Multiple-Term Refinements of Young Type Inequalities

Daeshik Choi

Department of Mathematics and Statistics, Southern Illinois University Edwardsville, Box 1653, Edwardsville, IL 62026, USA

Correspondence should be addressed to Daeshik Choi; dchoi@siue.edu

Received 2 July 2016; Accepted 10 October 2016

Academic Editor: Shaofang Hong

Copyright © 2016 Daeshik Choi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Recently, a multiple-term refinement of Young’s inequality has been proved. In this paper, we show its reverse refinement. Moreover, we will present multiple-term refinements of Young’s inequality involving Kantorovich constants. Finally, we will apply scalar inequalities to operators.

1. Introduction

The classical Young inequality states that if \(a, b > 0 \) and \(0 \leq V \leq 1 \), then
\[
(1 - V) a + V b \geq a^{1 - V} b^V.
\]
(1)

For \(0 \leq V \leq 1 \), we define three functions \(r_0(V) \), \(r_1(V) \), and \(R_0(V) \) by
\[
\begin{align*}
r_0(V) &= \min \{ V, 1 - V \}, \\
r_1(V) &= \min \{ 2r_0(V), 1 - 2r_0(V) \}, \\
R_0(V) &= 1 - r_0(V).
\end{align*}
\]
(2)

In [1] and the references there, the following improvements of Young inequality and its reverse are discussed:
\[
(1 - V) a + V b \geq a^{1 - V} b^V + r_0(V) (\sqrt{a} - \sqrt{b})^2,
\]
(3)

\[
(1 - V) a + V b \leq a^{1 - V} b^V + (1 - r_0(V)) (\sqrt{a} - \sqrt{b})^2 + r_1(V)
\]
\[
\cdot \left((\sqrt{a} - \sqrt{ab})^2 \chi_{(0,1/2)}(V) + (\sqrt{b} - \sqrt{ab})^2 \chi_{(1/2,1)}(V) \right),
\]

(4)

where \(\chi_I \) is the characteristic function defined by
\[
\chi_I(x) = \begin{cases}
1, & \text{if } x \in I \\
0, & \text{if } x \notin I.
\end{cases}
\]
(5)

Another form of Young type inequalities discussed in [1] is as follows:
\[
((1 - V) a + V b)^2 \geq (a^{1 - V} b^V)^2 + r_0^2(V) (a - b)^2 + r_1(V)
\]
\[
\cdot \left((a - \sqrt{ab})^2 \chi_{(0,1/2)}(V) + (b - \sqrt{ab})^2 \chi_{(1/2,1)}(V) \right),
\]
(6)

\[
((1 - V) a + V b)^2 \leq (a^{1 - V} b^V)^2 + R_0^2(V) (a - b)^2 - r_1(V)
\]
\[
\cdot \left((b - \sqrt{ab})^2 \chi_{(0,1/2)}(V) + (a - \sqrt{ab})^2 \chi_{(1/2,1)}(V) \right).
\]
Other types of improvements of the Young inequality is to use Kantorovich constants. Wu and Zhao [2] showed
\[(1 - \nu) a + \nu b \geq K_1 (a, b)^\gamma, a^{1-\nu} b^{\nu} + r_0 (\nu) \big((\sqrt{a} - \sqrt{b})^2, (1 - \nu) a + \nu b \leq K_1 (a, b)^\gamma, a^{1-\nu} b^{\nu} + R_0 (\nu) \big((\sqrt{a} - \sqrt{b})^2, \)
\[(7)
where
\[K_1 (a, b) = \frac{(\sqrt{a} + \sqrt{b})^2}{4\sqrt{ab}}. \tag{8}\]

Note that (7) improves (3), since \(K_1 (a, b) \geq 1\) for all \(a, b > 0\).

In [3], Liao and Wu improved (4) as follows:
\[(1 - \nu) a + \nu b \geq K_2 (a, b)^\gamma, a^{1-\nu} b^{\nu} + r_1 (\nu)
\cdot \left((a - \sqrt{ab}) \chi_{(0,1/2)} (\nu) + (b - \sqrt{ab}) \chi_{(1/2,1)} (\nu), (1 - \nu) a + \nu b \leq K_2 (a, b)^\gamma, a^{1-\nu} b^{\nu} + R_0 (\nu)
\cdot \left((a - \sqrt{ab})^2 - r_1 (\nu)
\cdot \left((b - \sqrt{ab})^2 \chi_{(0,1/2)} (\nu) + (a - \sqrt{ab})^2 \chi_{(1/2,1)} (\nu), \right) \right), \tag{9}\]
where
\[K_2 (a, b) = \frac{(\sqrt{a} + \sqrt{b})^2}{4\sqrt{ab}}, \tag{10}\]
\[r_2 (\nu) = \min \{2r_1 (\nu), 1 - 2r_1 (\nu)\}. \]

The constants of the form \((m + M)^2/4mnM\) are called Kantorovich constants.

Throughout the paper, we will use the following functions.

Definition 1. One defines the sequence \(\{r_n (\nu)\}\) of functions on \([0, 1]\) as follows:
\[r_0 (\nu) = \min \{\nu, 1 - \nu\}, \tag{11}\]
\[r_n (\nu) = \min \{2r_{n-1} (\nu), 1 - 2r_{n-1} (\nu)\}, \]
for \(n \in \mathbb{N}.

Definition 2. For \(l, k \in \mathbb{N}\) and \(a, b > 0\), we define the functions
\[g_{l,k} (a, b) \text{ by}\]
\[g_{l,k} (a, b) = \left(\frac{a^{1-l/(k-1)/2} b^{k/(k-1)/2} - a^{1-k/(k-1)/2} b^{l/(k-1)/2}}{2}\right)^2, \tag{12}\]
for \(\nu \in [0, 1]\) and an integer \(N > 0\). As we will see (Lemma 4), \(r_1 (k/2) = 0\) for any integer \(k\) with \(0 < k < 2\). Thus the interval of the characteristic function in \(\alpha_N (\nu)\) or \(\beta_N (\nu)\) can include boundary points. For example, \(\chi_{(k-1)/2, k/2)}\) may be replaced by \(\chi_{(k-1)/2, k/2]}\) or \(\chi_{(k-1)/2, k/2)}\).

We can express \(r_0 (\nu)\) and \(r_1 (\nu)\) as multipart functions as follows:
\[r_0 (\nu) = \begin{cases} \nu, & 0 \leq \nu \leq \frac{1}{2}, \\ 1 - \nu, & \frac{1}{2} < \nu \leq 1. \end{cases} \]
For any $l \geq 0$, we can formulate $r_l(v)$ explicitly.

Lemma 4. Let $l \geq 0$ and $1 \leq k \leq 2^l$ be integers. If $(k-1)/2^l \leq v \leq k/2^l$, then

$$
r_l(v) = \begin{cases} 2v, & 0 \leq v \leq \frac{1}{4} \\ 2 - 2v, & 1 - \frac{1}{4} < v \leq \frac{1}{2} \\ 2v - 1, & \frac{1}{2} < v \leq \frac{3}{4} \\ 2 - 2v, & \frac{3}{4} < v \leq 1. \end{cases}
$$

(15)

Proof. We prove it by induction on l. The case $l = 0$ is obvious. Assume that $(k-1)/2^{l+1} \leq v \leq (k-1)/2^{l+1} + 1/2^{l+2}$. If $k = 2m - 1$ is odd, then $(m - 1)/2^l \leq v \leq (m/2 + 1/2^{l+2})$, and $r_l(v) = 2v - m + 1$ by induction. Since $v \leq (2k-1)/2^{l+2}$, one has

$$
r_l(v) = 2v - \frac{k-1}{2} \leq \frac{2k-1}{4} - \frac{k-1}{2} = \frac{1}{4},
$$

$$
r_{l+1}(v) = \min\{2r_l(v), 1 - 2r_l(v)\} = 2r_l(v)
$$

(17)

If $k = 2m$ is even, then $(2m-1)/2^{l+1} \leq v \leq m/2^l - 1/2^{l+2} < m/2^l$ and $r_l(v) = m - 2v$ by induction. Since $v \leq (2k-1)/2^{l+2}$, we have

$$
r_l(v) = \frac{k-1}{2} - 2v \geq \frac{k-2}{4} - \frac{k-1}{2} = \frac{1}{4},
$$

$$
r_{l+1}(v) = 1 - 2r_l(v) = 2^{l+1}v - 1.
$$

(18)

Using the same argument, we can show that if $(k-1)/2^{l+1} + 1/2^{l+2} < v \leq k/2^{l+1}$, then $r_{l+1}(v) = k - 2^{l+1}v$. We omit the detailed proof. \qed

Lemma 5. For a positive integer N, $\alpha_N(v)$ is the linear interpolation of $\mu(v)$ at $v = k/2^N$ for $k = 0, 1, \ldots, 2^N$.

Proof. Since $r_l(v)$ is a line segment on each interval $[(k-1)/2^{l+1}, k/2^{l+1})$ for $1 \leq k \leq 2^l$, $\alpha_N(v)$ is a line segment on $[(k-1)/2^N, k/2^N)$ for $1 \leq k \leq 2^N$. Thus it suffices to show

$$
\alpha_N\left(\frac{k}{2^N}\right) = \mu\left(\frac{k}{2^N}\right), \quad 1 \leq k < 2^N.
$$

(19)

Note that since $\alpha_N(v) = \mu(v) = 0$ at $v = 0, 1$, (19) holds for $k = 0, 2^N$. We will prove (19) by induction on N. Since $r_0(v) = r_0(v)(\sqrt{a} - \sqrt{b})^2$, one has

$$
\alpha_1\left(\frac{1}{2}\right) = \frac{1}{2} (\sqrt{a} - \sqrt{b})^2 = \mu\left(\frac{1}{2}\right).
$$

(20)

Assume that (19) holds and $1 \leq k < 2^{N+1}$. If $k = 2m$ is even, then

$$
\alpha_{N+1}\left(\frac{k}{2^{N+1}}\right) = \alpha_{N+1}\left(\frac{m}{2^N}\right) = \alpha_N\left(\frac{m}{2^N}\right)
$$

$$
+ r_N\left(\frac{m}{2^N}\right) \sum_{k=1}^{2^N} g_{N,k}(a, b) \chi_{(k-1)/2^N,k/2^N}\left(\frac{m}{2^N}\right)
$$

(21)

$$
= \alpha_N\left(\frac{m}{2^N}\right), \quad \text{since } r_N\left(\frac{m}{2^N}\right) = 0
$$

$$
= \mu\left(\frac{k}{2^{N+1}}\right) \quad \text{(by induction)}.
$$

If $k = 2m - 1$ is odd, then

$$
\alpha_{N+1}\left(\frac{k}{2^{N+1}}\right) = \alpha_N\left(\frac{m}{2^N} - 1\right) = \alpha_N\left(\frac{m}{2^N} - \frac{1}{2}\right)
$$

$$
+ r_N\left(\frac{m}{2^N} - 1\right) \sum_{k=1}^{2^N} g_{N,k}(a, b) \chi_{(k-1)/2^N,(k-1)/2^N}\left(\frac{m}{2^N} - 1\right)
$$

Since $\alpha_N(v)$ is the line segment joining $((m-1)/2^N, \mu((m-1)/2^N))$ and $(m/2^N, \mu(m/2^N))$ on $[(m-1)/2^N, m/2^N]$, we have

$$
\alpha_N\left(\frac{m}{2^N} - 1\right) = \frac{1}{2} (\sqrt{m-1} - \sqrt{m}) + \frac{1}{2} (\mu\left(\frac{m}{2^N}\right) - \mu\left(\frac{m}{2^N} - 1\right)).
$$

(22)

By Lemma 4, $r_N(m/2^N - 1/2^{N+1}) = 1/2$. Noting that $a^{1-v}b^v = (1-v)a + vb - \mu(v)$, we can write $g_{N,m}(a, b)$ by

$$
g_{N,m}(a, b) = a^{1-(m-1)/2^N} b^{(m-1)/2^N} + a^{1-m/2^N} b^{m/2^N} - 2a^{1-(m-1)/2^{N+1}} b^{(m-1)/2^{N+1}}
$$

$$
= -\mu\left(\frac{m-1}{2^N}\right) - \mu\left(\frac{m}{2^N}\right)
$$

$$
+ 2\mu\left(\frac{m-1}{2^{N+1}}\right).
$$

(24)

Thus, from (22), we deduce that

$$
\alpha_{N+1}\left(\frac{k}{2^{N+1}}\right) = \mu\left(\frac{m-1}{2^{N+1}}\right) = \mu\left(\frac{k}{2^{N+1}}\right).
$$

(25)

\qed

Remark 6. Since $\mu(v)$ is concave, $\mu(v) \geq \alpha_N(v)$ by Lemma 5, which proves Theorem 3 in a much simpler way, where the original proof is done by mathematical induction on N.

Lemma 7. Let $\lambda(v)$ be the reflection of $\mu(v)$ about the point $(1/2, \mu(1/2))$; that is,

$$
\lambda(v) = 2\mu\left(\frac{1}{2}\right) - \mu(1-v),
$$

$$
= \left(\sqrt{a} - \sqrt{b}\right)^2 - wa - (1-v) b + a'b^{1-v},
$$

(26)

$$
= (1-v)a + vb + a'b^{1-v} - 2\sqrt{ab}.
$$

(27)
Then each of the following is true.

(1) \(\lambda(v) \geq \mu(v) \) for all \(0 \leq v \leq 1 \).

(2) \(\beta_N(v) \) is the linear interpolation of \(\lambda(v) \) at \(v = k/2^N \) at \(k = 0, \ldots, 2^N \).

Proof. Let \(f(v) = \lambda(v) - \mu(v) \). Since

\[
f'(v) = a^v b^{1-v} \left(1 - \left(\frac{a}{b} \right)^{1-2v} \right) \ln \frac{a}{b},
\]

one derives that \(f'(v) < 0 \) for \(v \in (0, 1/2) \), \(f'(v) > 0 \) for \(v \in (1/2, 1) \), and \(f'(1/2) = 0 \). Thus we have \(\lambda(v) - \mu(v) \geq \lambda(1/2) - \mu(1/2) = 0 \) for all \(0 \leq v \leq 1 \). So part (1) is proved.

For the second part, it suffices to show that \(\beta_N(v) \) is the reflection of \(\alpha_N(v) \) about the point \((1/2, \alpha_N(1/2)) \); that is,

\[
2\alpha_N \left(\frac{1}{2} \right) - \alpha_N (1 - v) = \beta_N (v).
\]

(28)

Noting that \(r_l(v) = r_l(1-v) \) and \(g_l,2^l-k+1(a, b) = g_l(k, b, a) \), one gets that

\[
2\alpha_N \left(\frac{1}{2} \right) - \alpha_N (1 - v)
= 2\mu \left(\frac{1}{2} \right) - \sum_{l=0}^{N-1} r_l(v) \sum_{k=1}^{2^l} g_l(k, b, a) \chi_{(k-1)/2^l,(k+1)/2^l} (1 - v)
= (\sqrt{a} - \sqrt{b})^2
\]

\[
\sum_{l=0}^{N-1} r_l(v) \sum_{k=1}^{2^l} g_l(k, b, a) \chi_{(k-1)/2^l,(k+1)/2^l} (v)
= \beta_N (v).
\]

(29)

\[
(1 - v) a + vb
\geq a^{1-v} b^v + \sum_{l=0}^{N-1} r_l(v) \sum_{k=1}^{2^l} g_l(k, b, a) \chi_{(k-1)/2^l,(k+1)/2^l} (v)
\]

\[
= a^{1-v} b^v + r_0(v) (\sqrt{a} - \sqrt{b})^2
\]

\[
+ \sum_{l=1}^{N-1} r_l(v) \sum_{k=1}^{2^l} g_l(k, b, a) \chi_{(k-1)/2^l,(k+1)/2^l} (v).
\]

(30)

Theorem 8. For any integer \(N \geq 1 \) and \(0 \leq v \leq 1 \), one has

\[
\alpha_N(v) \leq \mu(v) \leq \beta_N(v).
\]

(31)

Corollary 9. For any integer \(N \geq 1 \) and \(0 \leq v \leq 1 \), one has

\[
((1 - v) a + vb)^2
\geq (a^{1-v} b^v + r_0(v) (a - b)^2)
\]

\[
+ \sum_{l=1}^{N-1} r_l(v) \sum_{k=1}^{2^l} g_l(k, b, a) \chi_{(k-1)/2^l,(k+1)/2^l} (v)\]

\[
((1 - v) a + vb)^2
\leq (a^{1-v} b^v + R_0(v) (a - b)^2)
\]

\[
- \sum_{l=1}^{N-1} r_l(v) \sum_{k=1}^{2^l} g_l(k, b, a) \chi_{(k-1)/2^l,(k+1)/2^l} (v).
\]

(32)

Proof. Replacing \(a \) and \(b \) by their squares in Theorem 8, we obtain that

\[
(1 - v) a^2 + vb^2
\geq (a^{1-v} b^v + r_0(v) (a - b)^2)
\]

\[
+ \sum_{l=1}^{N-1} r_l(v) \sum_{k=1}^{2^l} g_l(k, b, a) \chi_{(k-1)/2^l,(k+1)/2^l} (v),
\]

(33)

\[
(1 - v) a^2 + vb^2
\leq (a^{1-v} b^v + R_0(v) (a - b)^2)
\]

\[
- \sum_{l=1}^{N-1} r_l(v) \sum_{k=1}^{2^l} g_l(k, b, a) \chi_{(k-1)/2^l,(k+1)/2^l} (v).
\]
Since \(r_0(v) - r_2^0(v) = R_0(v) - R_2^0(v) = v(1 - v) \) for all \(v \), we derive from the above that

\[
(1 - v)a^2 + vb^2 \\
\geq v(1 - v)(a - b)^2 + (a^{-1} - b^{-1})^2 + r_0^2(v)(a - b)^2 \\
+ \sum_{l=1}^{N-1} r_l(v) \sum_{k=1}^l g_{l,k}(a^2, b^2) X_{((k-1)/2N, k/2N)}(v),
\]

(34)

Thus (32) follows from the identity

\[
((1 - v)a + vb)^2 = (1 - v)a^2 + vb^2 \\
- v(1 - v)(a - b)^2.
\]

(35)

\[\square\]

3. Young Inequalities Involving Kantorovich Constants

In this section, we will discuss multiple-term improvements of Young inequality involving Kantorovich constants. For a nonnegative integer \(n \), we define \(K_n(a, b) \) by

\[
K_n(a, b) = \frac{(a^{1/n} + b^{1/n})^2}{4(ab)^{1/2n}}.
\]

(36)

Lemma 10. For \(0 \leq v \leq 1 \), one has

\[
(1 - v)a + vb \geq K_0(a, b) s(v) a^{-1} - b^{v}.
\]

(37)

Proof. Replacing \(a^{-1} - b^{-1} \) by \(K_0(a, b) s(v) a^{-1} - b^{v} \), the inequality is equivalent to

\[
1 - v + vt \geq K_0(1, t) s(v) t^v,
\]

(38)

for \(t > 0 \). Taking the natural logarithm, it suffices to show that

\[
f(t) \equiv \ln(1 - v + vt) - r_0(v) \ln K_0(1, t) - v \ln t \geq 0.
\]

(39)

A direct computation shows that

\[
(t + 1)(1 - v + vt) f'(t) = \left\{ \begin{array}{ll}
(1 - t^{-1})(v(1 - v)(t + 1) - r_0(v)(1 - v + vt)), & 0 \leq v \leq \frac{1}{2} \\
(1 - v)(2v - 1)(1 - t^{-1}), & \frac{1}{2} < v \leq 1.
\end{array} \right.
\]

(40)

Thus \(f(t) \geq f(1) = 0 \) for any \(t > 0 \). \[\square\]

Lemma 11. For a positive integer \(N \) and \(0 \leq v \leq 1 \), define \(s_N(t) \) by

\[
s_N(t) = 1 - v + vt - \sum_{l=0}^{N-1} r_l(v) \\
\cdot \sum_{k=1}^{2^l} \left(\sqrt{t^{(k-1)/2N}} - \sqrt{t^{k/2N}} \right)^2 X_{((k-1)/2N, k/2N)}(v),
\]

for \(t > 0 \). Then one has

\[
s_N(t) = \sum_{k=1}^{2^N} \left((k - 2^Nv) t^{(k-1)/2N} + (2^Nv - k + 1) t^{k/2N} \right) \\
\cdot X_{((k-1)/2N, k/2N)}(v).
\]

(42)

Proof. As mentioned in the previous section, since \(r_k(k/2^N) = 0 \) for \(0 \leq k \leq 2^N \), \(X_{((k-1)/2N, k/2N)} \) in the definition of \(s_N(t) \) may be replaced by \(X_{((k-1)/2N, k/2N)} \). We prove (42) by induction on \(N \). We have

\[
s_1(t) = 1 - v + vt - r_0(v) \left(1 - \sqrt{t} \right)^2 \\
= \left(1 - 2v + 2v \sqrt{t} \right) X_{(0, 1/2)} + (2 - 2v) \sqrt{t} \left(2v - 1 \right) X_{(1/2, 1)}.
\]

(43)

Suppose that (42) holds. Then

\[
s_{N+1}(t) = s_N(t) - r_0(v) \sum_{k=1}^{2^N} \left(\sqrt{t^{(k-1)/2N}} - \sqrt{t^{k/2N}} \right)^2 \\
\cdot X_{((k-1)/2N, k/2N)}(v) = \sum_{k=1}^{2^N} \left((k - 2^N v) t^{(k-1)/2N} \\
+ (2^N v - k + 1) t^{k/2N} \\
- r_N(v) \left(\sqrt{t^{(k-1)/2N}} - \sqrt{t^{k/2N}} \right)^2 \right) \\
\cdot X_{((k-1)/2N, k/2N)}(v)
\]

(44)

\[
= \sum_{k=1}^{2^N} \left(\left(2k - 2^{N+1}v - 1 \right) t^{(k-1)/2N} \\
+ \left(2^{N+1} v - 2k + 2 \right) t^{(2k-1)/2N+1} \right) \\
\cdot X_{((k-1)/2N, (2k-1)/2N+1)}(v) + \sum_{k=1}^{2^N} \left(\left(2k - 2^{N+1}v \right) t^{(2k-1)/2N+1} \\
+ \left(2^{N+1} v - 2k + 1 \right) t^{k/2N} \right) X_{((2k-1)/2N+1, k/2N)}(v).
\]
Replacing $2k - 1$ in the first summation and $2k$ in the second summation, respectively, by m, o one has

$$s_{N+1}(t) = \sum_{m=1 \text{ odd}}^{2^{N+1}} \left((m - 2^Nv) t^{(m-1)/2^{N+1}} + (2^Nv - m + 1) t^{m/2^{N+1}} \right) X((m-1)/2^{N+1},m/2^{N+1}) (v)$$

$$+ \sum_{m=2 \text{ even}}^{2^{N+1}} \left((m - 2^Nv) t^{(m-1)/2^{N+1}} + (2^Nv - m + 1) t^{m/2^{N+1}} \right) X((m-1)/2^{N+1},m/2^{N+1}) (v)$$

$$= \sum_{k=1}^{2^N} \left((k - 2^Nv) t^{(k-1)/2^{N+1}} + (2^Nv - k + 1) t^{k/2^{N+1}} \right) X((k-1)/2^{N+1},k/2^{N+1}) (v).$$

Thus (42) holds for all positive integers N. □

The following shows a multiple-term refinement of Young inequality involving Kantorovich constants.

Theorem 12. For $a, b > 0$, $0 \leq v \leq 1$, and $N \in \mathbb{N}$, one has

$$1 - v + vt \geq K_N (a, b) r(v) a^{1-v} b^v$$

$$+ \sum_{l=0}^{N-1} \sum_{k=1}^{2^l} \left(t^{(k-1)/2^l} + t^{k/2^l} - 2t^{(2k-1)/2^l} \right) X((k-1)/2^l,k/2^l) (v).$$

Proof. Putting $t = a^{-1} b$, (46) can be rewritten as

$$1 - v + vt \geq K_N (1, t) r(v) t^v$$

$$+ \sum_{l=0}^{N-1} \sum_{k=1}^{2^l} \left(t^{(k-1)/2^l} + t^{k/2^l} - 2t^{(2k-1)/2^l} \right) X((k-1)/2^l,k/2^l) (v).$$

By Lemma II, the above can be expressed by

$$\sum_{k=1}^{2^N} \left((k - 2^Nv) t^{(k-1)/2^N} + (2^Nv - k + 1) t^{k/2^N} \right) X((k-1)/2^N,k/2^N) (v) \geq K_N (1, t) r(v) t^v.$$

Thus it suffices to show that if $(k-1)/2^N < v \leq k/2^N$, then

$$(k - 2^Nv) t^{(k-1)/2^N} + (2^Nv - k + 1) t^{k/2^N} \geq K_N (1, t) r(v) t^v,$$

for $t > 0$. Replacing t by t^{2N} and letting $\mu = 2^N v$, the above is equivalent to

$$(k - \mu) t^{k-1} + (\mu - k + 1) t^k \geq K_0 (1, t) r(v) t^\mu.$$

Let $s = \min[k - \mu, \mu - k + 1]$. By Lemma 10, one gets that

$$(k - \mu) t^{k-1} + (\mu - k + 1) t^k \geq K_0 (t^{k-1}, t^k) t^{(k-1)(k-1)+(\mu-k+1)k} = K_0 (1, t) t^\mu.$$

Since

$$r_N(v) = \begin{cases}
2^N v - k + 1, & \frac{k - 1}{2^N} \leq v \leq \frac{2k - 1}{2^N+1} \\
2^N v, & \frac{2k - 1}{2^N+1} < v \leq \frac{k}{2^N}
\end{cases}$$

by Lemma 4, it follows that if $(k - 1)/2^N < v \leq k/2^N$, then

$s = \min[k - 2^N v, 2^N v - k + 1] = r_N(v)$ and therefore (50) holds.

Note that (46) can be written as

$$(1 - v) a + vb \geq K_N (a, b) r(v) a^{1-v} b^v$$

$$+ r_0 (v) (\sqrt{a} - \sqrt{b})^2$$

$$+ \sum_{l=1}^{N-1} \sum_{k=1}^{2^l} r_l (v) g_{lk} (a, b) X((k-1)/2^l,k/2^l) (v),$$

which gives the first inequalities of (7) and (9) with $N = 1$ and 2, respectively.

Now we consider a reverse inequality corresponding to Theorem 12. A given inequality of the form $(1 - v) a + vb \geq \xi(v, a, b)$ can be utilized to derive its reverse in many cases. For example, replacing v by $1 - v$ in

$$(1 - v) a + vb \geq a^{1-v} b^v + r_0 (v) (\sqrt{a} - \sqrt{b})^2,$$

which is the first inequality of (3), we obtain

$$(1 - v) a + vb \leq a + b - a^{1-v} b^v - r_0 (v) (\sqrt{a} - \sqrt{b})^2$$

$$= 2 \sqrt{ab} - a^{1-v} b^v + R_0 (v) (\sqrt{a} - \sqrt{b})^2.$$

Since $2 \sqrt{ab} \leq a^{1-v} b^v + a^{1-v} b^v$, the above implies the second inequality of (3). Similarly, replacing v by $1 - v$ in

$$(1 - v) a + vb \geq a^{1-v} b^v + r_0 (v) (\sqrt{a} - \sqrt{b})^2 + r_1 (v)$$

$$+ (\sqrt{a} - \sqrt{ab})^2 X_{(0,1/2)} (v),$$

and therefore (51) follows.
which is the first inequality of (4), we get

\[
(1 - \nu) a + \nu b \leq a + b - a^\nu b^{1-\nu} - r_0(\nu) \left(\sqrt[\nu]{a} - \sqrt[1-\nu]{b} \right)^2
- r_1(\nu) \left(\sqrt[\nu]{b} - \sqrt[1-\nu]{a} \right)^2 \chi_{(0,1/2)}(\nu)
+ \left(\sqrt[\nu]{a} - \sqrt[1-\nu]{b} \right)^2 \chi_{(1/2,1)}(\nu)
+ R_0(\nu) \left(\sqrt[\nu]{a} - \sqrt[1-\nu]{b} \right)^2 - r_1(\nu)
\cdot \left(\left(\sqrt[\nu]{a} - \sqrt[1-\nu]{b} \right)^2 \chi_{(1/2,1)}(\nu)\right)
+ \left(\sqrt[\nu]{b} - \sqrt[1-\nu]{a} \right)^2 \chi_{(0,1/2)}(\nu).
\]

(57)

Since \(2 \sqrt{a} b \leq a^\nu b^{1-\nu} + a^{1-\nu} b^\nu \), the above implies the second inequality of (4). In the same way, the first inequality in Theorem 8 can be used to derive

\[
(1 - \nu) a + \nu b \leq 2 \sqrt{a} b - a^\nu b^{1-\nu} + R_0(\nu) \left(\sqrt[\nu]{a} - \sqrt[1-\nu]{b} \right)^2
- \sum_{l=1}^{N-1} r_l(\nu) \sum_{k=1}^{2^l} g_{l,k}(b,a) \chi_{([k-1]/2^l, [k]/2^l)}(\nu),
\]

(58)

which is stronger than the second inequality in the theorem. Based on such an observation, we can show a reverse inequality corresponding to Theorem 12 as follows.

Theorem 13. For \(a, b > 0, 0 \leq \nu \leq 1, \) and \(N \in \mathbb{N} \), one has

\[
(1 - \nu) a + \nu b \leq 2 \sqrt{a} b - a^\nu b^{1-\nu} + R_0(\nu) \left(\sqrt[\nu]{a} - \sqrt[1-\nu]{b} \right)^2
- \sum_{l=1}^{N-1} r_l(\nu) \sum_{k=1}^{2^l} g_{l,k}(b,a) \chi_{([k-1]/2^l, [k]/2^l)}(\nu),
\]

(59)

where the last inequality results from

\[
2 \sqrt{a} b \leq K_N(a, b)^{\nu}(\nu) a^\nu b^{1-\nu} + K_N(a, b)^{-\nu}(\nu) a^{1-\nu} b^\nu.
\]

(60)

Note that the second inequalities of (7) and (9) follow from the above theorem with \(N = 1 \) and 2, respectively.

4. Operator Inequalities

From now on, we use uppercase letters for invertible positive operators on a Hilbert space and lowercase letters for real numbers. The following notations will be used:

(i) \(A \geq B \) (\(A > B \)) denotes that \(A - B \) is a positive (invertible positive) operator.

(ii) \(A \geq 0 \) (\(A > 0 \)) denotes that \(A \) is a positive (invertible positive) operator.

For \(A, B > 0 \) and \(0 \leq \nu \leq 1 \), the \(\nu \)-arithmetic and \(\nu \)-geometric means of \(A \) and \(B \) are defined, respectively, by

\[
A\nu B = (1 - \nu) A + \nu B,
\]

\[
A^\nu B = A^{1/2} \left(A^{-1/2} B A^{-1/2} \right)^\nu A^{1/2}.
\]

(62)

In the case \(\nu = 1/2 \), we will omit the \(\nu \)-value in them. For example, \(A \nu B \) denotes \(A_{1/2} B \).

The operator version of (1) is well known as follows:

\[
AV_B \geq A\nu_B,
\]

(63)

for \(A \) and \(B \) positive invertible operators and \(0 \leq \nu \leq 1 \) (see [4, 5] for more matrix Young inequalities). To show operator inequalities corresponding to their scalar versions, we will use the operator monotonicity of continuous functions; that is, if \(f \) is a real valued continuous function defined on the spectrum of a self-adjoint operator \(A \), then \(f(t) \geq 0 \) for every \(t \) in the spectrum of \(A \) implies that \(f(A) \) is a positive operator.
From now on, \(g_{l,k}(A,B) \) will denote the operator version of \(g_{l,k}(a,b) \) defined in Definition 2. That is,
\[
g_{l,k}(A,B) = A^*_k (k-1)/2 B + A^*_k (2k-1)/2^l B - 2 A^*_k (2k-1)/2^{l+1} B,
\]
for \(A, B > 0 \).

Theorem 14. Let \(A, B > 0 \) and \(0 \leq v \leq 1 \). Then
\[
AV_B \geq A^*_v B + 2R_0(v) (AVB - A^*_v B) + \sum_{l=1}^{N-1} r_l(v) \sum_{k=1}^{2^l} g_{l,k}(A,B) \chi_{((k-1)/2^l,k/2^l)}(v),
\]
\[
AV_B \leq A^*_v B + 2R_0(v) (AVB - A^*_v B) - \sum_{l=1}^{N-1} r_l(v) \sum_{k=1}^{2^l} g_{l,k}(B,A) \chi_{((k-1)/2^l,k/2^l)}(v).
\]

Proof. For any \(x > 0 \), we have
\[
(1 - v) + vx \geq x^v + r_0(v) \left(1 - \sqrt{x} \right)^2 + \sum_{l=1}^{N-1} r_l(v) \sum_{k=1}^{2^l} g_{l,k}(1,x) \chi_{((k-1)/2^l,k/2^l)}(v),
\]
\[
(1 - v) + vx \leq x^v + R_0(v) \left(1 - \sqrt{x} \right)^2 - \sum_{l=1}^{N-1} r_l(v) \sum_{k=1}^{2^l} g_{l,k}(x,1) \chi_{((k-1)/2^l,k/2^l)}(v),
\]
by Theorem 8. Thus, for any positive operator \(X \), we have
\[
(1 - v) I + vX \geq X^v + r_0(v) \left(I + X - 2 \sqrt{X} \right) + \sum_{l=1}^{N-1} r_l(v) \sum_{k=1}^{2^l} h_{l,k}(I,X) \chi_{((k-1)/2^l,k/2^l)}(v),
\]
\[
(1 - v) I + vX \leq X^v + R_0(v) \left(I + X - 2 \sqrt{X} \right) - \sum_{l=1}^{N-1} r_l(v) \sum_{k=1}^{2^l} h_{l,k}(X,I) \chi_{((k-1)/2^l,k/2^l)}(v),
\]
by the operator monotonicity of continuous functions, where \(I \) is the identity operator. Note that since \(A^*_k B = B^*_{k-1} A \), we can express \(g_{l,k}(I,X) \) and \(g_{l,k}(X,I) \) by
\[
g_{l,k}(I,X) = I^*_k (k-1)/2 X + I^*_k (2k-1)/2^{l+1} X
\]
\[
= X^{(k-1)/2^l} + X^{(2k-1)/2^{l+1}},
\]
\[
g_{l,k}(X,I) = X^*_k (k-1)/2 I + X^*_k (2k-1)/2^{l+1} I
\]
\[
= I^*_1 (k-1)/2 X + I^*_1 (2k-1)/2^{l+1} X
\]
\[
- 2 I^*_1 (k-1)/2^{l+1} X
\]
\[
= X^{1-(k-1)/2^l} X^{1-(2k-1)/2^{l+1}}.
\]

Letting \(X = A^{-1/2} B A^{-1/2} \) and then multiplying all terms by \(A \) on both sides, (67) yields (65), where \(g_{l,k}(B,A) \) can be obtained as follows:
\[
A^{1/2} g_{l,k} \left(A^{-1/2} B A^{-1/2}, I \right) A^{1/2}
\]
\[
= A^*_1 (k-1)/2 B + A^*_1 (2k-1)/2^{l+1} B - 2 A^*_1 (2k-1)/2^{l+1} B
\]
\[
= B^*_k (k-1)/2 A + B^*_k (2k-1)/2^{l+1} A
\]
\[
= g_{l,k}(B,A).
\]

The following shows matrix inequalities corresponding to Corollary 9.

Theorem 15. Let \(A, B, X \) be \(n \times n \) complex matrices. If \(A \) and \(B \) are positive semidefinite, then
\[
\|(1 - v) AX + v XB\|_2^2 \geq \left\| A^{1-v} XB \right\|_2^2 + 2r_0(v) \left\| AX - XB \right\|_2^2 + \sum_{l=1}^{N-1} r_l(v) \sum_{k=1}^{2^l} h_{l,k}(A,B;X) \chi_{((k-1)/2^l,k/2^l)}(v),
\]
\[
\|(1 - v) AX + v XB\|_2^2 \leq \left\| A^{1-v} XB \right\|_2^2 + 2R_0(v) \left\| AX - XB \right\|_2^2 + \sum_{l=1}^{N-1} r_l(v) \sum_{k=1}^{2^l} h_{l,k}(X,A;X) \chi_{((k-1)/2^l,k/2^l)}(v),
\]
where \(\| \cdot \|_2 \) denotes the Frobenius norm and
\[
h_{l,k}(A,B;X) = \left\| A^{1-(k-1)/2^l} \left(X B^{(k-1)/2^l} A - A^{1-k/2^l} X B^{k/2^l} \right) \right\|_2^2.
\]

Proof. Since \(A \) and \(B \) are positive semidefinite, there exist unitary matrices \(U \) and \(V \) such that \(A = U \text{diag}(a_1, \ldots, a_n) U^* \) and \(B = V \text{diag}(b_1, \ldots, b_n) V^* \), where \(\text{diag}(c_1, \ldots, c_n) \) denotes the \(n \times n \) diagonal matrix whose \(i \)-th diagonal entry is \(c_i \). Letting \(Y = U^* X V = (y_{ij})_{n \times n} \), we can show the following directly:
\[
AX - XB = U \left(\left((1 - v) a_i + v b_j \right) y_{ij} \right) V^*,
\]
\[
(1 - v) AX + v XB = U \left(\left(1 - v a_i + v b_j \right) y_{ij} \right) V^*,
\[A^{1-v}XB^v = U \left(a_i^{1-v}b_j^v y_{ij} \right) V^*, \]

\[A^{1-(k-1)/2}XB^{(k-1)/2} - A^{1-k/2}XB^{k/2} = U \left(a_i^{1-(k-1)/2}b_j^{(k-1)/2} - a_i^{1-k/2}b_j^{k/2} \right) y_{ij} V^*. \]

(72)

Since \(\| \cdot \|_2 \) is unitarily invariant, one obtains that

\[\| (1-v)AX + vXB \|_2^2 \geq \| A^{1-v}XB^v \|_2^2 + r_0^2(v) \]

\[\cdot \| AX - XB \|_2^2 + \sum_{l=1}^{N-1} r_l(v) \]

\[+ 2 \cdot \sum_{k=1}^{L} \sum_{l=1}^{T} \sum_{j=1}^{N} \sum_{i=1}^{N} g_{l,k} \left(a_i^*, b_j^* \right) |y_{ij}|^2 \chi_{\left((l-1)/2, k/2 \right)}^2(v), \]

\[\| (1-v)AX + vXB \|_2^2 \leq \| A^{1-v}XB^v \|_2^2 + R_0^2(v) \]

\[\cdot \| AX - XB \|_2^2 - \sum_{l=1}^{N-1} r_l(v) \]

\[- 2 \cdot \sum_{k=1}^{L} \sum_{l=1}^{T} \sum_{j=1}^{N} \sum_{i=1}^{N} g_{l,k} \left(b_j^*, a_i^* \right) |y_{ij}|^2 \chi_{\left((l-1)/2, k/2 \right)}^2(v). \]

(74)

Thus, by (32), we have

\[\| (1-v)AX + vXB \|_2^2 \geq \| A^{1-v}XB^v \|_2^2 + r_0^2(v) \]

\[\cdot \| AX - XB \|_2^2 + \sum_{l=1}^{N-1} r_l(v) \]

\[+ 2 \cdot \sum_{k=1}^{L} \sum_{l=1}^{T} \sum_{j=1}^{N} \sum_{i=1}^{N} g_{l,k} \left(a_i^*, b_j^* \right) |y_{ij}|^2 \chi_{\left((l-1)/2, k/2 \right)}^2(v), \]

\[\| (1-v)AX + vXB \|_2^2 \leq \| A^{1-v}XB^v \|_2^2 + R_0^2(v) \]

\[\cdot \| AX - XB \|_2^2 - \sum_{l=1}^{N-1} r_l(v) \]

\[- 2 \cdot \sum_{k=1}^{L} \sum_{l=1}^{T} \sum_{j=1}^{N} \sum_{i=1}^{N} g_{l,k} \left(b_j^*, a_i^* \right) |y_{ij}|^2 \chi_{\left((l-1)/2, k/2 \right)}^2(v). \]

(74)

By Theorem 12, we have

\[1 - v + vt \geq K_N(1,t)^{r_0(v)} t^v \]

\[+ \sum_{l=0}^{N-1} r_l(v) \sum_{k=1}^{L} g_{l,k} \left(1, t \right) \chi_{\left((l-1)/2, k/2 \right)}(v), \]

(78)

for any \(t > 0 \). Since \(K_N(1,t) \) is an increasing function on \((1, \infty)\) and \(K_N(1,t)^{-1} = K_N(1,t) \) for \(t > 0 \), \(K_N(1,h) \leq K_N(1,t) \) for \(t \geq h \) or \(t \leq 1/h \). Thus, from (78), we have

\[1 - v + vt \geq K_N(1,h)^{r_0(v)} t^v \]

\[+ \sum_{l=0}^{N-1} r_l(v) \sum_{k=1}^{L} g_{l,k} \left(1, t \right) \chi_{\left((l-1)/2, k/2 \right)}(v), \]

(79)

for \(t \geq h \) or \(t \leq 1/h \). Replacing \(t \) by \(X = A^{-1/2}BA^{-1/2} \) which satisfies \(hI \leq X \) or \(X \leq (1/h)I \), we get that

\[(1-v)I + vX \]

\[\geq K_N(1,h)^{r_0(v)} X^v \]

\[+ \sum_{l=0}^{N-1} r_l(v) \sum_{k=1}^{L} g_{l,k} \left(I, X \right) \chi_{\left((l-1)/2, k/2 \right)}(v). \]

(80)
Multiplying the inequality by \(A^{1/2} \) on both sides, we have

\[
AV_v B \geq K_N (1, h)^{r_N (v)} A^+_v B + \sum_{l=0}^{N-1} r_l (v)
\]

\[
\cdot \sum_{k=1}^{2^l} \left(A^+_{(k-1)/2} B + A^+_{k/2} B - 2A^+_{(2k-1)/2} B \right)
\cdot X_{(k-1)/2} (v).
\]

(81)

Since the zeroth term \((l = 0)\) in the summation is \(r_0(v) (A + B - 2A_B) \), we finish the proof of the first inequality of this theorem.

We can prove the second one in the same way. Letting \(t = a^{-1} b \) in Theorem 13, we have

\[
1 - v + vt \leq 2 \sqrt{t} - K_N (1, t)^{r_t (v)} t^{1-v}
\]

\[
+ R_0 (v) \left(t + 1 - 2 \sqrt{t} \right)
\]

\[
- \sum_{l=0}^{N-1} r_l (v) \sum_{k=1}^{2^l} g_{l,k} (t, 1) X_{(k-1)/2} (v)
\]

\[
\leq K_N (1, t)^{-r_t (v)} t^v + R_0 (v) \left(t + 1 - 2 \sqrt{t} \right)
\]

\[
- \sum_{l=0}^{N-1} r_l (v) \sum_{k=1}^{2^l} g_{l,k} (t, 1) X_{(k-1)/2} (v),
\]

(82)

for any \(t > 0 \). In particular, if \(t = h \) or \(t \leq 1/h \), then

\[
1 - v + vt \leq 2 \sqrt{t} - K_N (1, h)^{r_h (v)} t^{1-v}
\]

\[
+ R_0 (v) \left(t + 1 - 2 \sqrt{t} \right)
\]

\[
- \sum_{l=0}^{N-1} r_l (v) \sum_{k=1}^{2^l} g_{l,k} (t, 1) X_{(k-1)/2} (v)
\]

\[
\leq K_N (1, h)^{-r_h (v)} t^v + R_0 (v) \left(t + 1 - 2 \sqrt{t} \right)
\]

\[
- \sum_{l=0}^{N-1} r_l (v) \sum_{k=1}^{2^l} g_{l,k} (t, 1) X_{(k-1)/2} (v).
\]

(83)

Replacing \(t \) by \(X = A^{-1/2} BA^{-1/2} \), one has

\[
(1 - v) I + vX
\]

\[
\leq 2 \sqrt{X} - K_N (1, h)^{r_h (v)} X^{1-v}
\]

\[
+ R_0 (v) \left(X + I - 2 \sqrt{X} \right)
\]

\[
- \sum_{l=1}^{N-1} r_l (v) \sum_{k=1}^{2^l} g_{l,k} (X, I) X_{(k-1)/2} (v)
\]

\[
\leq K_N (1, h)^{-r_h (v)} X^v + R_0 (v) \left(X + I - 2 \sqrt{X} \right)
\]

\[
- \sum_{l=1}^{N-1} r_l (v) \sum_{k=1}^{2^l} g_{l,k} (X, I) X_{(k-1)/2} (v).
\]

(84)

Finally, multiplying each term by \(A^{1/2} \) on both sides, we get that

\[
AV_v B \leq 2A_B - K_N (1, h)^{r_h (v)} A^+ B + R_0 (v) (A + B - 2A_B)
\]

\[
- 2A_B)
\]

\[
\cdot \sum_{k=1}^{2^l} \left(A^+_{(k-1)/2} B + A^+_{k/2} B - 2A^+_{(2k-1)/2} B \right)
\cdot X_{(k-1)/2} (v).
\]

(85)

Since \(A^+ = B \mu A \), the above shows the second inequality of this theorem.

\[\square\]

In the following, we consider special values of \(v \).

Corollary 17. Let \(A, B > 0 \) and \(0 \leq v \leq 1 \). If \(v = k_0/2^N \) for some \(1 \leq k_0 < 2^N \), then

\[
AV_v B \geq A^+_v B + \sum_{l=0}^{N-1} r_l (v)
\]

\[
\cdot \sum_{k=1}^{2^l} \left(A^+_{(k-1)/2} B + A^+_{k/2} B - 2A^+_{(2k-1)/2} B \right)
\cdot X_{(k-1)/2} (v).
\]

(86)
If $v = (2k_0 - 1)/2^{N+1}$ for some $1 \leq k_0 \leq 2^N$, then
\[
A \nabla_v B \geq \frac{1}{4} (A_+ v_{-2-N} B + A_+ v_{-2+N} B + 2A_+ B)
\]

\[
+ \sum_{l=0}^{N-1} r_l(v)
\]

\[
\cdot \sum_{k=1}^{2^l} \left(A_+ (k-1)/2^l B + A_+ k/2^l B - 2A_+ (2k-1)/2^{l+1} B \right)
\]

\[
\cdot \chi_{((k-1)/2^l,k/2^l)}(v),
\]

\[
A \nabla_v B \leq 2A_+ B - \frac{1}{4} \left(B_+ v_{+2-N} A + B_+ v_{+2-N} A + 2B_+ A \right)
\]

\[
+ R_0(v) (A + B - 2A_+ B) - \sum_{l=0}^{N-1} r_l(v)
\]

\[
\cdot \sum_{k=1}^{2^l} \left(B_+ (k-1)/2^l A + B_+ k/2^l A + B_+ (2k-1)/2^{l+1} A \right)
\]

\[
\cdot \chi_{((k-1)/2^l,k/2^l)}(v).
\]

Proof. If $v = k_0/2^N$, then $r_N(v) = 0$. Thus from (78) and (82), we have
\[
1 - v + vt \geq t^v + \sum_{l=0}^{N-1} r_l(v) \sum_{k=1}^{2^l} g_{l,k}(1,t) \chi_{((k-1)/2^l,k/2^l)}(v),
\]

\[
1 - v + vt \leq 2\sqrt{t} - t^{1-v} + R_0(v) \left(t + 1 - 2\sqrt{t} \right)
\]

\[
- \sum_{l=1}^{N-1} r_l(v) \sum_{k=1}^{2^l} g_{l,k}(t,1) \chi_{((k-1)/2^l,k/2^l)}(v)
\]

\[
\leq t^v + R_0(v) \left(t + 1 - 2\sqrt{t} \right)
\]

\[
- \sum_{l=1}^{N-1} r_l(v) \sum_{k=1}^{2^l} g_{l,k}(t,1) \chi_{((k-1)/2^l,k/2^l)}(v).
\]

Using the same argument as in the proof of Theorem 1, it is easy to derive the desired operator inequalities from the above.

Meanwhile, if $v = (2k_0 - 1)/2^{N+1}$, then $r_N(v) = 1$. Thus, from (78) and the first inequality of (82), we have
\[
1 - v + vt \geq \frac{1}{4} \left(t^{1-v} + t^{v-1/2} + 2t^{v} \right)
\]

\[
+ \sum_{l=0}^{N-1} r_l(v) \sum_{k=1}^{2^l} g_{l,k}(1,t) \chi_{((k-1)/2^l,k/2^l)}(v),
\]

\[
1 - v + vt \leq 2\sqrt{t} - \frac{1}{4} \left(t^{1-v} + t^{v-1/2} + 2t^{1-v} \right)
\]

\[
- \sum_{l=1}^{N-1} r_l(v) \sum_{k=1}^{2^l} g_{l,k}(t,1) \chi_{((k-1)/2^l,k/2^l)}(v).
\]

Letting $t = X = A^{-1/2} BA^{-1/2}$, we can obtain the desired operator inequalities.

\[\square\]

Competing Interests

The author declares that there is no competing interests regarding the publication of this paper.

References

