
Research Article
Periodic Points of Asymmetric Bernoulli Shifts

Yong-Guo Shi ,1 Kai Chen ,2 and Wei Liao1

1College of Mathematics and Information Science, Neijiang Normal University, Neijiang 641100, Sichuan, China
2Department of Mathematics, Sichuan University, Chengdu 610064, Sichuan, China

Correspondence should be addressed to Kai Chen; 13709047269@163.com

Received 1 September 2021; Accepted 16 September 2021; Published 14 October 2021

Academic Editor: Wenpeng Zhang

Copyright © 2021 Yong-Guo Shi et al.,is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

It is well-known that Sharkovskii’s theorem gives a complete structure of periodic order for a continuous self-map on a closed
bounded interval. As a further study, a natural problem is how to determine the location and number of periodic points for a
specific map. ,is paper considers the periodic points of asymmetric Bernoulli shift, which is a piecewise linear chaotic map.

1. Introduction

In 1964, Sharkovskii [1] firstly introduced a special ordering
on the set of positive integers. ,is ordering implies that if
p⊲ q and a continuous self-map of a closed bounded interval
has a point of period p; then it has a point of period q. ,e
least number with respect to this ordering is 3.,us, if a map
has a point of period 3, then it has points of any periods. In
1975, the latter result was rediscovered by Li and Yorke [2].
,en numerous papers are devoted to the study of interval
maps (see e.g., [3–5] and references therein).

Bifurcation points of some interval maps were studied in
[6], and the limit behavior of orbits and probabilistic some
problems were considered in [7, 8]. Recently, Ivanov in [9]
considered an exact lower bound for the number of orbits of
a given period for a self-map of a closed bounded interval.

Consider the asymmetric Bernoulli shift F: [0, 1] ⟶
[0, 1] with a parameter 0< a< 1, defined by

F(x) �

x

a
, 0≤ x≤ a,

x − a

1 − a
, a<x≤ 1.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1)

Specially, when a � 1/2, it is the Bernoulli Shift or the
binary transformation, also known as doubling map or the
binary transformation. Conjugacies between asymmetric
Bernoulli shifts are constructed in [10].

Given a positive integer n, one interesting question is
how to find all n-periodic points of F. ,e other is howmany
n-periodic points of F.

In this paper, we study periodic orbits of F. In the next
section, we present dynamics of jumps of Fn. Section 3
recalls the real number representation, i.e, F-expansion. In
Section 4, we use the F-expansion to give explicit formulas of
Fn(x) for n ∈ N, explicit formulas of jumps of Fn(x), explicit
formulae of fixed points of Fn(x), and explicit formulas of all
n-periodic points of F(x). ,e last section gives the number
h(n) of periodic orbits of a given period n for F and the limit
behavior of h(n).

2. Dynamics of Jumps of Fn

For n ∈ N, let Fn(x) denote the n-th iterate of F, which is
recursively defined by F0(x) � x and Fn � F(Fn− 1(x)) for
x ∈ [0, 1].

A point c ∈ (0, 1) is called a jump of F if the one-sided
limits, F(c− ) and F(c+), exist and are finite, but are not
equal. ,e set of jumps of F is denoted byJ(F). One can see
that

J(F)⊆J F
2

􏼐 􏼑⊆ · · · ⊆J F
n

( 􏼁⊆J F
n+1

􏼐 􏼑⊆ · · · . (2)

Each element of J(Fn+1)\J(Fn) must be a preimage
under F of a point from J(Fn). More precisely,
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J F
n+1

􏼐 􏼑\J F
n

( 􏼁 � F
− 1

J F
n

( 􏼁( 􏼁\J F
n

( 􏼁. (3)

,emap F has the unique jump a. Put x1,0: � 0, x1,1:� a,
and x1,2:� 1. Let I denote the unit interval [0, 1],
I1,1:� (x1,0, x1,1), and I1,2:� (x1,1, x1,2). One can see that Fn

has 2n − 1 jumps for n≥ 2 by induction. For i, j ∈ N+, let
xi,0:� 0, xi,2i :� 1, and xi,j denote the j th jumps of Fi in the
following order:

0 � xi,0 < xi,1 <xi,2 < · · · <xi,j < · · · <xi,2i− 1 < xi,2i � 1.

(4)

Put Ii,j: � (xi,j− 1, xi,j) for every j ∈ 1, 2, 3, . . . , 2i􏼈 􏼉. It is
clear that Ii,j is the j-th monotonic interval of Fi.

Lemma 1. For n≥ 1, the jumps of Fn and Fn− 1 have the
following relationship:

(i) F(xn,k) � F(xn,2n− 1+k) � xn− 1,k for 1≤ k≤ 2n− 1 − 1
(ii) xn,2n− 1 � xn− 1,2n− 2 � a

(iii) Fi(In,k) � Fi(In,2n− 1+k) � In− i,k for 1≤ k≤ 2n− i and
1≤ i≤ n − 1

Proof. We first claim that a is a jump of Fn for every n≥ 1. In
fact, since a is a jump of F(x), a is also a jump of Fn(x) for
n≥ 2. Moreover, it is easy to check that Fn(a) � 1 for n≥ 2.

Next, we prove (i) and (ii) by induction. It is clear that
these results holds for n � 2.

Assume that these results hold for n � m≥ 2, i.e.,

(i) F(xm,k) � F(xm,2m− 1+k) � xm− 1,k for 1≤ k≤ 2m− 1 − 1
(ii) xm,2m− 1 � xm− 1,2m− 2 � a

Now we shall prove these results hold for n � m + 1.
Denote 2m − 1 jumps of Fm by

0<xm,1 <xm,2 < · · · < xm,k < · · · < xm,2m− 1 < 1. (5)

Since F is strictly increasing on the subinterval I1,1 and
F(I1,1) � (0, 1), for each k ∈ 1, 2, . . . , 2m − 1{ }, there exists
the unique point, denoted by xm+1,k, in I1,1 such that
F(xm+1,k) � xm,k. Since F is strictly increasing on I1,1, one
can see that

0< xm+1,1 <xm+1,2 < · · · <xm+1,k < · · · <xm+1,2m − 1 < a.

(6)

Further, by the definition of jump, xm+1,k is a jump of
Fm+1 � Fm ∘F for each k ∈ 1, 2, . . . , 2m − 1{ }.

Similarly, since F is strictly increasing on the subinterval
I1,2 and F(I1,2) � (0, 1), for each k ∈ 1, 2, . . . , 2m − 1{ }, there
exists the unique point, denoted by xm+1,2m+k, in I1,2 such
that F(xm+1,2m+k) � xm,k. Since F is strictly increasing on I1,2,
one can see that

a< xm+1,2m+1 <xm+1,2m+2 < · · · <xm+1,2m+k

< · · · < xm+1,2m+1− 1 < 1.
(7)

Further, by the definition of jump, xm+1,2m+k is a jump of
Fm+1 � Fm ∘F for each k ∈ 1, 2, . . . , 2m − 1{ }. Let xm+1,2m

denote a. ,erefore,

(i) F(xm+1,k) � F(xm+1,2m+k) � xm,k for 1≤ k≤ 2m − 1
(ii) xm+1,2m � xm,2m− 1 � a

It follows from (i) that for 1≤ k≤ 2n− 1,

F In,k􏼐 􏼑 � F In,2n− 1+k􏼐 􏼑 � In− 1,k. (8)

,en for 1≤ k≤ 2n− i and 1≤ i≤ n − 1,

F
i

In,k􏼐 􏼑 � F
i

In,2n− 1+k􏼐 􏼑 � In− i,k. (9)

,is completes the proof. □

3. F-Expansion

In this section, we will introduce a new real number
representation.

Definition 1. A sequence εk􏼈 􏼉k∈N+ of 0 and 1 is called the
itinerary of x ∈ [0, 1] with respect to the asymmetric Ber-
noulli shift F: [0, 1]⟶ [0, 1] and a ∈ (0, 1), if, for k≥ 1,

εk �
0, F

k− 1
(x)≤ a,

1, F
k− 1

(x)> a.

⎧⎨

⎩ (10)

In fact, the itinerary of x ∈ [0, 1] with respect to F and
a ∈ (0, 1) is just the F-expansion of a real x ∈ [0, 1].
According to [10], or these two classic papers [11, 12], we
have an expansion for x in powers of the numbers a and
1 − a:

x � 􏽘
∞

k�1
εka

k− sk− 1(1 − a)
sk− 1 � 􏽘

∞

k�1
εka

k 1 − a

a
􏼒 􏼓

sk− 1

, (11)

where s0 � 0 and sk: � 􏽐
k
j�1 εj for k≥ 1.

,us, every x ∈ [0, 1] can be represented through its
digit sequence εk􏼈 􏼉k∈N+. In this situation, write
x � [ε1, ε2, . . . , εk, . . .] for short. One can see that every
infinite F-expansion is unique, whereas each x ∈ (0, 1) with
a finite F-expansion can be expanded in exactly two ways,
namely, one immediately verifies that

x � ε1, . . . , εk− 1, 1􏼂 􏼃 � ε1, . . . , εk− 1, 0, 1, 1, 1, . . .􏼂 􏼃. (12)

In the following, we employ a convention in which finite
fractions such as

[1, 1, 0, 0, 0, 0, . . .] � [1, 0, 1, 1, 1, 1, . . .],

[1, 0, 1, 0, 0, 0, . . .] � [1, 0, 0, 1, 1, 1, . . .],
(13)

are represented as finite fractions with infinite zeros, as
[1, 1, 0, 0, 0, . . .] or [1, 0, 1, 0, 0, 0, . . .], unless otherwise
stated.
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Lemma 2. If x � [ε1, ε2, . . . , εk, . . .], then F(x) � [ε2, ε3,
. . . , εk, . . .].

Proof. It follows from a property of the asymmetric Ber-
noulli shift F(x) that x≤ a provided that ε1 � 0 in
x � [ε1, ε2, . . . , εk, . . .]. One then finds

F(x) �
x

a
� 􏽘
∞

k�1
εka

k− 1 1 − a

a
􏼒 􏼓

sk− 1

� 􏽘
∞

k�2
εka

k− 1 1 − a

a
􏼒 􏼓

sk− 1

� 􏽘
∞

k�1
εk+1a

k 1 − a

a
􏼒 􏼓

sk

� ε2, ε3, . . . , εk, . . .􏼂 􏼃.

(14)

On the other hand, one has a<x≤ 1 if ε1 � 1 and hence

F(x) �
x − a

1 − a
� 􏽘
∞

k�2
εka

k− sk− 1(1 − a)
sk− 1− 1

� 􏽘
∞

k�1
εk+1a

k+1− sk (1 − a)
sk− 1

� ε2, ε3, . . . , εk, . . .􏼂 􏼃.

(15)

□

,is shows that, from the perspective of symbolic dy-
namics, F corresponds to the shift map on the space 0, 1{ }N

+

,
at least for those points with an infinite F-expansion.

One easily finds that the periodicity of the orbits is
related to recurring F-expansions. For example,

[1, 0, 1, 1, 1, 1, 0, 1, 1, 1, . . .], (16)

is a recurring F-expansion with the recurring unit of the
length 5, and hence, it is a 5-periodic point of F.

4. The Explicit Formula of Fn

Since Fn is a piecewise linear map, and Fn is strictly in-
creasing on each subinterval In,k. One can obtain the explicit
formula of Fn.

Theorem 1. If x � [ε1, ε2, . . . , εk, . . .], then

F
n
(x) �

x

a
n− sn (1 − a)

sn

− 􏽘
n

j�1

εj

a
n− j− sn+sj − 1

(1 − a)
sn− sj+1, for n ∈ N+

.

(17)

Proof. We prove this result by mathematical induction.
We firstly consider the trivial case n � 1. If x ∈ I1,1, then

ε1 � 0 and s1 � 0. ,us,

F(x) �
x

a
1− s1(1 − a)

s1

− 􏽘
1

j�1

εj

a
1− j− s1+sj − 1

(1 − a)
s1− sj+1 �

x

a
.

(18)

If x ∈ I1,2, then ε1 � 1 and s1 � 1. ,us,

F(x) �
x

a
1− s1(1 − a)

s1
− 􏽘

1

j�1

εj

a
1− j− s1+sj− 1

(1 − a)
s1− sj+1

�
x

1 − a
−

a

1 − a
.

(19)

,erefore, the result holds for n � 1.
Assume that the result holds for n � m≥ 1, i.e.,

F
m

(x) �
x

a
m− sm (1 − a)

sm
− 􏽘

m

j�1

εj

a
m− j− sm+sj − 1

(1 − a)
sm− sj+1.

(20)

Now we shall prove that the result holds for n � m + 1. If
Fm(x)≤ a; then εm+1 � 0 and sm+1 � sm. ,us,

F
m+1

(x) �
1
a

·
x

a
m− sm (1 − a)

sm
− 􏽘

m

j�1

εj

a
m− j− sm+sj − 1

(1 − a)
sm− sj+1

⎛⎝ ⎞⎠

�
x

a
m+1− sm+1(1 − a)

sm+1
− 􏽘

m+1

j�1

εj

a
m+1− j− sm+1+sj − 1

(1 − a)
sm+1− sj+1.

(21)

If Fm(x)> a; then εm+1 � 1 and sm+1 � sm + 1. ,us,
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F
m+1

(x) �
1

1 − a
·

x

a
m− sm (1 − a)

sm
− 􏽘

m

j�1

εj

a
m− j− sm+sj− 1

(1 − a)
sm− sj+1

⎛⎝ ⎞⎠ −
a

1 − a

�
x

a
m− sm (1 − a)

sm+1 − 􏽘

m

j�1

εj

a
m− j− sm+sj− 1

(1 − a)
sm− sj+1+1 −

a

1 − a

�
x

a
m+1− sm+1(1 − a)

sm+1
− 􏽘

m

j�1

εj

a
m+1− j− sm+1+sj − 1

(1 − a)
sm+1− sj+1 −

a

1 − a

�
x

a
m+1− sm+1(1 − a)

sm+1
− 􏽘

m+1

j�1

εj

a
m+1− j− sm+1+sj − 1

(1 − a)
sm+1− sj+1.

(22)

,erefore, the result holds for n � m + 1. ,e proof is
completed. □

As a corollary, we present the exact formulas of these
jumps of Fn.

Corollary 1. All jumps of Fn are given by

􏽘

n

j�1
εja

j+1− sj (1 − a)
sj − 1

, (23)

where εj � 0 or 1, and not all are εj equal to 0.

Proof. If all εj are zero, then x1,0 � 0, and it is not a jump.
From ,eorem 2, solving Fn(x) � 0, we can obtain all

these jumps of Fn. □

Definition 2. A point x in X is called a periodic point of a
self-mapping f: X⟶ X if there exists an positive integer n

such that

f
n
(x) � x. (24)

,e smallest positive integer n satisfying the above is
called the prime period or least period of the point x, the
point x is called an n-periodic point of f, and the sequence
x, f(x), . . . , fn− 1(x)􏼈 􏼉 is called an n-periodic orbit.

In particularly, an 1-periodic point is called a fixed point.

,e following corollary presents the exact formulas of all
fixed points of Fn.

Corollary 2. All fixed points of Fn are given by

1
1 − a

n− sn (1 − a)
sn

􏽘

n

j�1
εja

j+1− sj (1 − a)
sj− 1

, (25)

where εj � 0 or 1.

Proof. Since the curve of y � Fn(x) intersects the line of
y � x at 2n points, Fn(x) has 2n fixed points. Solving
Fn(x) � x, we have

x �
1

1 − a
n− sn (1 − a)

sn
􏽘

n

j�1
εja

j+1− sj (1 − a)
sj− 1

. (26)

□

5. The Number of n-Periodic Points

,e fixed points of F are the intersections of y � F(x) and
y � x, namely, two points x � 0, 1. ,e intersections of
y � F2(x) and y � x have four points where there are two
2-periodic points, namely, two points

a
2

1 − a + a
2,

a

1 − a + a
2.

(27)

,e other two intersections x � 0 and 1 are the fixed
points. ,e intersections of y � F3(x) and y � x have eight
points where there are six 3-periodic points and two fixed
points.

In general, the intersections of y � Fn(x) and y � x have
2n periodic points. If x is a p-periodic point of F, then p | n.
Let h(p) denote the number of the p-periodic points. ,en,

􏽘
p|n

h(p) � 2n
, for every integer n≥ 1,

(28)

where the sum extends over all positive divisors p of n.
In order to obtain the exact number h(n) of n-periodic

points of F, we need to introduce the Möbius function and
Möbius inversion formula (see, for example, [13, 14]).

Define the Möblius function μ: N⟶ 1, 0, 1{ } by

μ(n) �

1, n � 1,

(− 1)
r
, n � q1, q2, . . . , qr, q1 < q2 < · · · < qr,

0, others.

⎧⎪⎪⎨

⎪⎪⎩

(29)

,us, if (n1, n2) � 1, then μ(n1n2) � μ(n1)μ(n2), and for
any n ∈ N, there holds

􏽘
k|n

μ(k) �
1
n

􏼖 􏼗. (30)

Lemma 3 (Möbius inversion formula). If h and g are
arithmetic functions, i.e., from N to C, satisfying
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g(n) � 􏽘
d|n

h(d), for every integer n≥ 1. (31)

,en,

h(n) � 􏽘
d|n

μ(d)g
n

d
􏼒 􏼓, for every integer n≥ 1, (32)

where μ is the Möbius function and the sums extend over all
positive divisors d of n.

In effect, the original h(n) can be determined given g(n)

by using the inversion formula.

Corollary 3. 1e number of n-periodic points of F is given by,

h(n) � 􏽘
d|n

μ
n

d
􏼒 􏼓2d

, for every integer n≥ 1. (33)

Let N(n) denote the number of n-periodic orbits of F.
,en,

N(n) �
h(n)

n
�
1
n

􏽘
d|n

μ
n

d
􏼒 􏼓2d

, for every integer n≥ 1.

(34)

,e first several N(n) are

N(1) � 2,

N(2) � 1,

N(3) � 2,

N(4) � 3,

N(5) � 6,

N(6) � 9,

N(7) � 18,

N(8) � 30,

(35)

while N(n) for larger n are

N(16) � 4080,

N(20) � 52377,

N(32) � 134215680,

N(64) � 288230376084602880.

(36)

If the values just above are compared to

216

16
� 4096,

220

20
� 52428.8,

232

32
� 134217728,

264

64
� 288230376151711744,

(37)

one finds that the ratio of N(n) and (2n/n) approaches 1 as
n⟶ +∞.

Now we shall prove that the ratio of h(n) and 2n ap-
proaches 1 as n⟶ +∞.

Theorem 2. Let h(p) be the number of the p-periodic points
of F. 1en,

lim
n⟶+∞

h(n)

2n � lim
n⟶+∞

􏽐d|nμ(n/d)2d

2n � 1, (38)

where μ is the Möbius function.

Proof. On one hand,

􏽘
d|n

μ
n

d
􏼒 􏼓2d ≤ 􏽘

d|n

2d

� 2n
+ 􏽘

d|n,d≠n
2d

≤ 2n
+ 􏽘

1≤ d≤ n/2⌊ ⌋

2d

≤ 2n
+ 2(n/2)+1

− 2.

(39)

On the other hand,

􏽘
d|n

μ
n

d
􏼒 􏼓2d

� 2n
+ 􏽘

d|n,d≠n
μ

n

d
􏼒 􏼓2d

≥ 2n
− 􏽘

d|n,d≠n
2d

≥ 2n
− 􏽘

1≤d≤ n/2⌊ ⌋

2d

≥ 2n
− 2(n/2)+1

+ 2.

(40)
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Consequently,

1 � lim
n⟶+∞

2n
− 2(n/2)+1

+ 2
2n ≤ lim

n⟶+∞

􏽐d|nμ(n/d)2d

2n ≤ lim
n⟶+∞

2n
+ 2(n/2)+1

− 2
2n � 1. (41)

By the squeeze theorem,

lim
n⟶+∞

h(n)

2n � lim
n⟶+∞

􏽐d|nμ(n/d)2d

2n � 1. (42)
□
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