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Periodic Points of Asymmetric Bernoulli Shifts
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It is well-known that Sharkovskii’s theorem gives a complete structure of periodic order for a continuous self-map on a closed
bounded interval. As a further study, a natural problem is how to determine the location and number of periodic points for a
specific map. ,is paper considers the periodic points of asymmetric Bernoulli shift, which is a piecewise linear chaotic map.

1. Introduction

In 1964, Sharkovskii [1] firstly introduced a special ordering
on the set of positive integers. ,is ordering implies that if
p⊲ q and a continuous self-map of a closed bounded interval
has a point of period p; then it has a point of period q. ,e
least number with respect to this ordering is 3.,us, if a map
has a point of period 3, then it has points of any periods. In
1975, the latter result was rediscovered by Li and Yorke [2].
,en numerous papers are devoted to the study of interval
maps (see e.g., [3–5] and references therein).

Bifurcation points of some interval maps were studied in
[6], and the limit behavior of orbits and probabilistic some
problems were considered in [7, 8]. Recently, Ivanov in [9]
considered an exact lower bound for the number of orbits of
a given period for a self-map of a closed bounded interval.

Consider the asymmetric Bernoulli shift F: [0, 1] ⟶
[0, 1] with a parameter 0< a< 1, defined by

F(x) �

x

a
, 0≤ x≤ a,

x − a

1 − a
, a<x≤ 1.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1)

Specially, when a � 1/2, it is the Bernoulli Shift or the
binary transformation, also known as doubling map or the
binary transformation. Conjugacies between asymmetric
Bernoulli shifts are constructed in [10].

Given a positive integer n, one interesting question is
how to find all n-periodic points of F. ,e other is howmany
n-periodic points of F.

In this paper, we study periodic orbits of F. In the next
section, we present dynamics of jumps of Fn. Section 3
recalls the real number representation, i.e, F-expansion. In
Section 4, we use the F-expansion to give explicit formulas of
Fn(x) for n ∈ N, explicit formulas of jumps of Fn(x), explicit
formulae of fixed points of Fn(x), and explicit formulas of all
n-periodic points of F(x). ,e last section gives the number
h(n) of periodic orbits of a given period n for F and the limit
behavior of h(n).

2. Dynamics of Jumps of Fn

For n ∈ N, let Fn(x) denote the n-th iterate of F, which is
recursively defined by F0(x) � x and Fn � F(Fn− 1(x)) for
x ∈ [0, 1].

A point c ∈ (0, 1) is called a jump of F if the one-sided
limits, F(c− ) and F(c+), exist and are finite, but are not
equal. ,e set of jumps of F is denoted byJ(F). One can see
that

J(F)⊆J F
2

 ⊆ · · · ⊆J F
n

( ⊆J F
n+1

 ⊆ · · · . (2)

Each element of J(Fn+1)\J(Fn) must be a preimage
under F of a point from J(Fn). More precisely,
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J F
n+1

 \J F
n

(  � F
− 1

J F
n

( ( \J F
n

( . (3)

,emap F has the unique jump a. Put x1,0: � 0, x1,1:� a,
and x1,2:� 1. Let I denote the unit interval [0, 1],
I1,1:� (x1,0, x1,1), and I1,2:� (x1,1, x1,2). One can see that Fn

has 2n − 1 jumps for n≥ 2 by induction. For i, j ∈ N+, let
xi,0:� 0, xi,2i :� 1, and xi,j denote the j th jumps of Fi in the
following order:

0 � xi,0 < xi,1 <xi,2 < · · · <xi,j < · · · <xi,2i− 1 < xi,2i � 1.

(4)

Put Ii,j: � (xi,j− 1, xi,j) for every j ∈ 1, 2, 3, . . . , 2i . It is
clear that Ii,j is the j-th monotonic interval of Fi.

Lemma 1. For n≥ 1, the jumps of Fn and Fn− 1 have the
following relationship:

(i) F(xn,k) � F(xn,2n− 1+k) � xn− 1,k for 1≤ k≤ 2n− 1 − 1
(ii) xn,2n− 1 � xn− 1,2n− 2 � a

(iii) Fi(In,k) � Fi(In,2n− 1+k) � In− i,k for 1≤ k≤ 2n− i and
1≤ i≤ n − 1

Proof. We first claim that a is a jump of Fn for every n≥ 1. In
fact, since a is a jump of F(x), a is also a jump of Fn(x) for
n≥ 2. Moreover, it is easy to check that Fn(a) � 1 for n≥ 2.

Next, we prove (i) and (ii) by induction. It is clear that
these results holds for n � 2.

Assume that these results hold for n � m≥ 2, i.e.,

(i) F(xm,k) � F(xm,2m− 1+k) � xm− 1,k for 1≤ k≤ 2m− 1 − 1
(ii) xm,2m− 1 � xm− 1,2m− 2 � a

Now we shall prove these results hold for n � m + 1.
Denote 2m − 1 jumps of Fm by

0<xm,1 <xm,2 < · · · < xm,k < · · · < xm,2m− 1 < 1. (5)

Since F is strictly increasing on the subinterval I1,1 and
F(I1,1) � (0, 1), for each k ∈ 1, 2, . . . , 2m − 1{ }, there exists
the unique point, denoted by xm+1,k, in I1,1 such that
F(xm+1,k) � xm,k. Since F is strictly increasing on I1,1, one
can see that

0< xm+1,1 <xm+1,2 < · · · <xm+1,k < · · · <xm+1,2m − 1 < a.

(6)

Further, by the definition of jump, xm+1,k is a jump of
Fm+1 � Fm ∘F for each k ∈ 1, 2, . . . , 2m − 1{ }.

Similarly, since F is strictly increasing on the subinterval
I1,2 and F(I1,2) � (0, 1), for each k ∈ 1, 2, . . . , 2m − 1{ }, there
exists the unique point, denoted by xm+1,2m+k, in I1,2 such
that F(xm+1,2m+k) � xm,k. Since F is strictly increasing on I1,2,
one can see that

a< xm+1,2m+1 <xm+1,2m+2 < · · · <xm+1,2m+k

< · · · < xm+1,2m+1− 1 < 1.
(7)

Further, by the definition of jump, xm+1,2m+k is a jump of
Fm+1 � Fm ∘F for each k ∈ 1, 2, . . . , 2m − 1{ }. Let xm+1,2m

denote a. ,erefore,

(i) F(xm+1,k) � F(xm+1,2m+k) � xm,k for 1≤ k≤ 2m − 1
(ii) xm+1,2m � xm,2m− 1 � a

It follows from (i) that for 1≤ k≤ 2n− 1,

F In,k  � F In,2n− 1+k  � In− 1,k. (8)

,en for 1≤ k≤ 2n− i and 1≤ i≤ n − 1,

F
i

In,k  � F
i

In,2n− 1+k  � In− i,k. (9)

,is completes the proof. □

3. F-Expansion

In this section, we will introduce a new real number
representation.

Definition 1. A sequence εk k∈N+ of 0 and 1 is called the
itinerary of x ∈ [0, 1] with respect to the asymmetric Ber-
noulli shift F: [0, 1]⟶ [0, 1] and a ∈ (0, 1), if, for k≥ 1,

εk �
0, F

k− 1
(x)≤ a,

1, F
k− 1

(x)> a.

⎧⎨

⎩ (10)

In fact, the itinerary of x ∈ [0, 1] with respect to F and
a ∈ (0, 1) is just the F-expansion of a real x ∈ [0, 1].
According to [10], or these two classic papers [11, 12], we
have an expansion for x in powers of the numbers a and
1 − a:

x � 
∞

k�1
εka

k− sk− 1(1 − a)
sk− 1 � 

∞

k�1
εka

k 1 − a

a
 

sk− 1

, (11)

where s0 � 0 and sk: � 
k
j�1 εj for k≥ 1.

,us, every x ∈ [0, 1] can be represented through its
digit sequence εk k∈N+. In this situation, write
x � [ε1, ε2, . . . , εk, . . .] for short. One can see that every
infinite F-expansion is unique, whereas each x ∈ (0, 1) with
a finite F-expansion can be expanded in exactly two ways,
namely, one immediately verifies that

x � ε1, . . . , εk− 1, 1  � ε1, . . . , εk− 1, 0, 1, 1, 1, . . . . (12)

In the following, we employ a convention in which finite
fractions such as

[1, 1, 0, 0, 0, 0, . . .] � [1, 0, 1, 1, 1, 1, . . .],

[1, 0, 1, 0, 0, 0, . . .] � [1, 0, 0, 1, 1, 1, . . .],
(13)

are represented as finite fractions with infinite zeros, as
[1, 1, 0, 0, 0, . . .] or [1, 0, 1, 0, 0, 0, . . .], unless otherwise
stated.
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Lemma 2. If x � [ε1, ε2, . . . , εk, . . .], then F(x) � [ε2, ε3,
. . . , εk, . . .].

Proof. It follows from a property of the asymmetric Ber-
noulli shift F(x) that x≤ a provided that ε1 � 0 in
x � [ε1, ε2, . . . , εk, . . .]. One then finds

F(x) �
x

a
� 
∞

k�1
εka

k− 1 1 − a

a
 

sk− 1

� 
∞

k�2
εka

k− 1 1 − a

a
 

sk− 1

� 
∞

k�1
εk+1a

k 1 − a

a
 

sk

� ε2, ε3, . . . , εk, . . . .

(14)

On the other hand, one has a<x≤ 1 if ε1 � 1 and hence

F(x) �
x − a

1 − a
� 
∞

k�2
εka

k− sk− 1(1 − a)
sk− 1− 1

� 
∞

k�1
εk+1a

k+1− sk (1 − a)
sk− 1

� ε2, ε3, . . . , εk, . . . .

(15)

□

,is shows that, from the perspective of symbolic dy-
namics, F corresponds to the shift map on the space 0, 1{ }N

+

,
at least for those points with an infinite F-expansion.

One easily finds that the periodicity of the orbits is
related to recurring F-expansions. For example,

[1, 0, 1, 1, 1, 1, 0, 1, 1, 1, . . .], (16)

is a recurring F-expansion with the recurring unit of the
length 5, and hence, it is a 5-periodic point of F.

4. The Explicit Formula of Fn

Since Fn is a piecewise linear map, and Fn is strictly in-
creasing on each subinterval In,k. One can obtain the explicit
formula of Fn.

Theorem 1. If x � [ε1, ε2, . . . , εk, . . .], then

F
n
(x) �

x

a
n− sn (1 − a)

sn

− 
n

j�1

εj

a
n− j− sn+sj − 1

(1 − a)
sn− sj+1, for n ∈ N+

.

(17)

Proof. We prove this result by mathematical induction.
We firstly consider the trivial case n � 1. If x ∈ I1,1, then

ε1 � 0 and s1 � 0. ,us,

F(x) �
x

a
1− s1(1 − a)

s1

− 
1

j�1

εj

a
1− j− s1+sj − 1

(1 − a)
s1− sj+1 �

x

a
.

(18)

If x ∈ I1,2, then ε1 � 1 and s1 � 1. ,us,

F(x) �
x

a
1− s1(1 − a)

s1
− 

1

j�1

εj

a
1− j− s1+sj− 1

(1 − a)
s1− sj+1

�
x

1 − a
−

a

1 − a
.

(19)

,erefore, the result holds for n � 1.
Assume that the result holds for n � m≥ 1, i.e.,

F
m

(x) �
x

a
m− sm (1 − a)

sm
− 

m

j�1

εj

a
m− j− sm+sj − 1

(1 − a)
sm− sj+1.

(20)

Now we shall prove that the result holds for n � m + 1. If
Fm(x)≤ a; then εm+1 � 0 and sm+1 � sm. ,us,

F
m+1

(x) �
1
a

·
x

a
m− sm (1 − a)

sm
− 

m

j�1

εj

a
m− j− sm+sj − 1

(1 − a)
sm− sj+1

⎛⎝ ⎞⎠

�
x

a
m+1− sm+1(1 − a)

sm+1
− 

m+1

j�1

εj

a
m+1− j− sm+1+sj − 1

(1 − a)
sm+1− sj+1.

(21)

If Fm(x)> a; then εm+1 � 1 and sm+1 � sm + 1. ,us,
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F
m+1

(x) �
1

1 − a
·

x

a
m− sm (1 − a)

sm
− 

m

j�1

εj

a
m− j− sm+sj− 1

(1 − a)
sm− sj+1

⎛⎝ ⎞⎠ −
a

1 − a

�
x

a
m− sm (1 − a)

sm+1 − 

m

j�1

εj

a
m− j− sm+sj− 1

(1 − a)
sm− sj+1+1 −

a

1 − a

�
x

a
m+1− sm+1(1 − a)

sm+1
− 

m

j�1

εj

a
m+1− j− sm+1+sj − 1

(1 − a)
sm+1− sj+1 −

a

1 − a

�
x

a
m+1− sm+1(1 − a)

sm+1
− 

m+1

j�1

εj

a
m+1− j− sm+1+sj − 1

(1 − a)
sm+1− sj+1.

(22)

,erefore, the result holds for n � m + 1. ,e proof is
completed. □

As a corollary, we present the exact formulas of these
jumps of Fn.

Corollary 1. All jumps of Fn are given by



n

j�1
εja

j+1− sj (1 − a)
sj − 1

, (23)

where εj � 0 or 1, and not all are εj equal to 0.

Proof. If all εj are zero, then x1,0 � 0, and it is not a jump.
From ,eorem 2, solving Fn(x) � 0, we can obtain all

these jumps of Fn. □

Definition 2. A point x in X is called a periodic point of a
self-mapping f: X⟶ X if there exists an positive integer n

such that

f
n
(x) � x. (24)

,e smallest positive integer n satisfying the above is
called the prime period or least period of the point x, the
point x is called an n-periodic point of f, and the sequence
x, f(x), . . . , fn− 1(x)  is called an n-periodic orbit.

In particularly, an 1-periodic point is called a fixed point.

,e following corollary presents the exact formulas of all
fixed points of Fn.

Corollary 2. All fixed points of Fn are given by

1
1 − a

n− sn (1 − a)
sn



n

j�1
εja

j+1− sj (1 − a)
sj− 1

, (25)

where εj � 0 or 1.

Proof. Since the curve of y � Fn(x) intersects the line of
y � x at 2n points, Fn(x) has 2n fixed points. Solving
Fn(x) � x, we have

x �
1

1 − a
n− sn (1 − a)

sn


n

j�1
εja

j+1− sj (1 − a)
sj− 1

. (26)

□

5. The Number of n-Periodic Points

,e fixed points of F are the intersections of y � F(x) and
y � x, namely, two points x � 0, 1. ,e intersections of
y � F2(x) and y � x have four points where there are two
2-periodic points, namely, two points

a
2

1 − a + a
2,

a

1 − a + a
2.

(27)

,e other two intersections x � 0 and 1 are the fixed
points. ,e intersections of y � F3(x) and y � x have eight
points where there are six 3-periodic points and two fixed
points.

In general, the intersections of y � Fn(x) and y � x have
2n periodic points. If x is a p-periodic point of F, then p | n.
Let h(p) denote the number of the p-periodic points. ,en,


p|n

h(p) � 2n
, for every integer n≥ 1,

(28)

where the sum extends over all positive divisors p of n.
In order to obtain the exact number h(n) of n-periodic

points of F, we need to introduce the Möbius function and
Möbius inversion formula (see, for example, [13, 14]).

Define the Möblius function μ: N⟶ 1, 0, 1{ } by

μ(n) �

1, n � 1,

(− 1)
r
, n � q1, q2, . . . , qr, q1 < q2 < · · · < qr,

0, others.

⎧⎪⎪⎨

⎪⎪⎩

(29)

,us, if (n1, n2) � 1, then μ(n1n2) � μ(n1)μ(n2), and for
any n ∈ N, there holds


k|n

μ(k) �
1
n

 . (30)

Lemma 3 (Möbius inversion formula). If h and g are
arithmetic functions, i.e., from N to C, satisfying
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g(n) � 
d|n

h(d), for every integer n≥ 1. (31)

,en,

h(n) � 
d|n

μ(d)g
n

d
 , for every integer n≥ 1, (32)

where μ is the Möbius function and the sums extend over all
positive divisors d of n.

In effect, the original h(n) can be determined given g(n)

by using the inversion formula.

Corollary 3. 1e number of n-periodic points of F is given by,

h(n) � 
d|n

μ
n

d
 2d

, for every integer n≥ 1. (33)

Let N(n) denote the number of n-periodic orbits of F.
,en,

N(n) �
h(n)

n
�
1
n


d|n

μ
n

d
 2d

, for every integer n≥ 1.

(34)

,e first several N(n) are

N(1) � 2,

N(2) � 1,

N(3) � 2,

N(4) � 3,

N(5) � 6,

N(6) � 9,

N(7) � 18,

N(8) � 30,

(35)

while N(n) for larger n are

N(16) � 4080,

N(20) � 52377,

N(32) � 134215680,

N(64) � 288230376084602880.

(36)

If the values just above are compared to

216

16
� 4096,

220

20
� 52428.8,

232

32
� 134217728,

264

64
� 288230376151711744,

(37)

one finds that the ratio of N(n) and (2n/n) approaches 1 as
n⟶ +∞.

Now we shall prove that the ratio of h(n) and 2n ap-
proaches 1 as n⟶ +∞.

Theorem 2. Let h(p) be the number of the p-periodic points
of F. 1en,

lim
n⟶+∞

h(n)

2n � lim
n⟶+∞

d|nμ(n/d)2d

2n � 1, (38)

where μ is the Möbius function.

Proof. On one hand,


d|n

μ
n

d
 2d ≤ 

d|n

2d

� 2n
+ 

d|n,d≠n
2d

≤ 2n
+ 

1≤ d≤ n/2⌊ ⌋

2d

≤ 2n
+ 2(n/2)+1

− 2.

(39)

On the other hand,


d|n

μ
n

d
 2d

� 2n
+ 

d|n,d≠n
μ

n

d
 2d

≥ 2n
− 

d|n,d≠n
2d

≥ 2n
− 

1≤d≤ n/2⌊ ⌋

2d

≥ 2n
− 2(n/2)+1

+ 2.

(40)
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Consequently,

1 � lim
n⟶+∞

2n
− 2(n/2)+1

+ 2
2n ≤ lim

n⟶+∞

d|nμ(n/d)2d

2n ≤ lim
n⟶+∞

2n
+ 2(n/2)+1

− 2
2n � 1. (41)

By the squeeze theorem,

lim
n⟶+∞

h(n)

2n � lim
n⟶+∞

d|nμ(n/d)2d

2n � 1. (42)
□
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