Research Article

Essentially λ-Hankel Operators

S. C. Arora1 and Jyoti Bhola2

1 Department of Mathematics, University of Delhi, Delhi 110007, India
2 Department of Mathematics, Hans Raj College, University of Delhi, Delhi 110007, India

Correspondence should be addressed to Jyoti Bhola; jbhola_24@rediffmail.com

Received 21 August 2012; Accepted 18 October 2012

Academic Editor: Ka F. C. Yiu

Copyright © 2013 S. C. Arora and J. Bhol. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The notion of essentially λ-Hankel operators is introduced on the space H^2. In addition to the discussion of some algebraic and topological properties of the set essHank_λ, the set of all essentially λ-Hankel operators on H^2, it is shown that an essentially Toeplitz Rhaly operator with determining sequence $\langle a_n \rangle$ is in $\text{essHank}_\lambda(\lambda \neq 0)$ if and only if $\lim_{n \to \infty} (n+1)|a_n| = 0$.

1. Introduction

The notion of Toeplitz operators was introduced by Toeplitz [1] in the year 1911. Hankel operators are the formal companions of Toeplitz operators. It is well known that Toeplitz and Hankel operators are characterized as solutions to the operator equations $S^*TS = T$ and $S^*H = HS$, respectively, where S denotes the unilateral forward shift on H^2. The solutions of the operator equation $S^*XS = \lambda X$ (for an arbitrary complex number λ) were described by Sun in the year 1984 [2]. In the year 2002, Avendaño [3] introduced the notion of λ-Hankel operators as those operators X which satisfy the operator equation $S^*X - XS = \lambda X$. In a different direction, Avendaño [4] studied the notion of Hankel operators in reference to the Calkin algebra $\mathcal{B}(H^2)/\mathcal{K}(H^2)$ and introduced the notion of essentially Hankel operators on H^2. Motivated by these developments, in this paper, we introduce and study the notion of essentially λ-Hankel operators on the space H^2.

For a fixed complex number λ, we denote the set of all essentially λ-Hankel operators on H^2 by essHank_λ. The set essHank_λ is shown to be a norm-closed vector subspace of $\mathcal{B}(H^2)$ containing no essentially invertible operator. It is shown that for a general λ, essHank_λ is neither an algebra of operators on H^2 nor a self-adjoint set. Although the set essHank_λ contains no nonzero Toeplitz operators, it turns out to be invariant under multiplication by Toeplitz operators. It turns out that $\text{essToep} \cap \text{essHank}_\lambda$ is an algebra without identity, where essToep denotes the class of all essentially Toeplitz operators on H^2. In particular, for purely imaginary λ, $\text{essToep} \cap \text{essHank}_\lambda$ is a C^*-algebra. We also show that if $\lambda \neq 0$, $\text{essToep} \cap \text{essHank}_\lambda$ contains no noncompact Rhaly operators.

We begin with the following.

Definition 1 (See [5]). A bounded linear operator T on H^2 is said to be an essentially Toeplitz operator if it satisfies

$$S^*TS - T = K,$$

for some compact operator K on H^2. The set of all essentially Toeplitz operators is denoted by essToep.

Definition 2 (See [4]). A bounded linear operator X on H^2 is said to be an essentially Hankel operator if it satisfies

$$S^*X - XS = K,$$

for some compact operator K on H^2. The set of all essentially Hankel operators on H^2 is denoted by essHank. For more details, one can refer to [4].

Definition 3 (See [3]). X is said to be a λ-Hankel operator if it satisfies $S^*X - XS = \lambda X$.

Clearly, a 0-Hankel operator is just a Hankel operator.
Definition 4 (See [6]). Given a sequence $a = (a_n)$ of scalars, the Rhaly matrix (terraced matrix) R_a [6] is defined as

$$R_a = \begin{bmatrix} a_1 & 0 & 0 & 0 & \cdots \\ a_2 & a_1 & 0 & 0 & \cdots \\ a_3 & a_2 & a_1 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}.$$

This means that Rhaly matrices are lower triangular matrices with constant row segments. It is known that if $|na_n|$ is bounded, then the Rhaly matrix R_a represents a bounded linear operator on the space ℓ^2 (identified with H^2) and $\|R_a\| \leq 2\sup_{n \in \mathbb{N}} |na_n|$.

We now introduce the notion of essentially λ-Hankel operators on the space H^2 as follows.

Definition 5. For a fixed complex number λ, a bounded linear operator X on H^2 is said to be an essentially λ-Hankel operator if it satisfies the operator equation

$$\begin{align*}
(S^* - \lambda I)X - XS &= K,
\end{align*}$$

for some compact operator K on H^2, S denoting the unilateral forward shift on H^2.

We denote the set of all essentially λ-Hankel operators on H^2 by essHank_λ. Some basic facts and observations about essHank_λ which follow from the definition itself are as follows:

(i) $\text{essHank}_\lambda \cap \mathcal{K}(H^2) = \mathcal{K}(H^2)$, where $\mathcal{K}(H^2)$ denotes the ideal of all compact operators on H^2.

(ii) Since the zero operator on H^2 is compact, every λ-Hankel operator is in essHank_λ.

(iii) If $\lambda = 0$, then $\text{essHank}_0 = \text{essHank}_0 = \text{essHank}$, where essHank is the set of all essentially Hankel operators on H^2 introduced by Avendaño [4].

(iv) If H is a Hankel operator, then $S^*H = HS$. Therefore, every Hankel operator is in essHank_0.

(v) We see that the operator $S^* - S - \lambda I$ cannot be compact on H^2, for any complex number λ. Therefore, if X is a compact operator on H^2, then $X + K$ is in essHank_λ for any λ, where I denotes the identity operator on H^2.

(vi) For $X_1, X_2 \in \text{essHank}_\lambda$, $X_1X_2 \in \text{essHank}_\lambda$ if and only if

$$X_1(S^* - S - \lambda I)X_2 \in \mathcal{K}(H^2),$$

(vii) from the definition itself, it is clear that if X is a λ-Hankel operator and K is a compact operator on H^2, then $X + K$ is in essHank_λ. That is, compact perturbations of λ-Hankel operators are in essHank_λ.

It was shown by Avendaño that the reverse implication is not true for the case $\lambda = 0$. Avendaño [4] proved that the Cesaro operator (i.e., the Rhaly operator corresponding to the sequence $\langle 1/n \rangle$) whose matrix with respect to the standard orthonormal basis is given by

$$\begin{bmatrix} 1 & 0 & 0 & 0 & \cdots \\ 1 & 1 & 0 & 0 & \cdots \\ 2 & 2 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

is in essHank_0 but is not expressible in 0-Hankel plus compact form.

(viii) essHank_λ is a norm-closed vector subspace of $\mathcal{B}(H^2)$, the space of all bounded linear operators on H^2.

Proof. For $\alpha, \beta \in \mathbb{C}$ and $X_1, X_2 \in \text{essHank}_\lambda$, we have

$$\begin{align*}
(S^* - \lambda I)(\alpha X_1 + \beta X_2) &= (\alpha X_1 + \beta X_2)S \\
&= (\alpha S^* - \lambda I)X_1 + (\beta S^* - \lambda I)X_2 \\
&= \alpha[X_1 + \beta X_2] \\
&= \alpha K_0 + \beta K_2,
\end{align*}$$

where $K_1, K_2 \in \mathcal{K}(H^2)$. Therefore, $\alpha X_1 + \beta X_2 \in \text{essHank}_\lambda$.

Also, if $\langle X_n \rangle \to X$ in $\mathcal{B}(H^2)$, where each X_n is in essHank_λ, then $\langle (S^* - \lambda I)X_n \rangle \to (S^* - \lambda I)X$ in $\mathcal{B}(H^2)$. As each $X_n \in \text{essHank}_\lambda$ and $\mathcal{B}(H^2)$ is a uniformly closed subspace of $\mathcal{B}(H^2)$, it follows that $(S^* - \lambda I)X - XS \in \mathcal{K}(H^2)$. Thus, $X \in \text{essHank}_\lambda$. Hence, the conclusion is clear.

We see that if $X \in \text{essHank}_\lambda$, then

$$S^*X - XS = K, \quad \text{where } K \in \mathcal{K}(H^2).$$

On taking adjoints on both the sides, we get

$$S^*X^* - X^*S = -K^*, \quad \text{where } K^* \in \mathcal{K}(H^2).$$

Therefore, $X^* \in \text{essHank}_\lambda$.

Thus, essHank_λ is a self-adjoint set. We show that for a general complex number λ, this is not the case. That is, essHank_λ is not a self-adjoint set in general. For this we begin with the following.

Theorem 6. If λ and μ are distinct complex numbers, then

$$\text{essHank}_\lambda \cap \text{essHank}_\mu = \emptyset.$$

Proof. Let $X \in \text{essHank}_\lambda \cap \text{essHank}_\mu$. Then,

$$\begin{align*}
(S^* - \lambda I)X - XS &= K_1, \\
(S^* - \mu I)X - XS &= K_2,
\end{align*}$$

where $K_1, K_2 \in \mathcal{K}(H^2)$. Subtracting the previous two equations we have

$$\begin{align*}
(\lambda - \mu)X &= \frac{1}{2}(K_1 - K_2), \\
(\lambda - \mu)X &= \frac{1}{2}(K_2 - K_1),
\end{align*}$$

where $K_1, K_2 \in \mathcal{K}(H^2)$.
where \(\lambda - \mu \neq 0 \). This implies that \(X \in \mathcal{H}(H^2) \). Therefore, \(\text{essHank}_\lambda \cap \text{essHank}_\mu \subseteq \mathcal{H}(H^2) \). Reverse inclusion is obvious by the definition.

Theorem 7. If \(X \in \text{essHank}_\lambda \), then \(X^* \in \text{essHank}_\mu \), where \(\mu = -\bar{\lambda} \).

Proof. Let \(X \in \text{essHank}_\lambda \). Then,

\[
(S^* - \lambda I) X - X S = K, \tag{13}
\]

for some compact operator \(K \) on \(H^2 \). Taking adjoints on both sides of (13), we obtain

\[
X^* (S - \bar{\lambda} I) - S^* X^* = K^*, \tag{14}
\]

where \(K^* \in \mathcal{H}(H^2) \). Thus, \([S^* - (\bar{\lambda} - I)]X^* - X^* S \in \mathcal{H}(H^2) \). This means that \(X^* \in \text{essHank}_\mu \), where \(\mu = -\bar{\lambda} \). \(\square \)

Corollary 8. A necessary condition for a noncompact operator \(X \) in \(\text{essHank}_\lambda \), \(\lambda \neq 0 \), to be self-adjoint is that \(\lambda \) is purely imaginary.

Proof. Let \(X \in \text{essHank}_\lambda \), where \(X \) is a noncompact operator on \(H^2 \). Then, \(X^* \in \text{essHank}_\mu \), where \(\mu = -\bar{\lambda} \). Now, if \(X = X^* \), then \(X, X^* \in \text{essHank}_\lambda \cap \text{essHank}_\mu \). As \(X \) is non-compact, we have \(\lambda = \mu \). That is, \(\lambda + \bar{\lambda} = 0 \). That is, \(\lambda \) is purely imaginary. \(\square \)

Theorem 9. Let \(X \in \text{essHank}_\lambda \). Then, \(0 \in \sigma_e(X) \), where \(\sigma_e(X) \) denotes the essential spectrum of the operator \(X \).

Proof. Let \(X \in \text{essHank}_\lambda \). Then,

\[
(S^* - \lambda I) X - X S = K, \tag{15}
\]

where \(K \) is a compact operator on \(H^2 \).

Case (i). \(\lambda = 0 \): In this case, \(X \) satisfies

\[
S^* X - X S = K, \tag{16}
\]

where \(K \in \mathcal{H}(H^2) \). Clearly, \(X \) cannot be Fredholm, for if \(X \) is a Fredholm operator of index \(n \), then \(S^* X \) and \(XS + K \) are Fredholm operators with indices \(n + 1 \) and \(n - 1 \), respectively, leading to \(1 = -1 \), which is absurd. Therefore, \(0 \in \sigma_e(X) \).

Case (ii). \(\lambda \neq 0 \): In this case, if \(X \) is essentially invertible, then \((S^* - \lambda I) - XSX^{-1} \) is a compact operator on \(H^2 \). This leads to the essential similarly of \(S^* - \lambda I \) and \(S \), which is a contradiction as \(\sigma_e(S) = \sigma_e(S^*) = \mathbb{T} \), where \(\mathbb{T} \) denotes the unit circle in the complex plane. So, \(0 \in \sigma_e(X) \) in this case also. \(\square \)

In the next theorem, we show that there is no nonzero Toeplitz operator in \(\text{essHank}_\lambda \). For this we need the following lemmas.

Lemma 10. A nonzero Toeplitz operator cannot be a \(\lambda \)-Hankel operator.

Proof. Let \(T \) be a nonzero Toeplitz operator. Then,

\[
S^* TS = T. \tag{17}
\]

If possible, suppose that \(T \) is a \(\lambda \)-Hankel also. Then,

\[
(S^* - \lambda I) T = TS. \tag{18}
\]

From (17) and (18), it follows that

\[
(\lambda T + TS) S = T. \tag{19}
\]

That is,

\[
T e_{n+2} = T e_n - \lambda T e_{n+1}, \tag{20}
\]

for all \(n \geq 0 \). This means that \(T \) is finite dimensional and hence a compact operator on \(H^2 \). But nonzero Toeplitz operators are never compact. Thus, we have a contradiction and the conclusion follows. \(\square \)

Lemma 11. If \(T \) is a nonzero Toeplitz operator, then so is \(S^* T - TS \), \(S \) denoting the unilateral forward shift on \(H^2 \).

Using the previous two lemmas, we now prove that the set \(\text{essHank}_\lambda \) contains no nonzero Toeplitz operator.

Theorem 12. \(\text{essHank}_\lambda \cap \mathcal{J} = \{0\} \), where \(\mathcal{J} \) denotes the set of all Toeplitz operators on \(H^2 \).

Proof. Let \(T \in \text{essHank}_\lambda \cap \mathcal{J} \). Then,

\[
S^* TS = T, \tag{21}
\]

\[
(S^* - \lambda I) T - TS = K, \tag{22}
\]

for some compact operator \(K \) on \(H^2 \). Since \(T \) is a Toeplitz operator, \(S^* T - TS \) is also a Toeplitz operator on \(H^2 \). It follows that \((S^* - \lambda I) T - TS \) is a Toeplitz operator on \(H^2 \). As a nonzero Toeplitz operator cannot be compact, we must have \((S^* - \lambda I) T - TS = 0 \). That is, \(T \) is a \(\lambda \)-Hankel operator on \(H^2 \). Now, using Lemma 10, we get that \(T = 0 \). Hence,

\[
\text{essHank}_\lambda \cap \mathcal{J} = \{0\}. \tag{23}
\]

In the next theorem, we show that the set \(\text{essHank}_\lambda \) is invariant under multiplication by Toeplitz operators.

Theorem 13. If \(X \in \text{essHank}_\lambda \) and \(T_\phi \) is any Toeplitz operator on \(H^2 \), then \(XT_\phi \) and \(T_\phi X \) both are in \(\text{essHank}_\lambda \).

Proof. Let \(T_\phi \) be a Toeplitz operator on the space \(H^2 \). Then, we have

\[
S^* T_\phi S = T_\phi. \tag{24}
\]

Since \(S \) is essentially unitary, we have the commutator of \(T_\phi \) with \(S \), and that with \(S^* \) is compact on \(H^2 \). Now, let \(X \in \text{essHank}_\lambda \). Then,
(i) consider
\[(XT_\phi)S = (XS)T_\phi \pmod{\mathcal{H}(H^2)} \] (24)
Therefore,
\[(XT_\phi)S - (S^* - \lambda I)(XT_\phi) \in \mathcal{H}(H^2). \] (25)

(ii) Consider
\[(S^* - \lambda I)(T_\phi X) \]
\[= S^*T_\phi X - \lambda T_\phi X \]
\[= T_\phi(S^*X - \lambda T_\phi X) \pmod{\mathcal{H}(H^2)} \] (26)
Therefore,
\[(T_\phi X)S - (S^* - \lambda I)(T_\phi X) \in \mathcal{H}(H^2). \] (27)
Hence, the conclusion is clear.

More generally, we have the following.

Theorem 14. If \(X \in \text{essHank}_\lambda\) and \(T \in \text{essToep}\), then \(XT, TX \in \text{essHank}_\lambda\).

Proof. Let \(X \in \text{essHank}_\lambda\) and \(T \in \text{essToep}\). Then,
\[(S^* - \lambda I)(X) - XS \in \mathcal{H}(H^2), \]
\[ST - TS \in \mathcal{H}(H^2). \] (28)

Now,
\[(S^* - \lambda I)(XT) - (XT)S \]
\[= (S^* - \lambda I)(XT) - X(ST) \pmod{\mathcal{H}(H^2)} \] (29)
\[= [(S^* - \lambda I)X - XS]T \pmod{\mathcal{H}(H^2)} \]
\[\in \mathcal{H}(H^2). \]
Therefore, \(XT \in \text{essHank}_\lambda\).

Also,
\[(S^* - \lambda I)(TX) - (TX)S \]
\[= TS^*X - \lambda TXT - TXS \pmod{\mathcal{H}(H^2)} \] (30)
\[= T[(S^* - \lambda I)X - XS] \pmod{\mathcal{H}(H^2)} \]
\[\in \mathcal{H}(H^2). \]
Therefore, \(TX \in \text{essHank}_\lambda\).

We mention here that the previous result was proved for the special case \(\lambda = 0\) by Avendaño [7]. It is easy to see that \(\text{essToep}\) is a \(C^*\)-algebra. This fact together with the previous theorem gives us that \(\text{essToep} \cap \text{essHank}_\lambda\) is an algebra of operators on \(H^2\) as shown in the following.

Theorem 15. \(\text{essToep} \cap \text{essHank}_\lambda\) is an algebra of operators on \(H^2\) with no identity.

Proof. Since \(\text{essToep}\) is a \(C^*\)-algebra and \(\text{essHank}_\lambda\) is a vector subspace of \(\mathcal{B}(H^2)\), it follows that \(\text{essToep} \cap \text{essHank}_\lambda\) is a vector subspace of \(\mathcal{B}(H^2)\). Also, if \(X_1, X_2 \in \text{essToep} \cap \text{essHank}_\lambda\), then using Theorem 14, we get that \(X_1X_2 \in \text{essToep} \cap \text{essHank}_\lambda\). Thus, \(\text{essToep} \cap \text{essHank}_\lambda\) is an algebra of operators on \(H^2\). As \(I \notin \text{essHank}_\lambda\), the theorem is proved.

Remark 16. We have seen that if \(\lambda\) is purely imaginary, then \(\text{essHank}_\lambda\) is a self-adjoint set. Therefore, for purely imaginary \(\lambda\), \(\text{essToep} \cap \text{essHank}_\lambda\) turns to be a \(C^*\)-algebra.

Theorem 17. If \(X \in \text{essHank}_\lambda\), then
\[S\left(\text{Ker} X\right) \subseteq \text{Ker} (X + K), \] (31)
for some compact operator \(K\) on \(H^2\).

Proof. Let \(X \in \text{essHank}_\lambda\). Then,
\[(S^* - \lambda I)X - XS = K, \] (32)
for some compact operator \(K\) on \(H^2\).

If \(f \in \text{Ker} X\), then \(X f = 0\). From (32) it follows that \((XS + K)f = 0\). That is, \((X + KS^*)f = 0\). This implies that \((X + K)Sf = 0\), where \(K = KS^* \in \mathcal{H}(H^2)\). Thus, \(Sf \in \text{Ker} (X + K^*)\), where \(K^* \in \mathcal{H}(H^2)\). Hence, the result is clear.

Corollary 18. If \(X \in \text{essHank}_\lambda\), then
\[S\left(\text{Range} X\right)^\perp \subseteq \left[\text{Range} (X + K)\right]^\perp, \] (33)
for some compact operator \(K\) on \(H^2\).

Proof. Let \(X \in \text{essHank}_\lambda\). Then, \(X^* \in \text{essHank}_\mu\), where \(\mu = -\lambda\). Applying Theorem 17 to \(X^*\), we get
\[S\left(\text{Ker} X^*\right) \subseteq \text{Ker} (X^* + K), \] (34)
for some compact operator \(K\) on \(H^2\). This means that
\[S\left(\text{Ker} X^*\right) \subseteq \text{Ker} [\left(\text{Ker} X^*\right)^*], \] (35)
Therefore,
\[S\left(\text{Range} X\right)^\perp \subseteq \left[\text{Range} (X + K^*)\right]^\perp, \] (36)
where \(K^* \in \mathcal{H}(H^2)\). So, the conclusion follows.
Remark 19. It is known that $[3, 7]$ kernel of a λ-Hankel operator is an invariant subspace of S, and closure of the range of a λ-Hankel operator is an invariant subspace of S^\ast. We mention here that these facts about λ-Hankel operators follow as deductions to Theorem 17 and Corollary 18. For if X is λ-Hankel then $K = 0$ in Theorem 17 and Corollary 18 leading to $S(KerX) \subseteq KerX$ and $S^\ast(Range X) \subseteq Range X$, respectively.

It is known that a Rhaly operator R_α is essentially Toeplitz if and only if it is essentially Hankel. That is, $R_\alpha \in essToep$ if and only if $R_\alpha \in essHank$. We show that this is not the case if $\lambda \neq 0$. In fact, an essentially Toeplitz Rhaly operator is in $essHank_\lambda(\lambda \neq 0)$ if and only if it is compact. Precisely, we have the following.

Theorem 20. Let $R_\alpha \in essToep$ be a Rhaly operator with determining sequence $a = \langle a_n \rangle \in \ell^2$. Then $R_\alpha \in essHank_\lambda (\lambda \neq 0)$ if and only if $\lim_{n \to \infty} (n+1)|a_n| = 0$.

Proof. Let $R_\alpha \in essToep$. Then, $R_\alpha \in essHank_0 [4]$. Now if $R_\alpha \in essHank_\lambda (\lambda \neq 0)$, then we have $R_\alpha \in essHank_0 \cap essHank_\lambda$. As $\lambda \neq 0$, we have $R_\alpha \in \mathcal{R}(H^2)$, by Theorem 6. It is known that $[8]$ a Rhaly operator R_α with determining sequence $a = \langle a_n \rangle$ is compact if and only if $\lim_{n \to \infty}(n+1)|a_n| = 0$. The desired result follows. \qed

Acknowledgment

The support of UGC Research Grant no.8-1-(2)/2010(MRP/NRCB) for carrying out the research work is gratefully acknowledged.

References
