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Abstract. 
In this article, we prove the existence of a simple cyclic near-resolvable -cycle system of  for  by the method of constructing its starter. Then, some new properties and results related to this construction are formulated.

1. Introduction
Throughout this paper, all graphs are considered undirected with vertices in  where  is odd. As usual,  will denote the complete graph of order , and  will denote the complete multigraph of order  and multiplicity  in which every two vertices are joined by  parallel edges.
A -cycle system of a graph  is a multiset  of -cycles of  whose edge sets partition .  is said to be cyclic if  and for each -cycle  in  we have that  is also in , and it is said to be simple if all its cycles are distinct. A starter of cyclic -cycle system of  is a multiset  of -cycles that generates the multiset  by repeated addition of 1 modulo . A near--factor of  is a spanning ‐regular subgraph of  for some vertex  in .
A -cycle system  of  is said to be near-resolvable if its cycles can be partitioned into near--factors  and  is denoted by -. In general, it has been shown that there exists a near-resolvable -cycle system of  if and only if  is even and  [1]. Such a near-resolvable -cycle system is cyclic if it is possible to label the vertices of  with the elements of the cyclic group  in such a way that  for , where  denotes the near--factor of  obtained from  by adding  modulo  to all its vertices. The near--factor  is called a starter of cyclic near-resolvable -cycle system of .
The existence problem of -cycle systems of the complete multigraph  has received much attention in recent years; this existence problem has been completely solved by Alspach and Gavlas [2] and by Šajna [3] for the important case when , and by Alspach et al. [4] for the case . An easier proof of the existence of odd cycle systems of  using the difference method has been reproved by Buratti [5]. Then, Wu and Buratti [6] provided an algorithm to construct an explicit odd -cycle system of  whenever it exists. In particular, the existence of cyclic -cycle systems of  has been solved when  [7, 8],  [9],  is even with  [10],  is a prime with the exception of  [7],  or  is twice a prime power [11], and  is thrice a prime [12]. Further results on cycle systems are in the surveys [13–15].
The necessary and sufficient conditions for the existence of cyclic -cycle system of  and for the existence of simple cyclic -cycle system of , where  is a prime, have been proved by Buratti et al. [16]. For  odd, the necessary and sufficient conditions for decomposing  into -cycles, and into cycles of prime length have been established by Smith in [17]. Shortly later, Bryant et al. [18] proved that the necessary and sufficient conditions for the existence of a -cycle system of  for all  are that  is even and  divides the number of edges in . More general results such as the existence problem for decomposing  into cycles of varying lengths have been presented in [19, 20].
The problem of constructing near-resolvable -cycle system of  has been contributed by many authors. A near-resolvable -cycle system of  has been constructed for  with  except possibly values  and except  (for which such a system does not exist) [21],  with  or  [22],  with  [23]. Recently, the existence of a near-resolvable -cycle system of  for all  and  except possibly for  and  has been proved by Wang and Cao [24]. Previously, it has been proved that there exists a - for all odd  and all  [25]. In 2018, Matsubara and Kageyama [26] proved that a cyclic - exists if and only if .
In Section 2, we review some well-known definitions and preliminary results. Some introductory results are formulated in Section 3. Then, in Section 4, we explicitly construct a simple cyclic - for the case  using a difference method. Moreover, we formulate some properties which are related to this construction. Finally, Section 5 discusses the conclusions and future work.
2. Preliminaries
In this section, we recall briefly some definitions and preliminary results that we used in the sequel. We start with the following definitions.
Definition 1 (see [27]).  A path cover of a graph  is a collection of vertex-disjoint paths of  that covers the vertex set of .
Definition 2 (see [5]).  Let  be a graph and  be an edge in . The difference of an edge  is defined as .
Definition 3 (see [5, 28]).  Let  be a graph. The multiset is called the list of differences from . More generally, for a set  of graphs, the list of differences from  is the multiset  which is obtained by linking together the ’s.
Definition 4 (see [6]).  Let  be a -cycle in . A cycle orbit of , denoted as , is a set of distinct -cycles in . A cycle orbit of  is called full if its cardinality is ; otherwise, the cycle orbit of  is short.
For convenience, we say  is a full (short) cycle.
Definition 5 (see [5, 6]).  Let  be a -cycle in . The type of  is the cardinality of the set .
From the above definition, it is obvious that if a cycle  is of type 1 , then  is a full (short) cycle.
Lemma 6 (see [5]).  If  is a -cycle in , then the type of  is a common divisor of  and .
The following lemma is a consequence of the theory developed in [16]. It will be crucial for proving our main results.
Lemma 7.  Let  be a multiset of -cycles of . Then,  is a starter of cyclic -cycle system of  if and only if  covers  exactly  times.
3. Introductory Results
In this section, we introduce some definitions, notations, and introductory results required to establish our main results in the next section. We begin with defining relative path, relative cycle, and alternating arithmetic path that will be the basis for constructing the starter of simple cyclic near-resolvable -cycle system of .
Definition 8.  Let  be a graph of order ,  be a -path of , and  be a -cycle of .(1)The -path  is called the relative path of .(2)The -cycle  is called the relative cycle of .
Lemma 9.  Let  be a graph of order .(1)If  is a -path of  and  is the relative path of , then .(2)If  is a -cycle of  and  is the relative cycle of , then .
Proof.  (1)Suppose  and  are -path of  and its relative path, respectively. The list of differences from  and  can be defined as Since  is the relative path of , then , for all . Hence, substituting  into (3), we obtain(2)The proof is similar to part .
Lemma 10.  Let  be a graph of order . If  is a -cycle of  and  is the relative cycle of ; then, .
Proof.  Let  be a -cycle of  and let  be the relative cycle of . Assume on the contrary that ; then, there exists an integer  such that . This implies thatSince  is the relative cycle of , thenSolving (5) and (6) for  and  yieldsThis contradicts the fact that  and  are actually -cycles. Thus,  and  must have different orbits, so .
An alternating arithmetic path is a path with two sets of vertices satisfying certain conditions, as defined below.
Definition 11.  Let  and  be positive integers with . An -alternating arithmetic path, denoted by , is a path of length  with vertex set  and edge set , such that the following properties are satisfied:(1) is constant, for all .(2) is constant, for all .
Definition 12.  Let  be an -alternating arithmetic path. The list of differences from  is the multisetAccording to Definition 11, the -alternating arithmetic path either has odd order  when  or has even order  when . Throughout, we use the following notations for -alternating arithmetic path of odd order and even order, respectively:In the following, we define a modulo scalar multiplication on paths and cycles in a finite graph of order , and then we prove some lemmas that will be used later in order to investigate some properties related to our construction.
Definition 13.  Let , , and  be positive integers with  and . Let  be a graph of order ,  be a -path of , and  be a -cycle of .(1)The modulo  multiplication of  and  is the -path .(2)The modulo  multiplication of  and  is the -cycle .
Lemma 14.  Let  be a graph of order  and  be a -cycle of . If  is any integer such that  and , then(1).(2).
Proof.  (1)Suppose that  is a -cycle of . Then, Since  is divisible by , then . Hence, (2)From the definition of modulo  multiplication of  and , we obtain But  is divisible by , and this implies that . Hence, 
Lemma 15.  Let  and  be integers with  and . Then,  covers .
Proof.  Let  with . Assume on the contrary that . Then, we get  and  for some integers  and .
Subtracting the above equations, we obtain . This implies Since , then  and then from (14) we get . This implies that  and therefore .
On the other hand, since and , then from (14) it follows that  is a noninteger rational number. This contradicts the fact that  is an integer. Thus, there are no  such that , so  covers 
Lemma 16.  Let  be an integer; then,  and  are relatively prime.
Proof.  Let  be an integer such that  divides both  and . Then, there exists  such thatFrom the equations above, we obtain . This implies that , and thenSince , then either  or . Therefore,  is the only positive integer which divides both  and .
Now, we define a way of writing the cycle as linked vertex-disjoint paths. This way will be used mainly to prove the existence results in the following section.
Definition 17.  Let  be a -cycle,  be a positive integer, and  be a path cover of . The set of  edges in  that links the end of  with the start of , for all  where , is called the link set of .
Remark 18.  Let  be a -cycle,  be a path cover of , and  be a link set of . The cycle  can be expressed as linked vertex-disjoint paths as follows:
Lemma 19.  Let  be a -cycle,  be a path cover of , and  be a link set of . Then, we have .
Proof.  Let  be the set of vertices of  and  the set of edges of . Based on Definition 3, the list of differences from  is defined as a multiset consisting of the difference for each edge in  as follows:Since  is a path cover of , then Also, from the definition of link set of , we obtain Substituting (20) and (21) into (19) yields
To close this section, we provide an example below to demonstrate the concepts discussed in this section.
Example 20.  Let ,  be a -cycle of . Then, the cycle  can be written as linked vertex-disjoint paths as follows:where  and  are -alternating arithmetic paths and  and  are trivial paths. In addition, the set of four edges  that links the paths  and , respectively, along the cycle  is considered the link set for the path cover .
Based on Definition 8, the relative cycle of  is . It is easy to see that the sum of each pair of corresponding vertices of  and its relative cycle is equal to  (the order of .
Since , thenIn other words,  as shown in part  of Lemma 14.
4. Simple Cyclic Near-Resolvable -Cycle System of 
In this section, we prove, explicitly and directly, the existence of a simple cyclic near-resolvable -cycle system of  by constructing its starter.
To construct a simple cyclic near-resolvable -cycle system of , it is enough to exhibit a starter of cyclic -cycle system of  which satisfies a near-2-factor and contains no two cycles in the same orbit. Let us provide an example to illustrate the above definition.
Example 21.  Let  and  be a set of -cycles of  such that  and .
Easily, it can be observed that the -cycles of  are vertex-disjoint and cover each nonzero element of  exactly once. Hence, we can say that  is a -regular graph satisfying the near-2-factor with focus zero.
In order to show that  is a starter of cyclic -cycle system of , we need to calculate the list of differences from  as illustrated in Table 1.
Table 1: The list of differences from .
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As listed in Table 1, each nonzero element of  occurs twice in . Then, by Lemma 7,  is a starter set of cyclic -cycle system of .
Since the sum of each pair of corresponding vertices of  and  is equal to 9 the order of , then  is the relative cycle of , and so, by Lemma 10, . From Definition 4, we conclude that all the generated cycles by repeated addition of 1 modulo  to  contain no repetitions.
Now,  satisfies all the conditions to be a starter of simple cyclic near-resolvable -cycle system of . Once the starter set has been provided, all cycles of simple cyclic - can be generated by repeated addition of 1 modulo 9 as shown in Table 2.
Table 2: A simple cyclic near-resolvable 4-cycle system of .
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In the following, we construct a simple cyclic near-resolvable -cycle system of . Since the construction is different depending on whether  is odd or even, we classify the construction into two cases: when  is odd and when  is even.
Lemma 22.  For any positive odd integer , there exists a simple cyclic near-resolvable -cycle system of .
Proof.  Let , where  is a positive odd integer. Let  and  be the -cycles of  defined as linked vertex-disjoint paths as follows:whereSince  is a positive odd integer, then any -alternating arithmetic path and -alternating arithmetic path have even order. As illustrated in Figure 1, the construction of  and  can be described in terms of their vertices as  for .
In this way, we note that in the cycle  the ’s with  odd and the ’s with  even form the following increasing sequences, respectively:
 in the interval  and
 in the complement of  in .
In contrast, in  the ’s with  odd and the ’s with  even form the following decreasing sequences, respectively:
 in  and
 in the complement of  in .
Thus, for , the vertices in  are pairwise distinct and hence  is actually -cycle.
In the rest of this proof, three parts are considered to prove that the set of cycles  satisfies the conditions to be a starter of simple cyclic near-resolvable -cycle system of .
Part 1. In this part, we prove that  satisfies the near-two-factor condition. This will be verified by proving that the union of vertex sets of  and  covers each element of  exactly once. The vertex sets of  and  can be enumerated by the union of vertex sets of all linked paths in both  and , respectively.whereAccording to the above vertex sets, it can be easily noted that each nonzero element of  occurs exactly once in . Since any cycle is a -regular graph and , then the set of cycles  forms near-two-factor with focus zero.
Part 2. This part shows that the set of cycles  is a starter of cyclic -cycle system of . For this part, it is sufficient to prove that the list of differences from  covers  exactly twice.
Based on Definition 3, the list of differences from  is defined as . Then, from Lemma 19 and Definition 12, the list of differences from  iswhereAs shown above, each nonzero element of  appears exactly once in .
From (25), we can deduce that  is the relative cycle of . Hence, by part  of Lemma 9, we obtain . Now, we conclude that each nonzero element of  appears exactly twice in . Based on Lemma 7, the set of cycles  is a starter of cyclic -cycle system of  for all odd positive integer .
Part 3. We check that all the generated cycles from the starter  contain no repetitions by showing that all the cycles of  have different orbit.
Since  is the relative cycle of , then by Lemma 10, . Thus, all the generated cycles by repeated addition of 1 modulo  to  contain no repetitions.
By summing up the former three parts, we have proved that, for any positive odd integer , the set of cycles  is a starter of simple cyclic near-resolvable -cycle system of .




	
	
		
			
				
			
			
			
				
			
				
			
				
			
				
			
			
			
				
			
				
			
				
			
			
			
			
			
			
			
				
			
			
				
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
				
			
				
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
				
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
			
		
			
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
	


Figure 1: The construction of  and  in .  is a positive odd integer.


Lemma 23.  For any nonnegative even integer , there exists a simple cyclic near-resolvable -cycle system of .
Proof.  Let , where  is a nonnegative even integer. Let  and  be the -cycles of  defined as linked vertex-disjoint paths as follows:whereSince  is a nonnegative even integer, then any -alternating arithmetic path and -alternating arithmetic path have odd order. As shown in Figure 2, the construction of  and  can be described in terms of their vertices as  for .
The rest of this proof is similar to the proof of Lemma 22, hence omitted.


	
	
		
		
		
			
		
			
		
			
		
		
			
		
			
		
		
		
			
		
			
		
		
			
		
		
		
		
		
		
		
		
		
		
			
		
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
			
		
			
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
	


Figure 2: The construction of  and  in ,  is a nonnegative even integer.


Theorem 24.  For each positive , there exists a simple cyclic near-resolvable -cycle system of .
Proof.  The proof is immediate from Lemmas 22 and 23.
By reviewing the construction of a starter of simple cyclic near-resolvable -cycle system of , as shown in Figures 1 and 2, the construction has a butterfly shape in which each cycle represents a side of symmetrical butterfly wings. If given one cycle  of the starter set, the other is the relative cycle of .
Next, some related properties of the starter of simple cyclic near-resolvable -cycle system of  will be formulated.
Lemma 25.  Let , , and  be integers such that  and . If  is a starter of simple cyclic near-resolvable -cycle system of , then  covers .
Proof.  Since  is a starter of simple cyclic near-resolvable -cycle system of , then  satisfies the near-two-factor with focus zero. This implies that . Then, by Lemma 15, we obtain the notion that  covers .
Theorem 26.  Let , , and  be integers with  and . If  is a starter of simple cyclic near-resolvable -cycle system of  that satisfies (25) or (32), then  and  are the same starter of simple cyclic near-resolvable -cycle system of .
Proof.  Suppose that  is a starter of simple cyclic near-resolvable -cycle system of  that satisfies (25) or (32). Then,  is the relative cycle of  and hence, by part  and  of Lemma 14, we have To prove that  is a starter of simple cyclic near-resolvable -cycle system of , we need to prove the following:(1) covers .(2) covers  exactly twice. The first condition is satisfied from Lemma 25. Based on the definition of , for each edge  in  we have that  is an edge in .
Suppose  is the difference of the edge  for , where . Then, the difference of the edge  is , where  and .
Since  is a starter of simple cyclic near-resolvable -cycle system of , then  covers  exactly twice. But  is the relative cycle of ; this implies that  covers  exactly once. Therefore,  also covers  exactly once (from Lemma 15); thus,  covers  exactly twice.
In the following example, we construct some of distinct starters of simple cyclic - in accordance with the theorem above.
Example 27.  Let  be an integer with  and ,  with vertices in  and  be a set of -cycles of  where  and .
In Example 21, it is proved that  is a starter of simple cyclic -. The next table shows the possible values of  that make the set of cycles  be a starter of simple cyclic -.
  In Table 3, it can be remarked that each set of cycles  covers  exactly once and the list of differences from  covers  exactly twice. Therefore, we conclude that for any  such that  both sets  and  are the same starter of simple cyclic -.
Table 3: A collection of distinct starters of simple cyclic -.
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The simple cyclic near-resolvable -cycle system of  is a  array if its starter is a set of full cycles. By the following theorem, we can answer the question whether the starter of simple cyclic near-resolvable -cycle system of  is set of full cycles or not.
Theorem 28.  If  is a nonnegative integer, then any starter of simple cyclic near-resolvable -cycle system of  is a set of full cycles.
Proof.  Let  and  be -cycles in . Suppose that  is a starter of simple cyclic near-resolvable -cycle system of .
From Lemma 16, we have that  and  are relatively prime, which implies that the only positive common divisor of  and  is 1. By Lemma 6, since the type of any -cycle in  is a common divisor of  and , it follows that any cycle in  is of type . Consequently, any starter of simple cyclic near-resolvable -cycle system of  is a set of full cycles.
5. Conclusions
This article has proposed near-resolvable -cycle system of  as an edge-decomposition of the complete multigraph  into  classes of -cycles such that each class satisfies the near-2-factor. In particular, the difference method has been exploited to construct a simple cyclic near-resolvable -cycle system of  for the odd case , and this construction has been exemplified for the case . Finally, we have formulated some properties of this construction. We expect that this study can be developed and extended to construct a simple cyclic near-resolvable -cycle system of  for the case  odd.
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