1
			

			

				𝑤
			

			
				2
				1
				2
			

			

				𝑤
			

			
				2
				2
				1
			

			

				𝑤
			

			
				2
				2
				2
			

			
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				.
			

		
	
The outputs of these algorithms for the rings of order 
	
		
			

				2
			

			

				6
			

		
	
 whose abelian group is 
	
		
			

				ℤ
			

			

				2
			

			
				⊕
				ℤ
			

			
				3
				2
			

		
	
 are listed below. 							
	
 		
 			
				(
				3
				8
				)
			
 		
	

	
		
			
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				0
				0
				0
				0
				0
				0
				0
				0
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				,
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				0
				0
				0
				0
				0
				0
				0
				1
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				,
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				0
				0
				0
				0
				0
				0
				0
				2
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				,
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				0
				0
				0
				0
				0
				0
				0
				4
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				,
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				0
				0
				0
				0
				0
				0
				0
				8
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				,
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				0
				0
				0
				0
				0
				0
				0
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				,
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				0
				0
				0
				0
				0
				0
				0
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				,
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				0
				0
				0
				0
				0
				0
				2
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				,
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				0
				0
				0
				0
				0
				0
				4
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				,
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				0
				0
				0
				0
				0
				0
				8
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				,
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				0
				0
				0
				0
				0
				0
				0
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
				⎥
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