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Abstract. 
One of the goals of this article is to describe a setting adapted to the description of means (normalized integrals or invariant means) on an infinite product of measured spaces with infinite measure and of the concentration property on metric measured spaces, inspired from classical examples of means. In some cases, we get a linear extension of the limit at infinity. Then, the mean value on an infinite product is defined, first for cylindrical functions and secondly taking the uniform limit. Finally, the mean value for the heuristic Lebesgue measure on a separable infinite dimensional topological vector space (e.g., on a Hilbert space) is defined. This last object, which is not the classical infinite dimensional Lebesgue measure but its “normalized” version, is shown to be invariant under translation, scaling, and restriction.



1. Introduction
The very early starting point of this work is the well-known lack of adequate definition of an infinite dimensional Lebesgue measure on a Hilbert space. Even if infinite dimensional version of the Lebesgue measure is well known on Hilbert space [1, 2], and translation invariant measures are already described in Banach spaces, these measures fail to have “enough” measurable sets with finite, nonzero measure. From another approach, some expressions of the type are well known since [3]; see, for example, [4, 5] on  and we find similar expressions in the theory of infinite dimensional oscillatory integrals; see, for example, [6–10]. Yet in another setting, there is a property of concentration of measure in metric measured spaces which can coincide with the definition of a mean for uniform functions in, ; see, for example, [11–13]. These approaches, except the ones involving infinite dimensional measures, appear as relevant of the same procedure: defining means from limits of measures. This is why, following [14], we suggest a setting in Section 2 for means defined by limits of finite measures. To our knowledge (and surprisingly also), these frameworks have not been gathered yet. We show how what we defined as Dirac means in [14], or their generalizations that we call probability means or limit means, describe a unified framework to deal with concentration properties in metric measured spaces on one hand and integrals of cylindrical functions on the other hand.
The theory developed in Section 2 is then specialized to a restricted class of means, first to the means obtained with a -finite Radon measure, using a creasing sequence  of Borel subsets with finite measure satisfying  among other technical conditions, by following definitions present in [3–5]. We give in a way as systematic as possible their basic properties in Section 3. Since this mean value depends (in general) on the sequence  and on the measure , we do not adopt the notation  but prefer  or , abbreviations for “weak mean value” and for “mean value.” Formulas for changing of measure lead us to an extension of the asymptotic comparison of functions ( and  to measures. As a particular case, the mean value with respect to the Lebesgue measure on  appears as a linear extension of the limit at  of functions. We know very few about the behaviour of the mean value of limit of functions: the mean value is not continuous for vague convergence, but continuous for uniform convergence. There is certainly an intermediate kind of convergence more adapted to mean values, to be determined. We also give an application of this notion: the homology map as a mean value of a function on the space of harmonic forms, using Hodge theory.
Secondly, we get to infinite products of measured spaces in Section 4. Recall that there is an induced measure on an infinite product of measured spaces only if we have spaces with finite measures. We consider cylindrical functions and define very easily their mean values as mean values of functions defined on a finite product of measured space. Then, we extend it to functions that are uniform limits of sequences of cylindrical functions. As an application, we give a definition of the mean value on infinite configuration spaces for Poisson measure.
Finally, we get to vector subspaces of Hilbert spaces in Section 4. This is where we decide to focus on the announced heuristic infinite dimensional Lebesgue mean, which is not the infinite dimensional Lebesgue measure described in [1, 2]. The mean value is developed and we study its invariance properties. It appears invariant by translation and by scaling and also by action of the unitary group. But the last one remains dependent on the choice of the orthonormal basis used for the definition, which is classical in the procedure of approximation by cylindrical functions [15]. As a concluding remark, we show that this approach has a technical difference with the approach by measures on infinite dimensional spaces. We show that the mean value of a bounded continuous function  remains the same while restricting to a dense vector subspace. This exhibits a striking difference from, for example, the Wiener measure on continuous paths, for which the space of  paths is of measure  With all these elements, we can now explain where is the originality of our approach. Here, the total volume is not considered as a constant of the total space, but as a scale-like element to compare with the integral of a function.
2. The Space of Means Spanned by Sequences of Finite Measures
Let  be a measured space. Following [5, 13], let us fix a vector subspace  such that  A mean on  is a linear map  such that  Alternately, if  is a metric space, given  (space of continuous bounded maps), a mean on  is a linear map  such that  These two terminologies come from the basic example where  is a Borel probability measure on a metric space , for which the mean of a continuous integrable map  is its expectation value and can be approximated by sequences of barycenters of Dirac measures via Monte Carlo methods.
Let  be a vector space of (bounded, measurable) maps that contains constant maps, with values in a complete locally convex topological vector space (clctvs) . We shall call all along this paper  the space of means, that is, the space of linear maps  such that  The mean  can be defined on another domain , but the space  will serve as reference domain. Moreover, we set  or .
2.1. Means Spanned by Probability Measures
Let  be a complete metric space and let  be the space of bounded -valued continuous maps on  We note by  the space of Borel probability measures on  Let us first set .
Definition 1. A -probability mean is a linear map  which is defined as the limit of barycenters with -weights of a sequence of Borel probability measures on ,
We note by  the space of -probability means, by  the set of probability means  such that , and by  the means  obtained by a sequence  and we setWe have a special class spanned by the Dirac measures.
Definition 2 (see [14]). A -Dirac mean is a linear map  which is defined as the limit of barycenters with -weights of a sequence of Dirac measures on , 
We note by  the sets of Dirac means corresponding, respectively, to .
Proposition 3.  , and  are -affine spaces.
The proof is obvious adapting elementary proofs on (classical, finite) barycenters. We give also the following, in order to make quickly the link with the Monte Carlo method.
Proposition 4.  If  is moreover a locally compact manifold, one has the following inclusions: (i)(ii)If  is compact, 
Proof. (i) Let  and let  be a uniformly distributed sequence with respect to  Then,  Thus (ii) If  is compact, the space of (signed) finite measures on  coincides with  Since , we get the result.
2.2. Probability Means in the mm-Space Setting
We use two handbooks for preliminaries on these notions: [11, 13].
Definition 5 (see [12]). A space with metric and measure, or a metric measured space (mm-space for short), is a triple , where  is a metric space and  is a probability measure on the Borel tribu on 
Let , and let  We note 
Definition 6 (see [12]). A Levy family is a sequence  of mm-spaces if, for each sequence ,satisfying and then 
In the sequel, we shall assume that with continuous injection. Notice that we do not assume that  is the restriction of  which allows us some freedom on metric requirements. The technical necessary condition is the following: let  and let  be a Borel subset of  Then  is a Borel subset of  We have here a priori a class of limit means following the terminology of Definition 11. Let us quote first the classical (and historical) example of a Levy family; see, for example, [11], section , which gives an example of mean value.
Example 7 (the Levy family of spheres and the concentration phenomenon). Let us consider the sequence of inclusions equipped with the classical Euclide (or Hilbert) distance and (except for ) the normalized spherical measure  (we drop the index for the measure in sake of clear notations). Then, for any -valued 1-Lipschitz function on , there exists  such that 
In a more intuitive formation, one can say that any 1-Lipschitz function concentrates around a real value  with respect to . We leave the reader with [11] for more on the metric geometry of this example.
Proposition 8.  Let . Then for any 1-Lipschitz function  defined on , and with the notations used before,
Example 9. For Levy families induced by Lebesgue measures let . Take  For each , we equip  with the usual distance  induced by  and with the probability measure Setting , we get that  is a Levy family, but there is no concentration property. This example will be studied in the next sections of this article.
Definition 10. Let  be a map such that, for each , the restriction of  to  is -integrable. Then, the mean value of  with respect to the family  is if the limit exists.
2.3. Limit Means and Infinite Dimensional Integrals
Definition 11. Let  be a sequence of probability spaces such that(i) is a metric space;(ii), and the topology of  restricted to  coincides with the topology of ;(iii) Then, we define, for the maps  defined on , if ,  and if the limit converges,called limit mean of  with respect to .
This definition intends to fit with the procedure of integration of cylindrical functions in Hilbert spaces. Let us first describe the “toy” example of these infinite dimensional integrals, where such an approach is not needed: the limit mean considered is in fact a Dirac mean.
Example 12 (Daniell integral). Let us consider cylinder functions  on  Let be the -dimensional projection. Then, there exists  such thatThen, adequate sequences for the Monte Carlo method are those whose push-forwards on  are also adequate for this method. The projectors  converge (weakly) to identity, the condition on the sequence  is that, for each , the push-forwards of the sequences  on  fit with the desired conditions: the sequence  is a Monte Carlo sequence for the cube  equipped with the (trace of) Lebesgue measure. It is well known that such a sequence  exists, through, for example, the powers of : where  is the integer part of the real number  Thus, Daniell integral appears by its definition as a limit mean for the sequence  defined by , equipped with the classical Lebesque measure. But Daniell integral appears also as a Dirac mean whose domain contains cylindrical functions.
This example motivates the comparison between limit means,  and 
Example 13 (Fresnel-type integrals). First, let  There exists a sequence  satisfying Definition 1, and for each , there exists a sequence of Dirac measures  which converge to  with respect to the Monte Carlo method. Thus, finding a sequence of Dirac measures which can define a Dirac mean which coincides with  becomes a problem of extracting a sequence of Dirac measures which converges to  The same is for a limit mean  = “”. Let us describe more precisely the open problems on the example of oscillatory and Fresnel integrals. Let  be a fixed function. Following [16] (see, e.g., [7, 8, 17, 18]), we define the following.
Definition 14. Let  be a measurable function on  Let  be a weight function such that  If the limit exists and is independent of the fixed function , then this limit is called oscillatory integral of  with respect to , noted by
The choice  is of particular interest and is known under the name of Fresnel integral. This choice gives us a mean, up to normalization by a factor , and can be generalized to a Hilbert space  the following way.
Definition 15. A Borel measurable function  is called -integrable in the sense of Fresnel for each creasing sequence of projectors  such that , and the finite dimensional approximations of the oscillatory integrals of are well defined and the limit as  does not depend on the sequence . In this case, it is called infinite dimensional Fresnel integral of  and noted by
The invariance under the choices of the map  and the projections  is assumed mostly to enable stronger analysis on these objects, which intend to be useful to describe physical quantities and hence can be manipulated in applications where one sometimes works “with no fear on the mathematical rigor” in calculations. But we can also remark that(i)for functions  defined on , the map (ii)the map is a limit mean through the sequence The limit mean obtained is got through the classical trick of cylindrical functions, which we shall also use in the sequel. But we have no way to define some adequate sequence of Dirac means which could approximate the oscillatory integral, even in the finite dimensional case.
Following another approach, from [14], one can try to give another definition to the oscillatory integral straightway. Let us begin with integration of cylinder functions on the infinite cube  (Daniell integral) as described in the previous example. Let us consider now cylinder functions  on  Let  be a finite dimensional projection such that and let Then, adequate sequences for the Monte Carlo method are those whose push-forwards on  are also adequate for this method. Taking now a creasing sequence of orthogonal projectors  converging (weakly) to identity, the condition on the sequence  is that, for each , the push-forwards of the sequences  on  fit with the desired conditions: the sequence  is a Monte Carlo sequence for the cube  equipped with the (trace of) Lebesgue measure. It is well known that such a sequence  exists, through, for example, the powers of : where  is the integer part of the real number  Let us now fix  The maps  defined by, for example, or are diffeomorphisms  and we get thus a pull-back of the Monte Carlo method can be performed this way to get a Dirac mean which could be considered as an oscillatory integral. But nothing can ensure, to our knowledge, that this approach defines the same oscillatory integral as Definition 14.
3. Example: Mean Value on a Measured Space
On measured spaces, the definitions are those given in classical mathematical literature; see for example [3–5].
3.1. Definitions
On measured spaces, the definitions are those given in classical mathematical literature, see for example, [3]. Let  be a topological space equipped with a -additive, positive measure  Let  be a Borel -algebra on . We note by  the set of sequences  such that(1);(2) and 
Remark 16. We have in particular 
In what follows we assume the natural condition 
Definition 17. Let  Let  be a separable complete locally convex topological vector space (sclctvs). Let  be a measurable map. We define, if the limit exists, the weak mean value of  with respect to  asMoreover, if  does not depend on , we call it mean value of , noted by 
Notice that(i)if , setting  and  for each , if , and  have a finite mean value.(ii)The same way if  for each (iii)We denote by  the set of functions  such that  exists in  and by  the set of functions  such that  is well defined.
Examples 1. (1) Let  be an arbitrary measured space. Let  Let  so that(2) Let  be a space  equipped with the Dirac measure at . Let  be an arbitrary map to an arbitrary sclctvs.  Thus, if  so that (3) Let  be a measured space with . Let  be an arbitrary bounded measurable map. Then one can show very easily that we recover the classical mean value of :(4) Let  equipped with the classical Lebesgue measure  Let  (integrable -valued function). Let  We have that  so that(5) Let  equipped with the Lebesgue measure  Let  and let  The map  is odd so that  Now, let  Then  This shows that  has no (strong) mean value for the Lebesgue measure.
(6) Let  equipped with , the counting measure. Let  and set  Let  and  Then, is the Cesàro limit.
3.2. Basic Properties
In what follows and till the end of this paper we assume the natural condition  for the measures  we consider.
Proposition 18.  Let  be a measured space. Let  Then (1) is a vector space and  is linear;(2) is a vector space and  is linear.
Proof.  The proof is obvious.
We now clarify the preliminaries that are necessary to study the perturbations of the mean value of a fixed function with respect to perturbations of the measure.
Proposition 19.  Let  and  be Radon measures. Let  Assume that  exists. Then  and 
Proof. Thus, we get the result taking the limit.
Proposition 20.  Let  be a Radon measure and let  Then ; moreover  and 
Proof. The proof is  obvious.
Theorem 21.  Let  be a measure on , let , and  Let  is a convex cone.
Proof. Let  and let . Setting , we get  by Proposition 20; thus  is a cone.
Now, let  Let  and let (i)Let us show that . Let  We have , so that (ii)Let us show that . We already know that  Let , Now, we remark that and that since  and , and finally that  the same way. Thus, , thus  is a convex cone.
3.3. Asymptotic Comparison of Radon Measures
We now turn to the number  that appeared in Proposition 19. In this section,  and  are fixed Radon measures and  is a fixed sequence in .
Proposition 22.  One has the following. (1)(2)
Proof. The proof is obvious.
Definition 23. One has the following.(1) if (2) if (3) if 
Let us now compare three measures , and .  is here a fixed arbitrary sequence.
Lemma 24.  Let  and  be two measures and let ,where 
Proof. The  proof is obvious.
Proposition 25.  Let (1) if .(2) if .
Proof. Let  We have  and  For the first part of the statement, (since these numbers are positive, the equality makes sense). Thus, if the limits are compatible, we get (1) taking the limits of both parts. Then, we express each part as  and we get Taking the limit, we get (2).
We recover by these results a straightforward extension of the comparison of the asymptotic behaviour of functions. The notation chosen in Definition 23 shows this correspondence. Through easy calculations of  or , one can easily see that if , , and  are comparable measures,(1);(2);(3);(4);(5);(6);
 and other easy relations can be deduced in the same spirit.
3.4. Limits and Mean Value
If  is, for example, a connected locally compact, paracompact, and not compact manifold, equipped with a Radon measure  such that , any exhaustive sequence  of compact subsets of  is such that . In this setting, it is natural to consider  the Alexandroff compactification of 
Theorem 26.  Let  be a bounded measurable map which extends to , a continuous map at  Then  for each exhaustive sequence  of compact subsets of 
Proof. We can assume that ; in other words The sequence  gives a basis of neighborhood of ; thus Moreover, since , Let  Let  We set  and  Then, , The second term is bounded by  and we majorate the first term by  Thus and hence 
As mentioned in the Introduction, we found no straightforward Beppo-Levy type theorem for mean values. The first counterexample we find is, for  and  the Lebesgue measure, an increasing sequence of  which converges to  (uniformly on each compact subset of , the sequence  Let  and  We have , and  by Theorem 26. We can only state the following theorem on uniform convergence.
Lemma 27.  Let  be a measure on  and let  Let  and  be two functions in , where  in a sclctvs. 
Let  be a norm on  If there exists  such that , then 
Proof. Let , andWe get in the same way The result is obtained by taking the limit.
Theorem 28.  Let  be a sequence which converges uniformly on  to a -measurable map  Then (1)(2)
Proof. Let 
(i) Let us prove that  has a limit . Let  be a norm on  Let  There exists  such that, for each , Thus, by Lemma 27 with  and , Thus, the sequence  is a Cauchy sequence. Since  is complete, the sequence  has a limit 
(ii) Moreover, we remember that , (iii) Let us prove that  Let ,Let  Let  such that  Then Let  such that, for each , Then, by the same arguments, for each , Gathering these inequalities, we get 
3.5. Invariance of the Mean Value with respect to the Lebesgue Measure
In this section,  with  is the Lebesgue measure,  is the renormalization procedure defined by and  is the renormalization procedure defined by where  is the Euclidian norm. We denote by  the sup norm and  its associated distance. Let  We use the obvious notations  and  for the translated sequences. Let  We denote by  the symmetric difference of subsets.
Proposition 29.  Let  Let  (resp., ) be a bounded function. Let  and  If then (1) (resp., ) and ;(2)for  we have  and ,
Proof. We first notice that the second item is a reformulation of the first item: by change of variables 
Let us now prove the first item. Let , andLet  Then Thus, we get the result.
Lemma 30.  One has the following.
Proof. We prove it for the sequence , and the proof is the same for the sequence  We have ; thus  and Let We have  and . Thus, 
Proposition 31.  Let  Let  (resp., ) be a bounded function. (1)Then  (resp., ) and  (resp., ).(2)Let  Then  (resp., ) and  (resp., ).
Proof. The proof for  and  is a straightforward application of Proposition 29 which is valid thanks to the previous lemma.
3.6. Example: The Mean Value Induced by a Smooth Morse Function
In this example,  is a smooth, locally compact, paracompact, connected, oriented, and noncompact manifold of dimension  equipped with a measure  induced by a volume form  and a Morse function  such that For the theory of Morse functions we refer to [19]. Notice that there exists some value  such that  Notice that we can have 
Definition 32. Let  be a smooth function into a sclctvs  Let  We define and, if the limit exists, 
Of course this definition is the “continuum” version of the “sequential” Definition 17. If  is metrizable, for any increasing sequence  such that , setting , and conversely  exists if  exists and does not depend on the choice of the sequence 
Moreover, since  is a Morse function, it has isolated critical points and changing  into , where  is the set of critical points of , for each , is an -dimensional manifold (disconnected or not). The first examples that we can give are definite positive quadratic forms on a vector space in which  is embedded.
3.7. Application: Homology as a Mean Value
Let  be a finite dimensional manifold equipped with a Riemannian metric  and the corresponding Laplace-Beltrami operator  and with finite dimensional de Rham cohomology space  One of the standard results of Hodge theory is the onto and one-to-one map between  and the space of -harmonic forms  made by integration over simplexes: where We have assumed here that the simplex has the order of the harmonic form. This is mathematically coherent stating  if  and  do not have the same order. Let  be the Lebesgue measure on  with respect to the scalar product induced by the -scalar product. Let  be the sequence of Euclidian balls centered at  such that, for each , the ball  is of radius 
Proposition 33.  Assume that  is finite dimensional. Let  be a simplex. Let The cohomology class of  is null if and only if 
Proof. (i) If the cohomology class of  is null then, ; thus  Finally, (ii) If the cohomology class of  is not null, let  be the corresponding element in  We have  Let  be the projection onto the 1-dimensional vector space spanned by  Let . Let Then, Moreover, Then Thus 
Remark 34. A very easy application of Theorem 26 also shows that the map  is a -valued map.
4. The Mean Value on Infinite Products
4.1. Mean Value on an Infinite Product of Measured Spaces
Let  be an infinite (countable, continuous, or other) set of indexes. Let  or for short  be a family of measured spaces as before. We assume that, on each space , we have fixed a sequence  Let  be the Cartesian product of the sequence 
Definition 35. Let  for the product topology.  is called cylindrical if and only if there exists , a finite subset of , and a map  such that Then, we set, if , In this case we use the notation:  (here, subsidiary notations are omitted since the sequence of measures and the sequences of renormalization are fixed in this section).
Notice that if we have  with the notations used in the definition, and since  is constant with respect to the variables  indexed by , the definition of  does not depend on the choice of , which makes it coherent.
Theorem 36.  Let  be a cylindrical function associated with the finite set of indexes  and with the function (1)Let . Let us fix  Then (2)If both sides are defined, for each scalar-valued map , we have 
For convenience of notations, we shall write  instead of  Let us now consider an arbitrary map  which is not cylindrical ( is a sclctvs). Theorem 28 gives us a way to extend the notion of mean value by uniform convergence of sequences of cylindrical maps. But we shall do this not only for , but also for classes of functions defined on a class of subsets of  These classes are the following ones.
Definition 37. Let  The domain  is called admissible if and only if where 
Definition 38. Let  be an admissible domain. A function  is cylindrical if its value depends only on a finite number of coordinates indexed by a fixed finite subset of 
The mean value of a cylindrical function  is immediately computed, since its trace is defined on  up to a subset of measure 0.
Theorem 39.  Let  be a sclctvs. Let  be the uniform limit of a sequence  of cylindrical functions on  with a mean value on  Then, (1)the sequence  has a limit;(2)this limit does not depend on the sequence  but only on 
Proof. Let 
(i) Let us prove that  has a limit  Let  be a norm on  Let  There exists  such that, for each , Thus, by Lemma 27 with  and , Thus, the sequence  is a Cauchy sequence. Since  is complete, the sequence  has a limit 
(ii) Now, let us consider another sequence  of cylindrical functions which converges uniformly to  In order to finish the proof of the theorem, let us prove that 
Let  We define This sequence again converges uniformly to  and is thus a Cauchy sequence. The sequence ( has a limit  Extracting the subsequences  and  we get 
By the way, the following definition is justified.
Definition 40. Let  be a sclctvs. Let  be the uniform limit of a sequence  of cylindrical functions on  with a mean value on  Then, 
Trivially, the map  is linear as well as in the context of Proposition 18.
4.2. Application: The Mean Value on Marked Infinite Configurations
Let  be a locally compact and paracompact manifold, orientable, and let  be a measure on  induced by a volume form. In the following, we have either of the following:(i)if  is compact, setting , (ii)if  is not compact, setting  an exhaustive sequence of compact subspaces of , 
 The first setting was first defined by Ismaginov, Vershik, Gel’fand, and Graev; see, for example, [20] for a recent reference, and the second one has been extensively studied by Albeverio, Daletskii, Kondratiev, and Lytvynov; see, for example, [21]. Alternatively,  can be seen as a set of countable sums of Dirac measures equipped with the topology of vague convergence.
For the following, we also need the set of ordered finite -configurations: Assume now that  is equipped with a Radon measure  Let us fix  Notice first that, for each , In other words, the set of -uples for which there exists two coordinates that are equal is of measure  This shows that  is an admissible domain in  and enables us to write, for a bounded cylindrical function , since  is defined up to a subset of measure  on each , for  By the way, Theorem 39 applies in this setting. Notice also that the normalization sequence  on  is induced from the normalization sequence on  This implies heuristically that cylindrical functions with a weak mean value with respect to  are in a sense small perturbations of functions on  This is why we can modify the sequence  on  in the following way: let  be a function such that  Then, if  is a cylindrical function on , we set 
5. Mean Value for Heuristic Lebesgue Measures
Definition 41. A normalized Fréchet space is a pair , where(1) is a Fréchet space,(2) is a Hilbert space,(3),(4) is dense in 
Another way to understand this definition is the following: we choose a pre-Hilbert norm on the Fréchet space  Then,  is the completion of 
Definition 42. Let  be a sclctvs. A function  is cylindrical if there exists , a finite dimensional affine subspace of , for which, if  is the orthogonal projection,  such that 
Remark 43. This construction is canonical in many examples. For instance, the map  defined in the example of Section 3.7 extends to a cylindrical function on -forms, and hence the construction described above applies to this extension map.
Proposition 44.  Let  be a sequence of cylindrical functions. There exists a unique sequence  increasing for , for which, ,  is the minimal affine space for which 
Proof. We construct the sequence by induction:(i) is the minimal affine subspace of  for which Definition 42 applies to (ii)Let  Assume that we have constructed  Let  be the minimal affine subspace of  for which Definition 42 applies to  We set  (this is the minimal affine subspace of  which contains both  and  If  and  are the orthogonal projections into  and , then This ends the proof.
We now develop renormalization procedures on  inspired from Section 4.1, using orthogonal projections to 1-dimensional vector subspaces. In these approaches, a finite dimensional Euclidian space is equipped with its Lebesgue measure noted by  in any dimension. The Euclidian norms are induced by the pre-Hilbert norm on  for any finite dimensional vector subspace of 
5.1. Mean Value by Infinite Product
Let  be a bounded function which is the uniform limit of a sequence of cylindrical functions  Here, an orthonormal basis  is obtained by induction, completing at each step an orthonormal basis of  by an orthonormal basis of  Thus we can identify  with a subset  of  which is invariant under change of a finite number of coordinates. This qualifies it as admissible since, with the notations used in Definition 37, for any set of renormalization procedures in  as defined in Section 4.1 so that Theorem 39 applies. We note by this value. We remark that we already know by Theorem 39 that this mean value does not depend on the sequence  only once the sequence  is fixed. In other words, two sequences  and  which converge uniformly to  a priori lead to the same mean value if  (maybe up to reindexation). From heuristic calculations, it seems to come from the choice of the renormalization procedure, which is dependent on the basis chosen, more than from the sequence 
5.2. Invariance
We notice three types of invariance: scale invariance, translation invariance, and invariance under the orthogonal (or unitary) group.
Proposition 45.  Let  Let  be a function on an infinite dimensional vector space  with mean value. Let  Then  has a mean value and 
Proof. Let  be a sequence which converges uniformly to  Then, with the notations above, the sequence  converges uniformly to  Let By Proposition 20 and remarking that for the fixed renormalization sequence above, this change of variables consists in extracting a subsequence of renormalization. Thus, taking the limit, we get 
Proposition 46.  Let  Let  be a function on  with mean value. Let  Then  has a mean value and 
Proof. Let  be a sequence which converges uniformly to  Let  We have  Then, 
Proposition 47.  Let  be the group of unitary operators of  which restricts to a bounded map  together with its inverse. Let  Let  be a map with mean value. Then  has a mean value and 
This last proposition becomes obvious after remarking that we transform the sequence  into the orthogonal sequence This remark shows that we get the same mean value for  as for  by changing the orthogonal sequence.
5.3. Invariance by Restriction
With the same notations as above, let  be a vector subspace of  such that As a consequence, if  is the restriction of  to , the sequence  of cylindrical functions on  restricts to a sequence  of cylindrical functions on  Then, for uniform convergence, and for fixed  we get through restriction to , Taking the limit, we get This shows the restriction property announced in the Introduction.
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