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Abstract. 
This article proves some theorems to approximate fixed point of Zamfirescu operators on normed spaces for some two-step iterative schemes, namely, Picard-Mann iteration, Ishikawa iteration, S-iteration, and Thianwan iteration, with their errors. We compare the aforementioned iterations using numerical approach; the results show that S-iteration converges faster than other iterations followed by Picard-Mann iteration, while Ishikawa iteration is the least in terms of convergence rate. These results also suggest the best among two-step iterative fixed point schemes in the literature.



1. Introduction 
Fixed point theory takes a large amount of literature, since it provides useful tools to solve many problems that have applications in different fields like engineering, economics, chemistry, game theory, and so forth. However, to find fixed points is not an easy task; that is why we use iterative methods for computing them. By time, many iterative methods have been developed and it is impossible to cover them all.
In the last four decades, numerous papers were published on the iterative approximation of fixed points of self- and non-self-contractive type operators in metric spaces, Hilbert spaces, or several classes of Banach spaces, while, for strict contractive type operators, the Picard iteration can be used to approximate the unique fixed point, for operators satisfying slightly weaker contractive type conditions, instead of Picard iteration, which does not generally converge; it was necessary to consider other fixed point iteration procedures. The Krasnoselskij iteration, the Mann iteration, and the Ishikawa iteration are certainly the most studied of these fixed point iteration procedures. Other iterations which have been studied also are Implicit Mann, Implicit Ishikawa, Thianwan, S-iteration, and hybrid Picard-Mann iterations. Recently, Wahab and Rauf [1] obtained some results on a faster implicit hybrid Kirk-multistep schemes for contractive type operators, to mention but a few.
Our aim in this paper is to establish the convergence and convergence rate of some two-step iterative schemes with errors using Zamfirescu operator in Banach spaces.
2. Preliminaries
The Picard iteration process is defined by the sequence and the concept of Picard iteration process with error is defined as follows: where  satisfy .
In [2], Banach proved the convergence of (1) with the aid of the following contractive mapping: where ,  is a metric space, , and . Banach’s theorem is given as follows.
Theorem 1.  Let  be a metric space and  be a contraction map on . Then  has a unique fixed point .
When condition (3) is weaker, Picard iteration (1) will no longer converge to a fixed point. So, other iterations such as Mann iteration, Picard-Mann iteration, Ishikawa iteration, S-iteration, and Thianwan iteration would be considered.
Mann [3] defined an iteration process by the sequence, for ,  of a closed subset of normed space: where  is a sequence in .
The concept of Mann iteration with error was discussed in [4] and it is given by the sequence where  is a sequence in  and  satisfy .
Ishikawa [5] defined another iteration process given by the sequencewhere  and  are sequences in . The Ishikawa iteration is a double Mann iteration and has better approximation than Mann iteration (5). The Ishikawa iteration with errors is given aswhere  and  satisfy  and . See [4].
In an attempt to reduce computational cost, Agarwal et al. [6] defined another iteration called S-iteration which is independent of Mann and Ishikawa iterations and it is defined by the sequence where  and  are sequences in .
The S-iteration with errors can be given aswhere  and  satisfy  and .
In [7], Thianwan defined a new iteration process given by the sequence where  and  are sequences in .
The Thianwan iteration with errors is given by where  and  satisfy  and .
Khan [8] gave a different perspective to iteration procedure. He introduced the following hybrid Picard-Mann iterative scheme for a single nonexpansive mapping  which is defined as where  is a sequence in  with . While the Picard-Mann iteration process with errors is given as where  and  satisfy  and .
The most generalized operator used to approximate fixed point is the one proved by Zamfirescu [9]. The Zamfirescu operator was obtained from the Banach [2], Kannan [10], and Chatterjea [11] contractive mappings as follows. The operator  is called a Kannan mapping if there exists  such that Another similar definition due to Chatterjea mapping is as follows: there exists  such thatBy combining (3), (14), and (15) conditions, we have the Zamfirescu operator given, for , by The equivalence of (16) is given as follows:  where  and .
The following Lemma is useful in the proof of our results.
Lemma 2 (see [12]).  Let  be a real number such that  and  is a sequence of nonnegative numbers such that ; then for any sequence of positive numbers  satisfying we have
The Zamfirescu operator was used to prove the strong convergence of (1) as follows.
Theorem 3.  Let  be a nonempty subset of a normed space . Let  be z-operator. If ,  , . Then  converges strongly to a fixed point of .
Proof. By Lemma 2,  has a unique fixed point in , say . Let ; since  is a -operator, at least one of each conditions  is satisfied. If  holds, then is equivalent to  This implies  Therefore, Similarly, if  holds, we obtain Let Then we have  and in view of (25) it results in that inequalities (23) and (24) become Now, for  and  in (26), we obtain  which implies By Lemma 2, we conclude that  converges strongly to .
3. Analytical Results
We present our main results using z-operators (16) on normed spaces for the two-step iterative schemes with errors defined in the last section.
Throughout,  denotes the set of all positive integers,  is nonempty convex subset of a complete normed space , and  is a self-map.
Theorem 4.  Let  be a nonempty subset of a normed space . Let  be -operator (16). Let  be defined with iterative process (5). If , , . Then  converges strongly to a fixed point of .
Proof. Let ; by using (5) and (16), we have Substituting (28) in (29),  Hence, by Lemma 2 and using the fact that , , and , it results in that  Therefore, 
Theorem 5.  Let  be a nonempty subset of a normed . Let  be -operator (16). Let  be defined with iterative process (13). If , , . Then  converges strongly to a fixed point of .
Proof. From (26), we have  Also from (28), we have  Now, using (13) and (28), we have  This implies Also, Substituting (37) in (36), we have Using (28) in (38), we have  where .
By Lemma 2 and using the fact that ,   and , this becomes  Hence, 
Theorem 6.  Let  be a nonempty subset of a normed space . Let  be -operator. Let  be defined with iterative process (7). If , , . Then,  converges strongly to a fixed point of .
Proof. From (26), we have  Also from (28), we have  Now, by combining (7) and (28), we have  This gives Also, from (7), we have  This also gives By combining (47) and (45), we have Using (28) in (48), we have  By letting  and by Lemma 2, using the fact that , , and , we get  Therefore, 
Theorem 7.  Let  be a nonempty subset of a normed space . Let  be -operator (16). Let  be defined with iterative process (9). If , , . Then  converges strongly to a fixed point of .
Proof. From (26), we have  Also from (28), we have  Applying (28) to (9), we obtain Also, from (9), we have Substituting (55) in (54), we have Inequality (56) becomes  By letting  and by Lemma 2, using the condition of the theorem, we have  Hence, 
Theorem 8.  Let  be a nonempty subset of a normed space . Let  be -operator (16). Let  be defined with iterative process (11). If , , . Then  converges strongly to a fixed point of .
Proof. From (26), we have  Also from (28), we have  Now, applying (28) to  in (11), we get  This implies Also, applying (28) to  in (11), we get  This gives By combining (63) and (65), we have  Thus, applying Lemma 2 and the condition of the theorem, we obtain  Therefore, 
4. Numerical Results
In this section, we support our analytical results with the following two numerical examples.
Example 9. Let the function  be defined by  with fixed point . Initial guess is , .
Example 10. Let the function  be defined by  with fixed point . Initial guess is , , .
The results for Examples 9 and 10 with various iterations are presented in Tables 1 and 2, respectively.
Table 1: The results for various iterations of Example 9.
	

		 Mann 	 Picard-Mann	 Ishikawa	 Thianwan 	 S-iteration 
	

	 0 	 1.990000000 	 1.990000000 	 1.990000000 	 1.990000000 	 1.990000000 
	 1 	 1.687057835 	 1.572582235 	 1.813283737 	 1.809910017 	 1.582703394 
	 2 	 1.580420632 	 1.527152378 	 1.703481407 	 1.699251872 	 1.52692284 
	 3 	 1.542481649 	 1.522032849 	 1.63509312 	 1.631121832 	 1.52251127 
	 4 	 1.52892988 	 1.521453636 	 1.592432357 	 1.58912183 	 1.521534023 
	 5 	 1.524082164 	 1.521388075 	 1.565793786 	 1.563209142 	 1.521400741 
	 6 	 1.522347139 	 1.521380654 	 1.549149294 	 1.547213668 	 1.521382574 
	 7 	 1.521726048 	 1.521379814 	 1.53874517 	 1.537336782 	 1.521380098 
	 8 	 1.525103699 	 1.521379719 	 1.532240114 	 1.531236794 	 1.52137976 
	 9 	 1.521424097 	 1.521379708 	 1.528172254 	 1.527468964 	 1.521379714 
	 10 	 1.521395599 	 1.521379707 	 1.52562821 	 1.525141481 	 1.521379708 
	 11 	 1.521385396 	 1.521379707 	 1.524037063 	 1.523703668 	 1.521379707 
	 12 	 1.521381741 	 1.521379707 	 1.523041857 	 1.522815428 	 1.521379707 
	 13 	 1.521380435 	 1.521379707 	 1.522419375 	 1.522266655 	 1.521379707 
	 14 	 1.521379968 	 1.521379707 	 1.522030019 	 1.521927661 	 1.521379707 
	 15 	 1.52137980 	 1.521379707 	 1.521786478 	 1.521718232 	 1.521379707 
	 16 	 1.521379740 	 1.521379707 	 1.521634144 	 1.521588448 	 1.521379707 
	 17 	 1.521379731 	 1.521379707 	 1.521538858 	 1.521508914 	 1.521379707 
	 18 	 1.521379715 	 1.521379707 	 1.521479257 	 1.521459531 	 1.521379707 
	 19 	 1.521379710 	 1.521379707 	 1.521441976 	 1.521429016 	 1.521379707 
	 20 	 1.521379708 	 1.521379707 	 1.521418656 	 1.52141017 	 1.521379707 
	 21 	 1.521379707 	 1.521379707 	 1.52140407 	 1.521398527 	 1.521379707 
	 22 	 1.521379707 	 1.521379707 	 1.521394946 	 1.521391334 	 1.521379707 
	 23 	 1.521379707 	 1.521379707 	 1.521389239 	 1.52138689 	 1.521379707 
	 24 	 1.521379707 	 1.521379707 	 1.521385669 	 1.521384145 	 1.521379707 
	 25 	 1.521379707 	 1.521379707 	 1.521383436 	 1.521382449 	 1.521379707 
	 26 	 1.521379707 	 1.521379707 	 1.52138204 	 1.521381401 	 1.521379707 
	 27 	 1.521379707 	 1.521379707 	 1.521381166 	 1.521380753 	 1.521379707 
	 28 	 1.521379707 	 1.521379707 	 1.521380620 	 1.521380353 	 1.521379707 
	 29 	 1.521379707 	 1.521379707 	 1.521380278 	 1.521380106 	 1.521379707 
	 30 	 1.521379707 	 1.521379707 	 1.521380064 	 1.521379954 	 1.521379707 
	 31 	 1.521379707 	 1.521379707 	 1.521379930 	 1.521379860 	 1.521379707 
	



Table 2: The results for various iterations of Example 10.
	

		Mann	Picard-Mann	Ishikawa	Thianwan	S-iteration
	

	 0 	4.000000000	4.000000000	4.000000000	4.000000000	4.000000000
	 1 	3.658312395	3.211950309	3.316624790	3.210186229	3.210186229
	 2 	3.360737671	3.05436713	3.174706708	3.10855584	3.061581272
	 3 	3.178630457	3.015059648	3.11619388	3.070267725	3.019321892
	 4 	3.082897312	3.004347136	3.085110108	3.050716647	3.006219262
	 5 	3.036738167	3.001287744	3.066152455	3.03905625	3.002026325
	 6 	3.015723592	3.000388341	3.053529001	3.031402901	3.000664646
	 7 	3.006547498	3.000118657	3.044594314	3.026040224	3.000218903
	 8 	3.002666794	3.000036622	3.037979605	3.022099423	3.000072291
	 9 	3.001066599	3.000011394	3.032910338	3.019096558	3.000023918
	 10 	3.000420156	3.000003568	3.028917572	3.016742078	3.000007924
	 11 	3.000163391	3.000001123	3.025701936	3.014852836	3.000002628
	 12 	3.000062842	3.000000355	3.023063963	3.013307708	3.000000872
	 13 	3.00002394	3.000000113	3.020865992	3.012023608	3.000000029
	 14 	3.000009044	3.000000036	3.019010164	3.010941775	3.000000001
	 15 	3.00000331	3.000000012	3.017425149	3.010019562	3.000000000
	 16 	3.000001263	3.000000004	3.016057811	3.009225316	3.000000000
	 17 	3.000000468	3.000000001	3.014867814	3.00853509	3.000000000
	 18 	3.000000172	3.000000000	3.013824028	3.007930452	3.000000000
	 19 	3.000000063	3.000000000	3.012902073	3.007397005	3.000000000
	 20 	3.000000023	3.000000000	3.012082600	3.006923067	3.000000000
	 21 	3.000000008	3.000000000	3.011350076	3.006500078	3.000000000
	 22 	3.000000003	3.000000000	3.010691894	3.006120341	3.000000000
	 23 	3.000000001	3.000000000	3.010097723	3.005777802	3.000000000
	 24 	3.000000000	3.000000000	3.009559027	3.005467464	3.000000000
	 25 	3.000000000	3.000000000	3.009068691	3.00518517	3.000000000
	 26 	3.000000000	3.000000000	3.008620741	3.004927435	3.000000000
	 27 	3.000000000	3.000000000	3.008210132	3.004691315	3.000000000
	 28 	3.000000000	3.000000000	3.007832568	3.004474311	3.000000000
	 29 	3.000000000	3.000000000	3.007484378	3.004274286	3.000000000
	 30 	3.000000000	3.000000000	3.007162403	3.004089403	3.000000000
	 31 	3.000000000	3.000000000	3.00686391	3.003918076	3.000000000
	



The error estimation  in Table 1 choosing  at an interval of 5 iterations is presented in Table 3, where .
Table 3: The error estimation for various iterations of Example 9.
	

		Error estimation ()
	Mann	Picard-Mann	Ishikawa	Thianwan	S-iteration
	

	 5 	0.002702457	0.000008368	0.044414079	0.041829435	0.000021034
	 10 	0.000015892	0.0	0.004248503	0.003761774	0.000000001
	 15 	0.00000093	0.0	0.000406771	0.000338525	0.0
	 20 	0.000000001	0.0	0.000038949	0.000030463	0.0
	 25 	0.0	0.0	0.000003729	0.000002742	0.0
	 30 	0.0	0.0	0.000000357	0.000000247	0.0
	



The calculated error in Table 2 choosing  at an interval of 5 iterations is presented in Table 4.
Table 4: The error estimation for various iterations of Example 10.
	

		Error estimation ()
	Mann	Picard-Mann	Ishikawa	Thianwan	S-iteration
	

	 5 	0.036738167	0.001287744	0.066152455	0.03905625	0.002026325
	 10 	0.000420156	0.000003568	0.028917572	0.016742078	0.000007924
	 15 	0.000003391	0.000000012	0.017425149	0.010019562	0.0
	 20 	0.000000023	0.0	0.012902073	0.006923067	0.0
	 25 	0.0	0.0	0.009559027	0.00518517	0.0
	 30 	0.0	0.0	0.007162403	0.004089403	0.0
	



5. Conclusion
This paper proved the convergence and convergence rate of some two-step iterative schemes with errors using Zamfirescu operator in Banach spaces. It was observed from Example 9 that the Picard-Mann iteration converges faster than the S-iteration, Ishikawa iteration, and Thianwan iteration, while, in Example 10, it is seen that the S-iteration has better convergence rate than other iterations. This is so because the speed of the aforementioned iterations depends on the choices of the parametric constants  and .
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