Research Article

On Paranorm Zweier I-Convergent Sequence Spaces

Vakeel A. Khan, Khalid Ebadullah, Ayhan Esi, Nazneen Khan, and Mohd Shafiq

1 Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India
2 Department of Mathematics, University of Adiyaman, Altinsehir, 02040 Adiyaman, Turkey

Correspondence should be addressed to Vakeel A. Khan; vakhan@math.com

Received 14 August 2012; Revised 6 November 2012; Accepted 21 November 2012

Copyright © 2013 Vakeel A. Khan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we introduce the paranorm Zweier I-convergent sequence spaces $\mathcal{Z}_I(q, q_0_I(q)$, and $\mathcal{Z}_\infty(q_I(q_I(q$ for $q = (q_k)$, a sequence of positive real numbers. We study some topological properties, prove the decomposition theorem, and study some inclusion relations on these spaces.

1. Introduction

Let \mathbb{N}, \mathbb{R}, and \mathbb{C} be the sets of all natural, real, and complex numbers, respectively. We write

$$\omega = \{x = (x_k) : x_k \in \mathbb{R} \text{ or } \mathbb{C}\}, \quad (1)$$

the space of all real or complex sequences.

Let l_{∞}, c, and c_0 denote the Banach spaces of bounded, convergent, and null sequences, respectively, normed by $\|x\|_{\infty} = \sup_k |x_k|$. The following subspaces of ω were first introduced and discussed by Maddox [1]:

$$l(p) := \{x \in \omega : \sum_k |x_k|^p < \infty\},$$

$$l_{\infty}(p) := \{x \in \omega : \sup_k |x_k|^p < \infty\},$$

$$c(p) := \{x \in \omega : \lim_k |x_k - l|^p = 0, \text{ for some } l \in \mathbb{C}\},$$

$$c_0(p) := \{x \in \omega : \lim_k |x_k|^p = 0\},$$

where $p = (p_k)$ is a sequence of strictly positive real numbers.

After that Lascarides [2, 3] defined the following sequence spaces:

$$l_{\infty} \{p\} = \{x \in \omega : \text{ there exists } r > 0 \text{ such that } \sup_k |x_k|^p t_k < \infty\},$$

$$c_0 \{p\} = \{x \in \omega : \text{ there exists } r > 0 \text{ such that } \lim_k |x_k|^p t_k = 0\}, \quad (2)$$

$$l \{p\} = \{x \in \omega : \text{ there exists } r > 0 \text{ such that } \sum_{k=1}^\infty |x_k|^p t_k < \infty\},$$

where $t_k = \frac{p_k}{\sum_{k=1}^\infty p_k}$, for all $k \in \mathbb{N}$.

Each linear subspace of ω, for example, $\lambda, \mu \subset \omega$, is called a sequence space.

A sequence space λ with linear topology is called a K-space provided each map $p_i \rightarrow \mathbb{C}$ defined by $p_i(x) = x_i$ is continuous for all $i \in \mathbb{N}$.

A K-space λ is called an FK-space provided λ is a complete linear metric space.

An FK-space whose topology is normable is called a BK-space.

Let λ and μ be two sequence spaces and $A = (a_{nk})$ an infinite matrix of real or complex numbers a_{nk}, where $n, k \in \mathbb{N}$.
Then we say that A defines a matrix mapping from λ to μ, and we denote it by writing $A : \lambda \rightarrow \mu$.

If for every sequence $x = (x_k) \in \lambda$ the sequence $Ax = (Ax_n)_n$, the A transform of x is in μ, where

\[(Ax)_n = \sum_{k=1}^{n} a_{nk}x_k, \quad (n \in \mathbb{N}). \tag{3}\]

By $(\lambda : \mu)$, we denote the class of matrices A such that $A : \lambda \rightarrow \mu$.

Thus, $A \in (\lambda : \mu)$ if and only if series on the right side of (3) converges for each $n \in \mathbb{N}$ and every $x \in \lambda$.

The approach of constructing the new sequence spaces by means of the matrix domain of a particular limitation method has been recently employed by Altay et al. [4], Başar and Altay [5], Malkowsky [6], Ng and Lee [7], and Wang [8].

Sengönül [9] defined the sequence $y = (y_i)$ which is frequently used as the Z^p transform of the sequence $x = (x_i)$, that is,

\[y_i = px_i + (1 - p)x_{i-1}, \tag{4}\]

where $x_{-1} = 0, p \neq 1, 1 < p < \infty$ and Z^p denotes the matrix $Z^p = (z_{ik})$ defined by

\[z_{ik} = \begin{cases} p, & (i = k), \\ 1 - p, & (i - 1 = k); (i, k \in \mathbb{N}), \\ 0, & \text{otherwise} \end{cases} \tag{5}\]

Following Başar and Altay [5], Şengönül [9] introduced the Zweier sequence spaces Z and Z_0 as follows:

\[Z = \left\{ x = (x_k) \in \omega : Z^p x \in \ell \right\}, \tag{6}\]

\[Z_0 = \left\{ x = (x_k) \in \omega : Z^p x \in \ell_0 \right\}. \tag{7}\]

Here we quote below some of the results due to Şengönül [9] which we will need in order to establish the results of this paper.

Theorem 1 (see [9, Theorem 2.1]). The sets Z and Z_0 are the linear spaces with the coordinate wise addition and scalar multiplication which are the BK-spaces with the norm

\[\|x\|_Z = \|x\|_X_0 = \left\|Z^p x\right\|_c. \tag{8}\]

Theorem 2 (see [9, Theorem 2.2]). The sequence spaces Z and Z_0 are linearly isomorphic to the spaces c and c_0, respectively, that is, $Z \cong c$ and $Z_0 \cong c_0$.

Theorem 3 (see [9, Theorem 2.3]). The inclusions $Z_0 \subset Z$ strictly hold for $p \neq 1$.

Theorem 4 (see [9, Theorem 2.6]). Z_0 is solid.

Theorem 5 (see [9, Theorem 3.6]). Z is not a solid sequence space.

The concept of statistical convergence was first introduced by Fast [10] and also independently by Buck [11] and Schoenberg [12] for real and complex sequences. Further this concept was studied by Connor [13, 14], Connor et al. [15], and many others. Statistical convergence is a generalization of the usual notion of convergence that parallels the usual theory of convergence. A sequence $x = (x_k)$ is said to be statistically convergent to L if for a given $\epsilon > 0$ as

\[\lim_{k \to \infty} \frac{1}{k} \left| \left| \{i : |x_i - L| \geq \epsilon, i \leq k \} \right| \right| = 0. \tag{9}\]

The notion of I-convergence is a generalization of the statistical convergence. At the initial stage, it was studied by Kostyrko et al. [16]. Later on, it was studied by Šalát et al. [17, 18], Demirci [19], Tripathy and Hazarika [20, 21], and Khan et al. [22–24].

Here we give some preliminaries about the notion of I-convergence.

Let X be a nonempty set. Then a family of sets $I \subseteq 2^X$ (denoting the power set of X) is said to be an ideal if I is additive, that is, $A, B \in I \Rightarrow A \cup B \in I$, and hereditary, that is, $A \in I, B \subseteq A \Rightarrow B \in I$.

A non-empty family of sets $\mathcal{E} \subseteq 2^X$ is said to be a filter on X if and only if $\phi \notin \mathcal{E}$, for $A, B \in \mathcal{E}$ we have $A \cap B \in \mathcal{E}$ and for each $A \in \mathcal{E}$ and $A \subseteq B$ implies $B \in \mathcal{E}$.

An ideal $I \subseteq 2^X$ is called nontrivial if $I \neq 2^X$.

A non-trivial ideal $I \subseteq 2^X$ is called admissible if $\{x : x \in X\} \subseteq I$.

A non-trivial ideal I is maximal if there cannot exist any non-trivial ideal $J \neq I$ containing I as a subset.

For each ideal I, there is a filter $\mathcal{E}(I)$ corresponding to I. that is, $\mathcal{E}(I) = \{K \subseteq N : K^c \in I\}$, where $K^c = N - K$.

Definition 1. A sequence $(x_k) \in \omega$ is said to be I-convergent to a number L if $\{k \in N : |x_k - L| \geq \epsilon\} \in I$ for every $\epsilon > 0$. In this case we write $I \lim x_k = L$.

The space c_I of all I-convergent sequences converging to L is given by

\[c_I = \{ (x_k) \in \omega : \{k \in N : |x_k - L| \geq \epsilon\} \in I, \text{ for some } L \in \mathbb{C} \}. \tag{10}\]

Definition 7. A sequence $(x_k) \in \omega$ is said to be I-null if $L = 0$.

In this case we write $I \lim x_k = 0$.

Definition 8. A sequence $(x_k) \in \omega$ is said to be I-Cauchy if for every $\epsilon > 0$ there exists a number $k_0 \in \mathbb{N}$ such that $k \in N : |x_k - x_m| \geq \epsilon\} \in I$ for all $k, m \geq k_0$.

Definition 9. A sequence $(x_k) \in \omega$ is said to be I-bounded if there exists $M > 0$ such that $\{k \in N : |x_k| > M\} \in I$.

Definition 10. Let (x_k, y_k) be two sequences. We say that $(x_k - y_k)$ for all k relative to I (a.a.k.r.I), if $(k \in \mathbb{N} : x_k \neq y_k) \in I$.

The following lemma will be used for establishing some results of this paper.

Lemma 11. If $I \subset 2^N$ and $M \subseteq N$. If $M \notin I$, then $M \cap N \notin I$ (see [20, 21]) cf. ([17, 18, 20–24]).
Recently Khan and Ebadullah [25] introduced the following classes of sequence spaces:

\[\mathcal{X}^I = \{ x = (x_k) \in \omega : I - \lim Z^p x = L \} \]

for some \(L \in \mathbb{C} \},

\[\mathcal{X}^0 = \{ x = (x_k) \in \omega : I - \lim Z^p x = 0 \} \}

\[\mathcal{X}_{\infty}^I = \{ x = (x_k) \in \omega : \sup_k |Z^p x| < \infty \} \}

(10)

We also denote by

\[m^I_x = \mathcal{X}_{\infty}^I \cap \mathcal{X}^I, \quad m^0_x = \mathcal{X}_{\infty}^I \cap \mathcal{X}^0. \]

(11)

In this paper, we introduce the following classes of sequence spaces:

\[\mathcal{X}^I(q) = \{ x = (x_k) \in \omega : \{ k \in \mathbb{N} : |Z^p x - L|^q_k \geq \epsilon \} \in I, \]

for some \(L \in \mathbb{C} \},

\[\mathcal{X}^0(q) = \{ x = (x_k) \in \omega : \{ k \in \mathbb{N} : |Z^p x|^q_k \geq \epsilon \} \in I \};

\[\mathcal{X}_{\infty}^I(q) = \{ x = (x_k) \in \omega : \sup_k |Z^p x|^q_k < \infty \} \}

(12)

We also denote by

\[m^I_x(q) = \mathcal{X}_{\infty}^I(q) \cap \mathcal{X}^I(q), \]

\[m^0_x(q) = \mathcal{X}_{\infty}^I(q) \cap \mathcal{X}^0(q), \]

(13)

where \(q = (q_k) \) is a sequence of positive real numbers.

Throughout the paper, for the sake of convenience now we will denote by \(Z^p x = x', Z^p y = y', Z^p z = z' \) for all \(x, y, z \in \omega \).

2. Main Results

Theorem 12. The classes of sequences \(\mathcal{X}^I(q), \mathcal{X}^0(q), m^I_x(q) \) and \(m^0_x(q) \) are linear spaces.

Proof. We shall prove the result for the space \(\mathcal{X}^I(q) \).

The proof for the other spaces will follow similarly.

Let \((x_k), (y_k) \in \mathcal{X}^I(q) \), and let \(\alpha, \beta \) be scalars. Then for a given \(\epsilon > 0 \), we have:

\[\{ k \in \mathbb{N} : |x_k - L|^q_k \geq \epsilon \}, \quad \text{for some } L \in \mathbb{C} \} \in I \]

(14)

\[\{ k \in \mathbb{N} : |y_k - L|^q_k \geq \epsilon \}, \quad \text{for some } L \in \mathbb{C} \} \in I, \]

where

\[M_1 = D \cdot \max \left\{ 1, \sup \alpha^q_k \right\}, \]

\[M_2 = D \cdot \max \left\{ 1, \sup \beta^q_k \right\}, \]

(15)

\[D = \max \{ 1, 2^{M-1} \} \quad \text{where } H = \sup k q_k \geq 0. \]

Let

\[A_1 = \{ k \in \mathbb{N} : |x_k - L|^q_k < \frac{\epsilon}{2M_1}, \text{ for some } L \in \mathbb{C} \} \in I \]

\[A_2 = \{ k \in \mathbb{N} : |y_k - L|^q_k < \frac{\epsilon}{2M_2}, \text{ for some } L \in \mathbb{C} \} \in I \]

(16)

be such that \(A_1 \cap A_2 \subseteq I \). Hence \((\alpha x_k + \beta y_k) \in \mathcal{X}^I(q) \). Therefore \(\mathcal{X}^I(q) \) is a linear space. The rest of the result follows similarly.

Theorem 13. Let \((q_k) \in l_\infty\). Then \(m^I_x(q) \) and \(m^0_x(q) \) are paranormed spaces, paranormed by \(g(x) = \sup_k |x_k|^q_k/M \) where \(M = \max \{ 1, \sup_k q_k \} \).

Proof. Let \(x = (x_k), y = (y_k) \in m^I_x(q) \).

(1) Clearly, \(g(x) = 0 \) if and only if \(x = 0 \).

(2) \(g(x) = g(-x) \) is obvious.

(3) Since \(q_k/M \leq 1 \) and \(M > 1 \), using Minkowski’s inequality, we have

\[\sup_k |x_k + y_k|^q_k/M \leq \sup_k |x_k|^q_k/M + \sup_k |y_k|^q_k/M \]

(18)

(4) Now for any complex \(\lambda \), we have \(\lambda \) such that \(\lambda \to \lambda \) \(\lambda \to \infty \).

Let \(x_k \in m^I_x(q) \) such that \(|x_k - L|^q_k \geq \epsilon \).

Therefore, \(g(x - L) = \sup_k |x_k - L|^q_k \leq \sup_k |x_k|^q_k/M + \sup_k |L|^q_k/M \), where \(e = (1, 1, 1, ...) \).

Hence \(g((\lambda x_k - \lambda L)) \leq g((\lambda x_k)) + g(\lambda L) = \lambda_n g(x) + \lambda g(L) \) as \(k \to \infty \).

Hence \(m^I_x(q) \) is a paranormed space.

The rest of the result follows similarly.
Theorem 14. $m_I^I(q)$ is a closed subspace of $I_\infty(q)$.

Proof. Let $(x^{(n)}_k)$ be a Cauchy sequence in $m_I^I(q)$ such that $x^{(n)}_k \to x$.
We show that $x \in m_I^I(q)$.

Since $(x^{(n)}_k) \in m_I^I(q)$, then there exists a_n such that
$$\{k \in \mathbb{N} : |x^{(n)}_k - a_n| \geq \epsilon \} \in I.$$ \hspace{1cm} (19)

We need to show that

(1) (a_n) converges to a,

(2) if $U = \{k \in \mathbb{N} : |x_k - a| < \epsilon \}$, then $U^c \in I$.

(1) Since $(x^{(n)}_k)$ is a Cauchy sequence in $m_I^I(q)$ then for a given $\epsilon > 0$, there exists $k_0 \in \mathbb{N}$ such that
$$\sup_k |x^{(n)}_k - x^{(j)}_k| < \frac{\epsilon}{3}, \ \forall n, i \geq k_0.$$ \hspace{1cm} (20)

For a given $\epsilon > 0$, we have
$$B_{n\epsilon} = \{k \in \mathbb{N} : |x^{(n)}_k - x^{(j)}_k| < \frac{\epsilon}{3}\},$$
$$B_{\epsilon} = \{k \in \mathbb{N} : |x^{(j)}_k - a| < \frac{\epsilon}{3}\},$$
$$B_{n\epsilon} = \{k \in \mathbb{N} : |x^{(n)}_k - a| < \frac{\epsilon}{3}\}.$$ \hspace{1cm} (21)

Then $B_{n\epsilon} \cap B_{\epsilon} \cap B_{n\epsilon} \in I$.

Let $B = B_{n\epsilon} \cap B_{\epsilon} \cap B_{n\epsilon}$, where $B = \{k \in \mathbb{N} : |a_n - a| < \epsilon\}$. Then $B \in I$.

We choose $k_0 \in B$, then for each $n, i \geq k_0$, we have
$$\{k \in \mathbb{N} : |a_i - a_n| < \epsilon \} \supseteq \{k \in \mathbb{N} : |x^{(j)}_k - a| < \frac{\epsilon}{3}\}$$
$$\cap \{k \in \mathbb{N} : |x^{(n)}_k - x^{(j)}_k| < \frac{\epsilon}{3}\}$$
$$\cap \{k \in \mathbb{N} : |x^{(n)}_k - a| < \frac{\epsilon}{3}\}.$$ \hspace{1cm} (22)

Then (a_n) is a Cauchy sequence of scalars in \mathbb{C}, so there exists a scalar $a \in \mathbb{C}$ such that $a_n \to a$, as $n \to \infty$.

(2) Let $0 < \delta < 1$ be given. Then we show that if $U = \{k \in \mathbb{N} : |x_k - a|^k \geq \delta\}$, then $U^c \in I$.

Since $x^{(n)}_k \to x$, then there exists $q_0 \in \mathbb{N}$ such that
$$P = \{k \in \mathbb{N} : |x^{(n)}_k - x| < \left(\frac{\delta}{3D}\right)^M\}.$$ \hspace{1cm} (23)

which implies that $P^c \in I$.

The number q_0 can be so chosen that together with (23), we have
$$Q = \{k \in \mathbb{N} : |a_k - a|^k < \left(\frac{\delta}{3D}\right)^M\}.$$ \hspace{1cm} (24)

such that $Q^c \in I$.

Since $\{k \in \mathbb{N} : |x^{(n)}_k - a_k|^k \geq \delta\} \in I$. Then we have a subset S of \mathbb{N} such that $S^c \in I$, where
$$S = \left\{k \in \mathbb{N} : |x^{(n)}_k - a_k|^k < \left(\frac{\delta}{3D}\right)^M\right\}.$$ \hspace{1cm} (25)

Let $U^c = P^c \cap Q^c \cap S^c$, where $U = \{k \in \mathbb{N} : |x_k - a|^k < \delta\}$. Therefore for each $k \in U^c$, we have
$$\{k \in \mathbb{N} : |x_k - a|^k < \delta\},$$
$$\supseteq \left\{k \in \mathbb{N} : |x^{(n)}_k - x_k|^k < \left(\frac{\delta}{3D}\right)^M\right\}$$
$$\cap \left\{k \in \mathbb{N} : |a_k - a|^k < \left(\frac{\delta}{3D}\right)^M\right\}.$$ \hspace{1cm} (26)

Then the result follows.

Since the inclusions $m_I^I(q) \subset I_\infty(q)$ and $m_I^I(q) \subset I_\infty(q)$ are strict, so in view of Theorem 14 we have the following result.

Theorem 15. The spaces $m_I^I(q)$ and $m_I^I(q)$ are nowhere dense subsets of $I_\infty(q)$.

Theorem 16. The spaces $m_I^I(q)$ and $m_I^I(q)$ are not separable.

Proof. We shall prove the result for the space $m_I^I(q)$.

The proof for the other spaces will follow similarly.

Let M be an infinite subset of \mathbb{N} of increasing natural numbers such that $M \in I$.

Let
$$q_k = \begin{cases} 1, & \text{if } k \in M, \\ 2, & \text{otherwise}. \end{cases}$$ \hspace{1cm} (27)

Let $P_0 = \{(x_k) : x_k = 0 \text{ or } 1, \text{for } k \in M \text{ and } x_k = 0, \text{ otherwise}\}$. Clearly P_0 is uncountable.

Consider the class of open balls $B_1 = \{B(z, 1/2) : z \in P_0\}$. Let C_1 be an open cover of $m_I^I(q)$ containing B_1.

Since B_1 is uncountable, so C_1 cannot be reduced to a countable subcover for $m_I^I(q)$.

Thus $m_I^I(q)$ is not separable.

Theorem 17. Let $G = \sup_k q_k < \infty$ and I an admissible ideal. Then the following is equivalent.

(a) $(x_k) \in \mathcal{L}^I(q)$;
(b) there exists $(y_k) \in \mathcal{L}(q)$ such that $x_k = y_k$, for $a.a.k.r.I$;
(c) there exists $(y_k) \in \mathcal{L}(q)$ and $(x_k) \in \mathcal{L}_0(q)$ such that $x_k = y_k + z_k$ for all $k \in \mathbb{N}$ and $\{k \in \mathbb{N} : |y_k - L| \geq \epsilon\} \in I$;
(d) there exists a subset $K = \{k_1 < k_2 < \cdots\} \subset \mathbb{N}$ such that $K \in \mathcal{L}(I)$ and $\lim_{n \to \infty} |x_{k_n} - L|^k = 0$.

Proof. (a) implies (b).
Let $(x_k) \in \mathcal{I}(q)$. Then there exists $L \in \mathbb{C}$ such that
\[
\left\{ k \in \mathbb{N} : |x_k^j - L|^\rho_k \geq c \right\} \in I. \tag{28}
\]
Let (m_k) be an increasing sequence with $m_k \in \mathbb{N}$ such that
\[
\left\{ k \leq m_k : |x_k^j - L|^\rho_k \geq t^{-1} \right\} \in I. \tag{29}
\]
Define a sequence (y_k) as
\[
y_k = x_k, \quad \forall k \leq m_1, \tag{30}
\]
For $t < k \leq m_{t+1}, t \in \mathbb{N}$,
\[
y_k = \begin{cases} x_k, & \text{if } |x_k^j - L|^\rho_k < t^{-1}, \\ L, & \text{otherwise.} \end{cases} \tag{31}
\]
Then $(y_k) \in \mathcal{I}(q)$ and form the following inclusion:
\[
\left\{ k \leq m_1 : x_k \neq y_k \right\} \subseteq \left\{ k \leq m_1 : |x_k^j - L|^\rho_k \geq t^{-1} \right\} \subseteq I. \tag{32}
\]
we get $x_k = y_k$, for a.a.k.r.l.
(b) implies (c).
For $(x_k) \in \mathcal{I}(q)$, then $(y_k) \in \mathcal{I}(q)$ such that $x_k = y_k$, for a.a.k.r.l.
Let $K = \{ k \in \mathbb{N} : x_k \neq y_k \}$, then $k \in I$.
Define a sequence (z_k) as
\[
z_k = \begin{cases} x_k - y_k, & \text{if } k \in K, \\ 0, & \text{otherwise.} \end{cases} \tag{33}
\]
Then $z_k \in \mathcal{I}(q)$ and $y_k \in \mathcal{I}(q)$.

(c) implies (d).
Suppose (c) holds.
Let $\epsilon > 0$ be given.
Let $P_1 = \{ k \in \mathbb{N} : |x_k^j|^\rho_k \geq \epsilon \} \in I$ and
\[
K = P_1^c = \{ k_1 < k_2 < k_3 < \cdots \} \in \mathcal{E}(I). \tag{34}
\]
Then we have $\lim_{n \to \infty} |x_{k_n}^j - L|^\rho_{k_n} = 0$.
(d) implies (a).
Let $K = \{ k_1 < k_2 < k_3 < \cdots \} \in \mathcal{E}(I)$ and $\lim_{n \to \infty} |x_{k_n}^j - L|^\rho_{k_n} = 0$.
Then for any $\epsilon > 0$, and Lemma 11, we have
\[
\left\{ k \in \mathbb{N} : |x_k^j - L|^\rho_k \geq \epsilon \right\} \subseteq K \cup \left\{ k \in K : |x_k^j - L|^\rho_k \geq \epsilon \right\}. \tag{35}
\]
Thus $(x_k) \in \mathcal{I}(q)$.

Theorem 18. Let $h = \inf_{k \in K} q_k$ and $G = \sup_{k \in K} q_k$. Then the following results are equivalent.

(a) $G < \infty$ and $h > 0$.
(b) $\mathcal{I}(q) = \mathcal{I}$.

Proof. Suppose that $G < \infty$ and $h > 0$, then the inequalities $\min\{1, s^h\} \leq s^h \leq \max\{1, s^h\}$ hold for any $s > 0$ and for all $k \in \mathbb{N}$.

Therefore the equivalence of (a) and (b) is obvious. □

Theorem 19. Let (q_k) and (r_k) be two sequences of positive real numbers. Then $m_{I_q}(q) \geq m_{I_r}(r)$ if and only if $\lim_{k \to K} \inf (q_k/r_k) > 0$, where $K^c \subseteq \mathbb{N}$ such that $K \in I$.

Proof. Let $\lim_{k \to K} \inf (q_k/r_k) > 0$ and $(x_k) \in m_{I_q}(q)$. Then there exists $\beta > 0$ such that $q_k > \beta r_k$, for all sufficiently large $k \in K$.

Since $(x_k) \in m_{I_q}(q)$ for a given $\epsilon > 0$, we have
\[
B_0 = \{ k \in \mathbb{N} : |x_k|^\beta_k \geq \epsilon \} \in I. \tag{36}
\]
Let $G_0 = K^c \cup B_0$. Then $G_0 \in I$.

Then for all sufficiently large $k \in G_0$,
\[
\{ k \in \mathbb{N} : |x_k|^\beta_k \geq \epsilon \} \subseteq \{ k \in \mathbb{N} : |x_k|^\beta_k \geq \epsilon \} \in I. \tag{37}
\]
Therefore $(x_k) \in m_{I_r}(r)$.

The converse part of the result follows obviously. □

Theorem 20. Let (q_k) and (r_k) be two sequences of positive real numbers. Then $m_{I_q}(r) \geq m_{I_q}(q)$ if and only if $\lim_{k \in K} \inf (r_k/q_k) > 0$, where $K \subseteq \mathbb{N}$ such that $K \in I$.

Proof. By combining Theorems 19 and 20, we get the required result. □

Acknowledgment

The authors would like to record their gratitude to the reviewer for his careful reading and making some useful corrections which improved the presentation of this paper.

References

