Research Article

Some Definition of Hartley-Hilbert and Fourier-Hilbert Transforms in a Quotient Space of Boehmians

S. K. Q. Al-Omari

Department of Applied Sciences, Faculty of Engineering Technology, Al-Balqa’ Applied University, Amman 11134, Jordan

Correspondence should be addressed to S. K. Q. Al-Omari; s.k.q.alomari@fet.edu.jo

Received 20 May 2014; Accepted 16 August 2014; Published 6 November 2014

Academic Editor: Tepper L. Gill

Copyright © 2014 S. K. Q. Al-Omari. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We investigate the Hartley-Hilbert and Fourier-Hilbert transforms on a quotient space of Boehmians. The investigated transforms are well-defined and linear mappings in the space of Boehmians. Further properties are also obtained.

1. Introduction

The Hilbert transform of a function $f(y)$ via the Hartley transform is defined in [1, 2] as

\[
(f)_{hh}(y) = \frac{1}{\pi} \int_{0}^{\infty} \left((f)^{e}_h(x) \cos(xy) + (f)^{o}_h(x) \sin(xy)\right) dx,
\]

where $(f)^{e}_h$ and $(f)^{o}_h$ are, respectively, the even and odd components of the Hartley transform $(f)_{h}$ given as [3]

\[
(f)^{e}_h(x) = \int_{-\infty}^{\infty} f(y) \cos(xy) dy := (f)^{e}_h(x) + (f)^{o}_h(x),
\]

where $\cos(xy) = \cos(xy) + \sin(xy)$.

Let $f(y)$ be a casual function; that is, $f(y) = 0$, for $y > 0$, and then $(f)^{e}_h(x)$ and $(f)^{o}_h(x)$ are related by a Hilbert transform pair as [3]

\[
(f)^{e}_h(x) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{(f)_h(y)}{x-y} dy, \\
(f)^{o}_h(x) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{(f)_h(y)}{x-y} dy.
\]

The Hilbert transform of $f(y)$ via the Fourier transform is defined by

\[
(f)_{fh}(y) = \frac{1}{\pi} \int_{0}^{\infty} \left((f)^{r}_f(x) \cos(xy) - (f)^{i}_f(x) \sin(xy)\right) dx,
\]

where $(f)^{r}_f(x)$ and $(f)^{i}_f(x)$ are, respectively, the real and imaginary components of the Fourier transform given as

\[
(f)^{r}_f(x) = \int_{-\infty}^{\infty} f(y)e^{-ixy} dy := (f)^{r}_f(x) - i(f)^{i}_f(x).
\]

The Hilbert transform is extended to Boehmians in [4] and to strong Boehmians in [5]. The Hartley-Hilbert and Fourier-Hilbert transforms were discussed in various spaces of distributions and spaces of Boehmians in [1, 6].

In this paper, i aim at investigating the Hartley-Hilbert transform on the context of Boehmians. Investigating the later transform is analogous.

2. Spaces of Quotients (Spaces of Boehmians)

One of the most youngest generalizations of functions and more particularly of distributions is the theory of Boehmians. The idea of the construction of Boehmians was initiated by the concept of regular operators [7]. Regular operators form
a subalgebra of the field of Mikusinski operators and they include only such functions whose support is bounded from the left. In a concrete case, the space of Boehmians contains all regular operators, all distributions, and some objects which are neither operators nor distributions.

The construction of Boehmians is similar to the construction of the field of quotients and, in some cases, it gives just the field of quotients. On the other hand, the construction is possible where there are zero divisors, such as space C^∞ (the space of continuous functions) with the operations of pointwise additions and convolution.

A number of integral transforms have been extended to Boehmian spaces in the recent past by many authors such as Roopkumar in [8, 9]; Mikusinski and Zayed in [10]; Al-Omari and Kilicman in [1, 6, 11]; Karunakaran and Vembu [12]; Karunakaran and Roopkumar [13]; Al-Omari et al. in [14]; and many others.

For abstract construction of Boehmian spaces we refer to [14–16].

By \circ denote the Mellin-type convolution product of first kind defined by [8]

$$\phi \circ \psi (t) = \int_0^\infty z^{-1} \phi (tz^{-1}) g(z) \, dz. \quad (6)$$

Properties of \circ are presented as follows [8]:

(i) $(\phi \circ \psi) (t) = (\psi \circ \phi) (t)$;
(ii) $((\phi + \psi) \circ \psi) (t) = (\phi \circ \psi) (t) + (\psi \circ \phi) (t)$;
(iii) $(\alpha \phi \circ \psi) (t) = \alpha (\psi \circ \phi) (t); \alpha$ is complex number;
(iv) $((\phi \circ \psi) \circ \theta) (t) = (\phi \circ (\psi \circ \theta)) (t)$.

By \ast, we denote the convolution product defined by

$$\phi \ast \psi (y) = \int_0^\infty z^{-1} \phi (yz^{-1}) \psi (z) \, dz. \quad (7)$$

By $\Theta(\mathbb{R}_+)$ denote the space of test functions of bounded supports defined on \mathbb{R}_+ that vanish more rapidly than every power of x as $x \to \infty$. Denote by Θ_1 the subset of $\Theta(\mathbb{R}_+)$ defined by

$$\Theta_1 = \{ \phi \in \Theta(\mathbb{R}_+) : \int_0^\infty \phi(x) \, dx = 1 \}. \quad (8)$$

Let Δ be the set of delta sequences satisfying the following properties:

(1): $[\delta_n] \in \Theta(\mathbb{R}_+)$;
(2): $\int_0^\infty \delta_n(x) \, dx = 1, n \in \mathbb{N}$;
(3): $\int_0^\infty |\delta_n(x)| \, dx < \infty, n \in \mathbb{N}$;
(4): $\text{supp} \delta_n(x) \subseteq [a_n, b_n], 0 < a_n < b_n$ and $a_n, b_n \to 0$ as $n \to \infty$, where

$$\text{supp} \delta_n(x) = \{ x \in \mathbb{R}_+ : \delta_n(x) \neq 0, \forall n \in \mathbb{N} \}. \quad (9)$$

Now we establish the following theorem.

Theorem 1. Let $\phi, \psi \in \Theta(\mathbb{R}_+)$; then one has $(\phi \circ \psi)_{bb} (y) = (\phi_{bb} \ast \psi) (y)$.

Proof. Let ϕ and ψ be in $\Theta(\mathbb{R}_+)$; then we have

$$\phi \circ \psi (y) = \int_0^\infty \left(\int_0^\infty \phi (x) \cos (xy) + \phi (x) \sin (xy) \right) \, dx,$$

i.e.,

$$\int_0^\infty \left(\int_0^\infty (\phi \circ \psi) (t) \sin (tx) \, dt \cos (xy) + \phi (t) \cos (tx) \sin (xy) \, dt \right) \, dx,$$

i.e.,

$$\int_0^\infty \left(\int_0^\infty (\phi \circ \psi) (t) \sin (tx) \, dt \right) \, dx.$$

By the change of variables $t z^{-1} = w$, we get that

$$(\phi \circ \psi)_{bb} (y) = \int_0^\infty \left(\int_0^\infty (\phi) (w) \sin (xzw) \cos (xy) + \phi (w) \cos (xzw) \sin (xy) \right) \, dw \, dx,$$

i.e.,

$$\int_0^\infty \left(\int_0^\infty \phi_b^e (xw) \cos (xy) \sin (xy) \, dx \right) \, dz.$$
Proof. Let \(y > 0 \) be given. Then, from (6) and (7), we have
\[
(\phi \ast (\psi \ast (\theta))(y) = \int_{0}^{\infty} z^{-1} \phi(y z^{-1}) \psi(z) \ast (\theta(z)) dz,
\]
and
\[
\text{i.e.} = \int_{0}^{\infty} z^{-1} \phi(y z^{-1}) \frac{t(t dt)}{t^{-1} \psi(z t^{-1}) \theta(t) dt} dz.
\]
Hence, the theorem is completely proved.

Theorem 3. Let \(\varphi, \psi \in \Theta; \text{then } \varphi \ast \psi = \psi \ast \varphi. \)

Proof. Proof of this theorem follows from technique similar to that of Theorem 2. Therefore, we omit the details.

Theorem 4. Let \(\phi_{1}, \phi_{2} \in \Theta(\mathbb{R}_{+}) \) and \(\varphi_{1}, \varphi_{2} \in \Theta; \text{then } \phi_{1} \ast \varphi_{1} \ast \phi_{2} \ast \varphi_{2} \)

Proof. Proof of (1) and (2) follows from elementary integral calculus. Proof of (3) is already obtained in Theorem 2. Proof of (4) is obvious by the properties of the product (7). Further details are, thus, avoided.

This completes the proof of the theorem.

Theorem 5. Let \(\phi \in \Theta(\mathbb{R}_{+}) \) and \(\delta_{n} \in \Delta; \text{then } \phi \ast \delta_{n} \rightarrow \phi \)
as \(n \rightarrow \infty. \)

Proof. Let \(K \) be a compact set containing the support of \(\phi \); then, by Property 2 of delta sequences, we have
\[
|\mathcal{D}_{y}^{k} (\phi \ast \delta_{n} - \phi) (y)|
\]
\[
\leq \int_{K} |\mathcal{D}_{y}^{k} (z^{-1} \phi(y z^{-1}) - \phi(y))| |\delta_{n}(y)| dz.
\]
Hence, (14) goes to zero as \(n \rightarrow \infty. \)

The Boehmian space \(\mathcal{B}(\Theta, \Theta, \Theta, \ast, \Delta) \) is constructed.

The sum of two Boehmians and multiplication by a scalar

\[
\frac{[f_{n}]}{[\omega_{n}]} + \frac{[g_{n}]}{[\psi_{n}]} = \frac{[f_{n} \ast \psi_{n} + g_{n} \ast \omega_{n}]}{[\omega_{n} \ast \psi_{n}]},
\]
\[
\alpha \frac{[f_{n}]}{[\omega_{n}]} = \frac{[\alpha f_{n}]}{[\alpha \omega_{n}]} = \frac{[\alpha f_{n}]}{[\alpha \omega_{n}]},
\]
where \(\alpha \in \mathbb{C} \), the field of complex numbers.

The operation \(\ast \) and the differentiation are defined by
\[
\mathcal{D}_{y}^{a} \frac{[f_{n}]}{[\omega_{n}]} = \frac{[\mathcal{D}_{y}^{a} f_{n}]}{[\omega_{n}]}.
\]
Similarly, the space \(\mathcal{B}(\Theta, \Theta, \Theta, \Theta, \Theta, \ast, \Delta) \) can be proved. The sum of two Boehmians and multiplication by a scalar

can be defined in a natural way:
\[
\frac{[f_{n}]}{[\omega_{n}]} + \frac{[g_{n}]}{[\psi_{n}]} = \frac{[f_{n} \ast \psi_{n} + g_{n} \ast \omega_{n}]}{[\omega_{n} \ast \psi_{n}]},
\]
\[
\alpha \frac{[f_{n}]}{[\omega_{n}]} = \frac{[\alpha f_{n}]}{[\alpha \omega_{n}]} = \frac{[\alpha f_{n}]}{[\alpha \omega_{n}]}.
\]

As next, let \(\phi \in \Theta(\mathbb{R}_{+}); \text{then } (\phi)_{hh}(y) \in \Theta(\mathbb{R}_{+}). \)

For some details, we by definitions have that
\[
[(\phi)_{hh}]^{k}(\phi_{hh})(y)
\]
\[
\leq \frac{1}{\pi} \int_{0}^{\infty} \mathcal{D}_{y}^{k} \left[\left((\phi_{b}^{k}(x) \cos(xy) + \phi_{b}^{k}(x) \sin(xy)) \right) x^{k} \right] dx
\]
\[
\leq \frac{1}{\pi} \int_{0}^{\infty} x^{k} \left| (\phi_{b}^{k}(x)) \right| dx + \frac{1}{\pi} \int_{0}^{\infty} x^{k} \left| (\phi_{b}^{k}(x)) \right| dx.
\]
But since
\[
\frac{1}{\pi} \int_{0}^{\infty} x^{k} \left| (\phi_{b}^{k}(x)) \right| dx = \frac{1}{\pi} \int_{0}^{\infty} x^{k} \left| (\phi_{b}^{k}(x)) \right| dx \rightarrow 0,
\]
for every power of \(x \) as \(x \rightarrow \infty \), where \([a, b]\) is a compact set containing the support of \(\phi \), similarly we see that
\[
\frac{1}{\pi} \int_{0}^{\infty} x^{k} \left| (\phi_{b}^{k}(x)) \right| dx \rightarrow 0,
\]
for every power of \(x \) as \(x \rightarrow \infty \). Therefore, we get that
\((\phi)_{hh}(y) \in \Theta(\mathbb{R}_{+}). \)

3. Hartley-Hilbert Transform of Quotients

Let \([[\phi_{n}]] / [[\delta_{n}]] \in \mathcal{B}(\Theta, \Theta, \Theta, \Theta, \ast, \Delta); \text{then we define the extended Hartley-Hilbert transform of } [[\phi_{n}]] / [[\delta_{n}]] \text{ as}
\[
[[\phi_{n}]] / [[\delta_{n}]]_{hh} = \frac{[[\phi_{n}]]_{bb}}{[[\delta_{n}]]_{bb}},
\]
in the quotient space \(\mathcal{B}(\Theta, \Theta, \Theta, \ast, \Delta). \)
Theorem 6. The operator \(([\phi_n] / [\delta_n])_{\text{bh}} \) is well-defined and linear from \(B(\Theta, (\Theta_1, @), @, \Delta) \) into \(B(\Theta, (\Theta_1, @), @, \Delta) \).

Proof. We show that \(([\phi_n] / [\delta_n])_{\text{bh}} \) is well-defined.

Let \(([\psi_n] / [\mu_n]) = ([\xi_n] / [\epsilon_n]) \) in \(B(\Theta, (\Theta_1, @), @, \Delta) \); then, by the concept of quotients of the space \(B(\Theta, (\Theta_1, @), @, \Delta) \) we have

\[
\psi_n @ e_m = \xi_m @ \mu_n.
\] (23)

Hence, by Theorem 1, we get from (23) that

\[
(\psi_n)_{\text{bh}} * e_m = (\xi_m)_{\text{bh}} * \mu_n.
\] (24)

Hence, from (24), it follows that

\[
\frac{((\psi_n)_{\text{bh}})}{[\mu_n]} \sim \frac{((\xi_n)_{\text{bh}})}{[\epsilon_n]},
\] (25)

in \(B(\Theta, (\Theta_1, @), @, \Delta) \). Therefore,

\[
\frac{((\psi_n)_{\text{bh}})}{[\mu_n]} = \frac{((\xi_n)_{\text{bh}})}{[\epsilon_n]},
\] (26)

in \(B(\Theta, (\Theta_1, @), @, \Delta) \).

That is,

\[
\left(\frac{[\psi_n]}{[\mu_n]} \right)_{\text{bh}} = \left(\frac{[\xi_n]}{[\epsilon_n]} \right)_{\text{bh}}.
\] (27)

To show that \(([\phi_n] / [\delta_n])_{\text{bh}} \) is linear, let \(([f_n] / [\epsilon_n]), ([g_n] / [\tau_n]) \in B(\Theta, (\Theta_1, @), @, \Delta) \), \(\kappa, \eta \in \mathbb{R} \); then

\[
\left(\kappa \frac{[f_n]}{[\epsilon_n]} + \eta \frac{[g_n]}{[\tau_n]} \right)_{\text{bh}} = \left(\kappa \frac{[f_n]}{[\epsilon_n]} \right)_{\text{bh}} + \left(\eta \frac{[g_n]}{[\tau_n]} \right)_{\text{bh}},
\]

i.e.,

\[
\left(\left(\frac{(\kappa f_n) @ \tau_n + (\eta g_n) @ \epsilon_n}{[\epsilon_n] @ [\tau_n]} \right)_{\text{bh}} \right) \frac{(\kappa f_n) @ \tau_n + (\eta g_n) @ \epsilon_n}{[\epsilon_n] @ [\tau_n]},
\]

i.e.,

\[
\frac{((\psi_n)_{\text{bh}})}{[\mu_n]} + \frac{((g_n)_{\text{bh}})}{[\tau_n]}.
\]

(28)

Linearity of the classical Hartley-Hilbert transform implies

\[
\left(\kappa \frac{[f_n]}{[\epsilon_n]} + \eta \frac{[g_n]}{[\tau_n]} \right)_{\text{bh}} = \left(\kappa \frac{(f_n @ \tau_n)_{\text{bh}} + (g_n @ \epsilon_n)_{\text{bh}}}{[\epsilon_n] @ [\tau_n]} \right)_{\text{bh}}.
\] (29)

Theorem 1 gives

\[
\kappa \left[\frac{[f_n]}{[\epsilon_n]} \right]_{\text{bh}} + \eta \left[\frac{[g_n]}{[\tau_n]} \right]_{\text{bh}} = \left[\kappa \left(\frac{(f_n)_{\text{bh}}}{[\epsilon_n]} \right) + \eta \left(\frac{(g_n)_{\text{bh}}}{[\tau_n]} \right) \right].
\] (30)

Thus, by addition of Boehmians

\[
\kappa \left[\frac{[f_n]}{[\epsilon_n]} \right]_{\text{bh}} + \eta \left[\frac{[g_n]}{[\tau_n]} \right]_{\text{bh}} = \left[\kappa \left(\frac{(f_n)_{\text{bh}}}{[\epsilon_n]} \right) + \eta \left(\frac{(g_n)_{\text{bh}}}{[\tau_n]} \right) \right].
\] (31)

Hence,

\[
\kappa \left[\frac{[f_n]}{[\epsilon_n]} \right]_{\text{bh}} + \eta \left[\frac{[g_n]}{[\tau_n]} \right]_{\text{bh}} = \left[\kappa \left(\frac{(f_n)_{\text{bh}}}{[\epsilon_n]} \right) + \eta \left(\frac{(g_n)_{\text{bh}}}{[\tau_n]} \right) \right].
\] (32)

The proof of the theorem is completed.

\[\square\]

Theorem 7. The necessary and sufficient condition for \(([g_n] / [\psi_n]) \in B(\Theta, (\Theta_1, @), @, \Delta) \) to be in the range of \(([g_n] / [\psi_n])_{\text{bh}} \) is that \(g_n \) belongs to range of the classical \(\text{bh} \) for every \(n \in \mathbb{N} \).

Proof. Let \(([g_n] / [\psi_n]) \) be in the range of \(([g_n] / [\psi_n])_{\text{bh}} \); then of course \(g_n \) belongs to the range of the classical \(\text{bh} \), \(\forall n \in \mathbb{N} \).

To establish the converse, let \(g_n \) be in the range of \(\text{bh} \), \(\forall n \in \mathbb{N} \). Then there is \(\phi_n \in \Theta(\mathbb{R}_+) \) such that \(\text{bh} \phi_n = g_n, n \in \mathbb{N} \).

Since \(([g_n] / [\psi_n]) \in B(\Theta, (\Theta_1, @), @, \Delta) \), we get \(g_n * \psi_m = g_m * \psi_n, \forall m, n \in \mathbb{N} \).

Therefore, Theorem 1 yields

\[
\left(\frac{[\phi_n]}{[\psi_n]} \right)_{\text{bh}} = \left(\frac{[\phi_m]}{[\psi_m]} \right), \quad \forall m, n \in \mathbb{N},
\] (33)

where \(\phi_n \in \Theta(\mathbb{R}_+) \) and \(\psi_n \in \Delta, \forall n \in \mathbb{N} \).

Thus, \(\phi_n @ \psi_m = \phi_m @ \psi_n, m, n \in \mathbb{N} \).

Hence,

\[
\left(\frac{[\phi_n]}{[\psi_n]} \right)_{\text{bh}} = \left[\frac{[g_n]}{[\psi_n]} \right].
\] (34)

The theorem is, therefore, completely proved.

\[\square\]

Theorem 8. The transform \(([\phi_n] / [\psi_n])_{\text{bh}} \) is consistent with \(\text{bh} : \Theta(\mathbb{R}_+) \rightarrow \Theta(\mathbb{R}_+) \).

\[\square\]
Proof. For every $\phi \in \Phi(R_+)$, let $\beta \in \mathcal{B}(\Phi, (\Phi_1, \odot), \odot, \Delta)$ be its representative; then we have $\beta = [\phi \odot \{\psi_n\} / \{\psi_n\}], \forall n \in \mathbb{N}, \{\psi_n\} \in \Delta$. For all $n \in \mathbb{N}$ it is clear that $\{\psi_n\}$ is independent from the representative.

By Theorem 1 we have

$$
(\beta)_{hh} = \left(\frac{\phi \odot \{\psi_n\}}{\{\psi_n\}}\right)_{hh}
= \left[\frac{\mathbb{B}\phi \odot \{\psi_n\}}{\{\psi_n\}}\right] = \left[\frac{\mathbb{B}\phi \ast \{\psi_n\}}{\{\psi_n\}}\right],
$$

which is the representative of $\mathbb{B}\phi$ in the space $\Phi(R_+)$. Hence the proof of this theorem is completed. \qed

Conflict of Interests

The author declares that there is no conflict of interests regarding the publication of this paper.

Acknowledgment

The author expresses his gratitude to the referees for valuable suggestions.

References

