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Let f and g be two distinct holomorphic cusp forms for SL2(Z), and we writeλf(n) and λg(n) for their corresponding Hecke
eigenvalues. Firstly, we study the behavior of the signs of the sequences λf(p)λf(pj)􏽮 􏽯 for any even positive integer j. Moreover,
we obtain the analytic density for the set of primes where the product λf(pi)λf(pj) is strictly less than λg(pi)λg(pj). Finally, we
investigate the distribution of linear combinations of λf(pj) and λg(pj) in a given interval.(ese results generalize previous ones.

1. Introduction

Let H∗k be the set of all normalized Hecke primitive cusp
forms of even integral weight k≥ 2 for the full modular
group SL2(Z) denoted by λf(n) the n-th Hecke eigenvalue
of f ∈ H∗k . (e Hecke eigenvalues of cusp forms have been
extensively studied (see, e.g., [1–7]). From the theory of
Hecke operators, we know that λf(n) satisfies the standard
Hecke relation as follows: for any integers m, n≥ 1,

λf(m)λf(n) � 􏽘
d|(m,n)

λf

mn

d
2􏼠 􏼡. (1)

In particular, λf(n) is a real and multiplicative function
and

λf(1) � 1. (2)

Furthermore, it is also known that λf(n) satisfies the
Ramanujan conjecture [8]:

λf(n)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤d(n), (3)

where d(n) is the Dirichlet divisor function.
(ere are many papers that focus on the sign changes of

the Hecke eigenvalues λf(n). It is well known that
λf(n)􏽮 􏽯

n≥ 1 changes sign infinitely often. Meher et al. [9]
studied the distribution of the signs of λf(pj)􏽮 􏽯 as p varies
over the prime numbers. (ey calculated the natural density
of the sets explicitly in terms of the celebrated Sato–Tate

conjecture (see(eorem B in [10]). In [11], a joint version of
the pair-Sato–Tate conjecture (as outlined in Proposition 2.2
in [12]) gives the result that the set p|λf(pj)λg(pj)< 0􏽮 􏽯 has
natural density 1/2 for any odd positive integer j.

In this paper, based on the now-proven Sato–Tate
conjecture, we first study the behavior of the signs of
λf(p)λf(pj)􏽮 􏽯 for any even positive integer j.

Theorem 1. Let f ∈ H∗k be a cusp form. 'en, for any even
positive integer j, the sets p|λf(p)λf(pj)> 0􏽮 􏽯 and
p|λf(p)λf(pj)< 0􏽮 􏽯 both have natural density 1/2.

In [13], Kowalski et al. first proved that if the signs of λf(p)

and λg(p) coincide for all primes up to the exceptional set of
analytic density at most 1/32, then f � g. Subsequently,
Matomäki [14] improved the above result by utilizing linear
programming to take full advantage of all the available
information.

Inspired by [13], Chiriac [15] started to compare Hecke
eigenvalues over prime numbers and simultaneously showed
that the sets of primes for λf(p)< λg(p) and λ2f(p)< λ2g(p)

both have analytic density at least 1/16. Notice that the pair-
Sato–Tate conjecture yields a stronger result for the former
set in [15] with natural density 1/2 in replace of at least 1/16
(see Proposition 2.1 (iii) in [16]). Of course, this result is also
valid for the analytic density since the existence of the
natural density implies that of the analytic density, and they
are equal.
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Most recently, Lao [17] further studied Chiriac’s ques-
tions [15] by considering the Hecke eigenvalues at prime
powers. She established that the sets p|λf(pj)< λg(pj)􏽮 􏽯

with 1≤ j≤ 8 and p|λ2f(pj)< λ2g(pj)􏽮 􏽯 with 1≤ j≤ 4
have analytic density at least (1/16[(j + 1)/2]2) and
(1/4j(j + 1)2), respectively.

In this paper, our second aim is to obtain the analytic
density for the set p|λf(pi)λf(pj)< λg(pi)λg(pj)􏽮 􏽯 with
j≥ 1 and 0≤ i≤ j.

Theorem 2. Let f, g ∈ H∗k be two distinct cusp forms. 'en,
for j≥ 1 and 0≤ i≤ j, the set p|λf(pi)λf(pj)􏽮 < λg

(pi)λg(pj)} has analytic density at least ((1 + i − δ1)/
4(ij + j + δ2)

2), where

δ1 �
0, if i≠ j,

1, if i � j,
􏼨 (4)

δ2 �
i + 1, if 2∤i + j,

0, if 2|i + j.
􏼨 (5)

Remark 1. By symmetry, for j≥ 1 and 0≤ i≤ j, (eorem 2
implies that the set p|λf(pi)λf(pj)> λg(pi)λg(pj)􏽮 􏽯

has analytic density at least ((1 + i − δ1)/4(ij + j + δ2)
2).

(us, for j≥ 1 and 0≤ i≤ j, the set p|λf(pi)λf􏽮

(pj) � λg(pi)λg(pj)} has analytic density at most
1 − ((1 + i − δ1)/2(ij + j + δ2)

2).

Remark 2. One can easily find that for i � 0, j � 1, or
i � j � 1, we have ((1 + i − δ1)/4(ij + j + δ2)

2) � (1/16),
which are consistent with the numerical values of Chiriac’s
results (see (eorems 1 and 1.3 in [15]). By compari-
son, ((1 + i − δ1)/4(ij + j + δ2)

2) � (1/16[(j + 1)/2]2) with
i � 0, 1≤ j≤ 8, and ((1 + i − δ1)/4(ij + j + δ2)

2) � (1/4j

(j + 1)2) with 1≤ i � j≤ 4. Hence, (eorem 2 also
generalizes previous results of Lao (see (eorems 1 and 2
in [17]).

It is natural to ask whether (eorem 2 can be refined by
the pair-Sato–Tate conjecture. In fact, with the help of this
conjecture, some specific cases can be dealt with by calcu-
lating the corresponding double integral.

Finally, we concern the distribution of linear combi-
nations of λf(pj) and λg(pj) in a specified interval. Chiriac
and Jorza (see Proposition 5.9 in [18]) obtained the density
bound for the set v|a< c1av(π1) + c2av(π2)< b􏼈 􏼉 in the
context of unitary cuspidal representations π that satisfy the
Ramanujan conjecture. For holomorphic cusp forms, we
establish the following theorem.

Theorem 3. Let f, g ∈ H∗k be two distinct cusp forms.
Let a, b, c1, c2 ∈ R with a< b. 'en, for j≥ 1, the set
p|a< c1λf(pj) + c2λg(pj)< b􏽮 􏽯 has analytic density at least

(j + 1) c
4
1 + c

4
2􏼐 􏼑 + δ3 c

3
1 + c

3
2􏼐 􏼑 + 6c

2
1c

2
2 + (a + b)

2
+ 2ab􏼐 􏼑 c

2
1 + c

2
2􏼐 􏼑 + a

2
b
2

2 (j + 1)
2

c1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + c2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑
2

+(j + 1)(|a| +|b|) c1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + c2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 +|ab|􏼒 􏼓
2

−
c
2
1 + c

2
2 + ab

2 (j + 1)
2

c1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + c2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑
2

+(j + 1)(|a| +|b|) c1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + c2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 +|ab|􏼒 􏼓

,

(6)

where

δ3 �
0, if j is odd,

1, if j is even.
􏼨 (7)

(e proofs of (eorems 2 and 3 rely on Lemma 4 in-
volving the analytic density of a particular set of primes.
Recently, there was a big breakthrough on the automorphy
of all symmetric powers for cuspidal Hecke eigenforms
((eorem A in [19]), which implies that the L-function
L(symjf, s) is automorphic for j≥ 1 and f ∈ H∗k .(en, with
the help of the properties of symmetric power L-functions
and their Rankin–Selberg L-functions, we obtain the desired
results.

2. Preliminaries

2.1. Primitive Automorphic L-Functions. In this section, we
will briefly recall some fundamental facts about primitive
automorphic L-functions and give the main tools and
definitions. For more details to learn automorphic
L-functions, refer [17, 20–28].

Let f, g ∈ H∗k be two cusp forms. (e j-th symmetric
power L-function attached to f is defined by

L symj
f, s􏼐 􏼑 � 􏽙

p

􏽙

j

m�0
1 −

αf(p)j− mβf(p)m

ps
⎛⎝ ⎞⎠

− 1

, Re(s)> 1,

(8)

where αf(p) and βf(p) are two complex numbers with
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λf(p) � αf(p) + βf(p),

αf(p)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � βf(p)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � αf(p)βf(p) � 1.
(9)

One can write it as a Dirichlet series: for Re(s)> 1,

L symj
f, s􏼐 􏼑 � 􏽘

∞

n�1

λsymjf(n)

n
s � 􏽙

p

1 + 􏽘
v≥ 1

λsymjf p
v

( 􏼁

p
vs

⎛⎝ ⎞⎠,

(10)

where λsymjf(n) is a real multiplicative function, and

λsymjf(p) � 􏽘

j

m�0
αf(p)

j− 2m
� λf p

j
􏼐 􏼑. (11)

(e Rankin–Selberg L-function attached to symif and
symjg is defined by

L symi
f × symj

g, s􏼐 􏼑 � 􏽙
p

􏽙

i

m�0
􏽙

j

m′�0

1 −
αf(p)i− 2mαg(p)j− 2m′

ps
⎛⎝ ⎞⎠

− 1

� 􏽘
∞

n�1

λsymif×symjg(n)

n
s , Re(s)> 1,

(12)

where λsymif×symjg(n) is a real multiplicative function, and

λsymif×symjg(p) � 􏽘
i

m�0
􏽘

j

m′�0

αf(p)
i− 2mαg(p)

j− 2m′

� λsymif(p)λsymjg(p).

(13)

We make the convention that

L sym0
f, s􏼐 􏼑 � ζ(s),

L sym1
f, s􏼐 􏼑 � L(f, s),

L sym0
f × symj

f, s􏼐 􏼑 � L symj
f, s􏼐 􏼑.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(14)

A key ingredient of proving (eorems 2 and 3 is the
analytic properties of various automorphic L-functions. By a
series of deep works [29–36], we learn that for 1≤ j≤ 8,
L(symjf, s) is an automorphic L-function. Recently,
Newton and (orne (see (eorem A in [19]) proved the
automorphy of the symmetric power lifting symjf for j≥ 1
and f ∈ H∗k . Hence, by standard arguments, we have the
following.

Lemma 1. Let f ∈ H∗k be a cusp form and L(symjf, s) be
defined as in (8). For j≥ 1, L(symjf, s) has an analytic
continuation as an entire function in the whole complex plane
C.

Combining Lemma 1 with (10), we deduce that for j≥ 1,

􏽘
p

λsymjf(p)

p
s � O(1), as s⟶ 1+

. (15)

Moreover, based on the automorphy of symjf for j≥ 1
and the work [37–42] on the Rankin–Selberg theory, we
have the following.

Lemma 2. Let f, g ∈ H∗k be two cusp forms and L(symif ×

symjg, s) be defined as in (12). For i, j≥ 1,
L(symif × symjg, s) has an analytic continuation as an
entire function in the whole complex plane C (except possibly
for simple poles at s � 0, 1 when symjf � symjg).

(us, when f � g, s � 1 is a simple pole of
L(symjf × symjg, s). By (12), we have

􏽘
p

λsymjf×symjg(p)

p
s � 􏽘

p

1
p

s + O(1), as s⟶ 1+
. (16)

In other cases, L(symif × symjg, s) is an entire function
and does not vanish at s � 1. (us,

􏽘
p

λsymif×symjg(p)

p
s � O(1), as s⟶ 1+

. (17)

2.2. Sato–Tate Conjecture. Firstly, let us introduce the def-
inition of natural density.

Definition 1. For a subset A⊆P which denotes the set of all
primes, the natural density of A in P is defined as

lim
x⟶∞

# p≤x|p ∈ A􏼈 􏼉

# p≤ x|p ∈ P􏼈 􏼉
, (18)

provided the limit exists.

Secondly, let us define the Sato–Tate measure and state
the Sato–Tate conjecture (see(eorem 2.3 in [9]), which will
be used to prove (eorem 1.

Definition 2. (e Sato–Tate measure μST is the probability
measure on [0, π] given by (2/π)sin2 θdθ.

For any subinterval I⊆[0, π], one has

πI(x) � # p≤x θp ∈ I
􏼌􏼌􏼌􏼌􏼌􏼚 􏼛. (19)

Lemma 3. Let f ∈ H∗k be a cusp form. 'e sequence θp􏽮 􏽯 is
equidistributed in [0, π] with respect to the Sato–Tate mea-
sure μST. In particular, for any subinterval I⊆[0, π], we have

lim
x⟶∞

πI(x)

π(x)
� μST(I) �

2
π

􏽚
I
sin2 θdθ. (20)

Lemma 3 implies that ifA is a finite set, then the natural
density of the set p|θp ∈ A􏽮 􏽯 is 0.
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2.3. An Analytic Density Lemma. We also recall the defi-
nition of analytic density.

Definition 3. A set B of primes is said to have analytic
density (or Dirichlet density) δ > 0 if and only if,

􏽘
p∈B

1
p

s ∼ δ􏽘
p

1
p

s, as s⟶ 1+
. (21)

In order to prove (eorems 2 and 3, we need the fol-
lowing lemma, which is inspired by the ideas outlined in
Section 3 of [5].

Lemma 4. Let hp be real numbers only determined by prime
p and satisfy |hp|≤B with a bound B that does not depend on
p. 'ere exist real constants m and M such that as s⟶ 1+,
the following equalities hold:

􏽘
p

h
2
p

p
s � m 􏽘

p

1
p

s + O(1), (22)

􏽘
p

hp

p
s � M 􏽘

p

1
p

s + O(1). (23)

(en, the setB � p|hp < 0􏽮 􏽯 has analytic density at least
((m − MB)/2B2).

Proof. If p ∉B, hp ≥ 0, and therefore h2
p ≤Bhp, whereas if

p ∈B, then − hp ≤B and − Bhp ≤B2. We see that

􏽘
p

h
2
p

p
s � 􏽘

p∈B

h
2
p

p
s + 􏽘

p ∉B

h
2
p

p
s

≤B
2

􏽘
p∈B

1
p

s + B 􏽘
p

hp

p
s − 􏽘

p∈B

hp

p
s

⎛⎝ ⎞⎠ + O(1)

≤ 2B
2

􏽘
p∈B

1
p

s + B 􏽘
p

hp

p
s + O(1), as s⟶ 1+

.

(24)

Inserting (23) into (24), we get

􏽘
p

h
2
p

p
s ≤ 2B

2
􏽘

p∈B

1
p

s + MB 􏽘
p

1
p

s + O(1), as s⟶ 1+
.

(25)

Comparing (22) with (25) leads to

m − MB

2B
2 􏽘

p

1
p

s + O(1)≤ 􏽘
p∈B

1
p

s, as s⟶ 1+
, (26)

i.e., the set B has analytic density at least
((m − MB)/2B2). □

3. Proof of Theorem 1

By (9), for any prime p, we can write,

λf(p) � 2 cos θp, (27)

for some θp ∈ [0, π]. And, λf(pj) is expressible by the
following elementary trigonometric formula:

λf p
j

􏼐 􏼑 �
sin (j + 1)θp􏼐 􏼑

sin θp

. (28)

When the values of θp are 0 or π, the values of λf(pj) are
j + 1 or (− 1)j(j + 1).

(en, we have

λf(p)λf p
j

􏼐 􏼑 �
sin 2θp􏼐 􏼑

sin θp

·
sin (j + 1)θp􏼐 􏼑

sin θp

� 2 cos θp ·
sin (j + 1)θp􏼐 􏼑

sin θp

, θp ∈ (0, π).

(29)

Since the set p|θp � 0 or π􏽮 􏽯 has natural density 0 which
only has finitely many primes, we may assume that
θp ∈ (0, π). For θp ∈ (0, π), we know that sin θp > 0. Hence,
the sign of λf(p)λf(pj) is the same as the sign of
cos θp sin((j + 1)θp).

(e proof of (eorem 1 can be divided into two cases
when j ≡ 2(mod 4) and j ≡ 0(mod 4).

3.1. j ≡ 2(mod 4). Assume that j ≡ 2(mod 4), we get

j � 4
j

4
􏼔 􏼕 + 2. (30)

(en, we observe that
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cos θp sin (j + 1)θp􏼐 􏼑> 0⟺

θp ∈ 􏽛

[j/4]+1

m�1

(2m − 2)π
j + 1

,
(2m − 1)π

j + 1
􏼠 􏼡⋃

π
2

,
(j + 2)π
2(j + 1)

􏼠 􏼡 􏽛

2[j/4]+1

m�[j/4]+2

(2m − 1)π
j + 1

,
2mπ
j + 1

􏼠 􏼡,

(31)

cos θp sin (j + 1)θp􏼐 􏼑< 0⟺

θp ∈ 􏽛

[j/4]

m�1

(2m − 1)π
j + 1

,
2mπ
j + 1

􏼠 􏼡⋃
jπ

2(j + 1)
,
π
2

􏼠 􏼡 􏽛

2[j/4]+1

m�[j/4]+1

2mπ
j + 1

,
(2m + 1)π

j + 1
􏼠 􏼡.

(32)

Especially, we rewrite the third term of the right-hand
side of (31) and (32) by using (30).

􏽛

2[j/4]+1

m�[j/4]+2

(2m − 1)π
j + 1

,
2mπ
j + 1

􏼠 􏼡 � 􏽛

[j/4]

m�1

(4[j/4] − 2m + 3)π
j + 1

,
(4[j/4] − 2m + 4)π

j + 1
􏼠 􏼡

� 􏽛

[j/4]

m�1

(j − 2m + 1)π
j + 1

,
(j − 2m + 2)π

j + 1
􏼠 􏼡,

􏽛

2[j/4]+1

m�[j/4]+1

2mπ
j + 1

,
(2m + 1)π

j + 1
􏼠 􏼡 � 􏽛

[j/4]+1

m�1

(4[j/4] − 2m + 4)π
j + 1

,
(4[j/4] − 2m + 5)π

j + 1
􏼠 􏼡

� 􏽛

[j/4]+1

m�1

(j − 2m + 2)π
j + 1

,
(j − 2m + 3)π

j + 1
􏼠 􏼡.

(33)

Next, we consider the sets A and B consisting of the
following forms:

A � 􏽛

[j/4]+1

m�1

(2m − 2)π
j + 1

,
(2m − 1)π

j + 1
􏼠 􏼡⋃

π
2

,
(j + 2)π
2(j + 1)

􏼠 􏼡 􏽛

[j/4]

m�1

(j − 2m + 1)π
j + 1

,
(j − 2m + 2)π

j + 1
􏼠 􏼡

� 􏽛

[j/4]+1

m�1
Im⋃ J ∪

[j/4]

m�1
Km,

B � 􏽛

[j/4]

m�1

(2m − 1)π
j + 1

,
2mπ
j + 1

􏼠 􏼡⋃
jπ

2(j + 1)
,
π
2

􏼠 􏼡 􏽛

[j/4]+1

m�1

(j − 2m + 2)π
j + 1

,
(j − 2m + 3)π

j + 1
􏼠 􏼡

� 􏽛

[j/4]

m�1
Km
′ ⋃ J′ ∪

[j/4]+1

m�1
Im
′.

(34)

We will prove the results in (eorem 1 by showing that
the Sato–Tate measure of the two sets A and B is equal, i.e.,
μST(A) � μST(B). Since the sets A and B are divided into
disjoint intervals given in (34), it is sufficient to prove that
μST(Im) � μST(Im

′) for each m with 1≤m≤ [j/4] + 1 and
μST(Km) � μST(Km

′) for each m with 1≤m≤ [j/4] and
μST(J) � μST(J′).

Now, we restrict our attention to prove μST(J) � μST(J′).
Using the fact

􏽚 sin2 x dx �
x

2
−
sin 2 x

4
+ C, (35)

we obtain
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􏽚
J
sin2 x dx �

π
4(j + 1)

−
1
4
sin

(j + 2)π
j + 1

􏼠 􏼡. (36)

On the other hand, we have

􏽚
J′
sin2 x dx �

π
4(j + 1)

+
1
4
sin

jπ
j + 1

􏼠 􏼡. (37)

We know that

sin
(j + 2)π

j + 1
􏼠 􏼡 � sin π +

π
j + 1

􏼠 􏼡 � − sin
jπ

j + 1
􏼠 􏼡. (38)

(us, the second term on the right-hand side of equa-
tions (36) and (37) is same. (erefore, we see that

􏽚
J
sin2 xdx � 􏽚

J′
sin2 x dx. (39)

Let us prove μST(Km) � μST(Km
′). Applying (35) again

yields the following equations:

􏽚
Km

sin2 xdx �
π

2(j + 1)
−
1
4

sin
2(j − 2m + 2)π

j + 1
􏼠 􏼡 − sin

2(j − 2m + 1)π
j + 1

􏼠 􏼡􏼠 􏼡,

􏽚
Km
′
sin2 xdx �

π
2(j + 1)

−
1
4

sin
4mπ
j + 1

􏼠 􏼡 − sin
2(2m − 1)π

j + 1
􏼠 􏼡􏼠 􏼡.

(40)

It is easy to find that

sin
2(j − 2m + 2)π

j + 1
􏼠 􏼡 � sin 2π +

2(1 − 2m)π
j + 1

􏼠 􏼡

� − sin
2(2m − 1)π

j + 1
􏼠 􏼡,

sin
2(j − 2m + 1)π

j + 1
􏼠 􏼡 � sin 2π −

4mπ
j + 1

􏼠 􏼡 � − sin
4mπ
j + 1

􏼠 􏼡.

(41)

From the above discussion, we deduce that

􏽚
Km

sin2 x dx � 􏽚
Km
′
sin2 x dx. (42)

Similarly, we can have

􏽚
Im

sin2 x dx � 􏽚
Im
′
sin2 x dx. (43)

3.2. j ≡ 0(mod 4). Assume j ≡ 0(mod 4). We see that

cos θp sin (j + 1)θp􏼐 􏼑> 0⟺ θp ∈ 􏽛

(j/4)

m�1

(2m − 2)π
j + 1

,
(2m − 1)π

j + 1
􏼠 􏼡⋃

jπ
2(j + 1)

,
π
2

􏼠 􏼡 􏽛

(j/2)

m�(j/4)+1

(2m − 1)π
j + 1

,
2mπ
j + 1

􏼠 􏼡, (44)

cos θp sin (j + 1)θp􏼐 􏼑< 0⟺ θp ∈ 􏽛

(j/4)

m�1

(2m − 1)π
j + 1

,
2mπ
j + 1

􏼠 􏼡⋃
π
2

,
(j + 2)π
2(j + 1)

􏼠 􏼡 􏽛

(j/2)

m�(j/4)+1

2mπ
j + 1

,
(2m + 1)π

j + 1
􏼠 􏼡. (45)

Obviously,

􏽛

(j/2)

m�(j/4)+1

(2m − 1)π
j + 1

,
2mπ
j + 1

􏼠 􏼡 � 􏽛

(j/4)

m�1

(j − 2m + 1)π
j + 1

,
(j − 2m + 2)π

j + 1
􏼠 􏼡,

􏽛

(j/2)

m�(j/4)+1

2mπ
j + 1

,
(2m + 1)π

j + 1
􏼠 􏼡 � 􏽛

(j/4)

m�1

(j − 2m + 2)π
j + 1

,
(j − 2m + 3)π

j + 1
􏼠 􏼡.

(46)
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Next, we define the right-hand side of (44) and (45) as

C � 􏽛

(j/4)

m�1

(2m − 2)π
j + 1

,
(2m − 1)π

j + 1
􏼠 􏼡⋃

jπ
2(j + 1)

,
π
2

􏼠 􏼡 􏽛

(j/4)

m�1

(j − 2m + 1)π
j + 1

,
(j − 2m + 2)π

j + 1
􏼠 􏼡

� 􏽛

(j/4)

m�1
Im⋃ J′ 􏽛

(j/4)

m�1
Km,

D � 􏽛

(j/4)

m�1

(2m − 1)π
j + 1

,
2mπ
j + 1

􏼠 􏼡⋃
π
2

,
(j + 2)π
2(j + 1)

􏼠 􏼡 􏽛

(j/4)

m�1

(j − 2m + 2)π
j + 1

,
(j − 2m + 3)π

j + 1
􏼠 􏼡

� 􏽛

(j/4)

m�1
Km
′ ⋃ J 􏽛

(j/4)

m�1
Im
′.

(47)

(e rest of the proof runs as before.

4. Proof of Theorem 2

(e next two lemmas are generalizations of Lemmas 1 and 2
and Lemmas 3.1 and 3.2 of Lao [17], respectively.

Lemma 5. Let f, g ∈ H∗k be two distinct cusp forms.'en, for
j≥ 1 and 0≤ i≤ j, we have

􏽘
p

λf p
i

􏼐 􏼑λf p
j

􏼐 􏼑 − λg p
i

􏼐 􏼑λg p
j

􏼐 􏼑􏼐 􏼑
2

p
s

� 2 1 + i − δ1( 􏼁 􏽘
p

1
p

s + O(1), as s⟶ 1+
,

(48)

where δ1 is defined as in (4).

Proof. By observing (11) and (13), we find that for 0≤ i≤ j,

λf p
i

􏼐 􏼑λf p
j

􏼐 􏼑 � 􏽘
i

m�0
􏽘

j

m′�0

αf(p)
i− 2mαf(p)

j− 2m′

� 􏽘
i

l1�0
λsymi+j− 2l1f(p).

(49)

In particular, for i � j,

λ2f p
j

􏼐 􏼑 � λsymjf×symjf(p) � 1 + 􏽘

j

l1�1
λsym2l1f(p). (50)

Hence, we have

λf p
i

􏼐 􏼑λf p
j

􏼐 􏼑 × λg p
i

􏼐 􏼑λg p
j

􏼐 􏼑 � 􏽘
i

l1�0
􏽘

i

l2�0
λsymi+j− 2l1f×symi+j− 2l2g(p),

(51)

λ2f p
i

􏼐 􏼑λ2g p
j

􏼐 􏼑 � 1 + 􏽘

i

l1�1
λsym2l1f(p) + 􏽘

j

l2�1
λsym2l2g(p)

+ 􏽘
i

l1�1
􏽘

j

l2�1
λsym2l1f×sym2l2g(p).

(52)

By (51) and (52), we see that for j≥ 1 and 0≤ i≤ j,

􏽘
p

λf p
i

􏼐 􏼑λf p
j

􏼐 􏼑 − λg p
i

􏼐 􏼑λg p
j

􏼐 􏼑􏼐 􏼑
2

p
s � 􏽘

p

􏽘

i

l1�1

λsym2l1f(p)

p
s + 􏽘

p

􏽘

j

l2�1

λsym2l2f(p)

p
s + 􏽘

p

􏽘

i

l1�1

λsym2l1g(p)

p
s

+ 􏽘
p

􏽘

j

l2�1

λsym2l2g(p)

p
s + 2􏽘

p

1
p

s + 􏽘
p

􏽘

i

l1�1
􏽘

j

l2�1

λsym2l1f×sym2l2f(p)

p
s

+ 􏽘
p

􏽘

i

l1�1
􏽘

j

l2�1

λsym2l1g×sym2l2g(p)

p
s − 2􏽘

p

􏽘

i

l1�0
􏽘

i

l2�0

λsymi+j− 2l1f×symi+j− 2l2g(p)

p
s .

(53)
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Note that using (17), for j≥ 1 and 0≤ i≤ j, we have

􏽘
p

􏽘

i

l1�0
􏽘

i

l2�0

λsymi+j− 2l1f×symi+j− 2l2g(p)

p
s � δ1 􏽘

p

1
p

s + O(1), as s⟶ 1+
,

(54)

where δ1 is defined as in (4). In particular, taking
i � j � l1 � l2, we apply (2) and get

λsymi+j− 2l1f×symi+j− 2l2g(p) � λf p
i+j− 2l1􏼐 􏼑λg p

i+j− 2l2􏼐 􏼑 � 1.

(55)

Now, using (15)–(17) and (54) to estimate the terms in
(53), we obtain Lemma 5 immediately. □

Lemma 6. Letf, g ∈ H∗k be two distinct cusp forms.'en, for
j≥ 1 and 0≤ i≤ j, we have

λf p
i

􏼐 􏼑λf p
j

􏼐 􏼑 − λg p
i

􏼐 􏼑λg p
j

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ 2 ij + j + δ2( 􏼁, (56)

where δ2 is defined as in (5).

Proof. By (49), we know that for 0≤ i≤ j,

λf p
i

􏼐 􏼑λf p
j

􏼐 􏼑 − λg p
i

􏼐 􏼑λg p
j

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

� 􏽘
i

l1�0
λsymi+j− 2l1f(p) − λsymi+j− 2l1g(p)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌.
(57)

□

Case 1. If i + j is odd, then so is i + j − 2l1. (en, (11) gives

λsymi+j− 2l1f(p) � αf(p)
i+j− 2l1 + αf(p)

i+j− 2l1− 2
+ · · · + αf(p)

− i− j+2l1+2
+ αf(p)

− i− j+2l1 ,

λsymi+j− 2l1g(p) � αg(p)
i+j− 2l1 + αg(p)

i+j− 2l1− 2
+ · · · + αg(p)

− i− j+2l1+2
+ αg(p)

− i− j+2l1 .
(58)

Since |αf(p)| � 1 (see (9)), we have

λf p
i

􏼐 􏼑λf p
j

􏼐 􏼑 − λg p
i

􏼐 􏼑λg p
j

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ 2(ij + j + i + 1). (59)

Case 2. If i + j is even, then so is i + j − 2l1. Similarly, we
have

λsymi+j− 2l1f(p) � αf(p)
i+j− 2l1 + αf(p)

i+j− 2l1− 2
+ · · · + 1 + · · · + αf(p)

− i− j+2l1+2
+ αf(p)

− i− j+2l1 ,

λsymi+j− 2l1g(p) � αg(p)
i+j− 2l1 + αg(p)

i+j− 2l1− 2
+ · · · + 1 + · · · + αg(p)

− i− j+2l1+2
+ αg(p)

− i− j+2l1 .
(60)

(us,

λf p
i

􏼐 􏼑λf p
j

􏼐 􏼑 − λg p
i

􏼐 􏼑λg p
j

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ 2(ij + j). (61)

By the above estimates, we conclude that for j≥ 1 and
0≤ i≤ j,

λf p
i

􏼐 􏼑λf p
j

􏼐 􏼑 − λg p
i

􏼐 􏼑λg p
j

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ 2 ij + j + δ2( 􏼁, (62)

where δ2 is defined as in (5).

Now, we are ready to prove (eorem 2.

Proof. of (eorem 2. Let f, g ∈ H∗k be two distinct cusp
forms. For j≥ 1 and 0≤ i≤ j, define

hp � λf p
i

􏼐 􏼑λf p
j

􏼐 􏼑 − λg p
i

􏼐 􏼑λg p
j

􏼐 􏼑. (63)

We infer from (15) and (49) that

􏽘
p

λf p
i

􏼐 􏼑λf p
j

􏼐 􏼑 − λg p
i

􏼐 􏼑λg p
j

􏼐 􏼑

p
s � O(1), as s⟶ 1+

.

(64)

Observe that M � 0.
Moreover, we know from Lemmas 5 and 6 that m �

2(1 + i − δ1) and B � 2(ij + j + δ2).
(erefore, from the proof of Lemma 4, we have

1 + i − δ1
4 ij + j + δ2( 􏼁

2 􏽘
p

1
p

s + O(1)≤ 􏽘
p∈A

1
p

s, as s⟶ 1+
,

(65)

i.e., the set p|λf(pi)λf(pj)< λg(pi)λg(pj)􏽮 􏽯 has analytic
density at least ((1 + i − δ1)/4(ij + j + δ2)

2). □

5. Proof of Theorem 3

(e following lemmas play an important role in the Proof of
(eorem 3.

Lemma 7. Let f, g ∈ H∗k be two distinct cusp forms. Let
a, b, c1, c2 ∈ R with a< b. 'en, for j≥ 1 and s⟶ 1+, we
have

8 Journal of Mathematics



􏽘
p

c1λf p
j

􏼐 􏼑 + c2λg p
j

􏼐 􏼑 − a􏼐 􏼑
2

c1λf p
j

􏼐 􏼑 + c2λg p
j

􏼐 􏼑 − b􏼐 􏼑
2

p
s

� (j + 1) c
4
1 + c

4
2􏼐 􏼑 + δ3 c

3
1 + c

3
2􏼐 􏼑 + 6c

2
1c

2
2 + (a + b)

2
+ 2ab􏼐 􏼑 c

2
1 + c

2
2􏼐 􏼑 + a

2
b
2

􏼐 􏼑 􏽘
p

1
p

s + O(1),

(66)

where δ3 is given in (7).

Proof. It is easy to verify that the sum on the left side of (66)
equals

− 2ab(a + b) 􏽘
p

c1λf p
j

􏼐 􏼑 + c2λg p
j

􏼐 􏼑

p
s

+ (a + b)
2

+ 2ab􏼐 􏼑 􏽘
p

c1λf p
j

􏼐 􏼑 + c2λg p
j

􏼐 􏼑􏼐 􏼑
2

p
s

− 2(a + b) 􏽘
p

c1λf p
j

􏼐 􏼑 + c2λg p
j

􏼐 􏼑􏼐 􏼑
3

p
s

+ 􏽘
p

c1λf p
j

􏼐 􏼑 + c2λg p
j

􏼐 􏼑􏼐 􏼑
4

p
s + a

2
b
2

􏽘
p

1
p

s.

(67)

For the first sum in (67), by using (15), we get

􏽘
p

c1λf p
j

􏼐 􏼑 + c2λg p
j

􏼐 􏼑

p
s � O(1), as s⟶ 1+

. (68)

For the second sum in (67), one can easily obtain from
(15), (17), and (50) that

􏽘
p

c1λf p
j

􏼐 􏼑 + c2λg p
j

􏼐 􏼑􏼐 􏼑
2

p
s

� c
2
1 + c

2
2􏼐 􏼑 􏽘

p

1
p

s + O(1), as s⟶ 1+
.

(69)

As for the third sum in (67), we note that

c1λf p
j

􏼐 􏼑 + c2λg p
j

􏼐 􏼑􏼐 􏼑
3

� c
3
1λ

3
f p

j
􏼐 􏼑 + 3c

2
1c2λ

2
f p

j
􏼐 􏼑λg p

j
􏼐 􏼑

+ 3c1c
2
2λf p

j
􏼐 􏼑λ2g p

j
􏼐 􏼑 + c

3
2λ

3
g p

j
􏼐 􏼑.

(70)

In view of (50), we have

λ2f p
j

􏼐 􏼑λg p
j

􏼐 􏼑 � λsymjg(p) + 􏽘

j

l1�1
λsym2l1f×symjg(p). (71)

Noticing (11), (13), and (49), we clearly deduce that

λ3f p
j

􏼐 􏼑 � λsymjf(p) + 􏽘

j

l1�1
λsymjf×sym2l1f(p)

� (j + 1)λsymjf(p) + 􏽘

j− 1

i�0
(i + 1)λsym3j− 2if(p)

+ 􏽘

[j/2]

i�1
(j − 2i + 1)λsymj− 2if(p).

(72)

If j is even and j � 2i, we apply (2) and get

λsymj− 2if(p) � λf p
j− 2i

􏼐 􏼑 � 1. (73)

Hence, we deduce from (15) and (17) that as s⟶ 1+,

􏽘
p

c1λf p
j

􏼐 􏼑 + c2λg p
j

􏼐 􏼑􏼐 􏼑
3

p
s � δ3 c

3
1 + c

3
2􏼐 􏼑 􏽘

p

1
p

s + O(1),

(74)

where δ3 is given in (7).
We now calculate the fourth sum in (67). By (50), we

have

λ4f p
j

􏼐 􏼑 � 1 + 2 􏽘

j

l1�1
λsym2l1f(p) + 􏽘

j

l1�1
􏽘

j

l2�1
λsym2l1f×sym2l2f(p).

(75)

Combining the above result with (15) and (16) leads to

􏽘
p

λ4f p
j

􏼐 􏼑

p
s � (j + 1) 􏽘

p

1
p

s + O(1), as s⟶ 1+
. (76)

From (15), (17), and (72), it is easy to check that as
s⟶ 1+,

􏽘
p

λ3f p
j

􏼐 􏼑λg p
j

􏼐 􏼑

p
s � (j + 1) 􏽘

p

λsymjf×symjg(p)

p
s + 􏽘

p

􏽘

j− 1

i�0
(i + 1)

λsym3j− 2if×symjg(p)

p
s

+ 􏽘
p

􏽘

[j/2]

i�1
(j − 2i + 1)

λsymj− 2if×symjg(p)

p
s � O(1).

(77)
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Moreover, we infer from (15), (17), and (52) that

􏽘
p

λ2f p
j

􏼐 􏼑λ2g p
j

􏼐 􏼑

p
s � 􏽘

p

1
p

s + O(1), as s⟶ 1+
. (78)

By the above results, it is shown that as s⟶ 1+,

􏽘
p

c1λf p
j

􏼐 􏼑 + c2λg p
j

􏼐 􏼑􏼐 􏼑
4

p
s � c

4
1 􏽘

p

λ4f p
j

􏼐 􏼑

p
s + c

4
2 􏽘

p

λ4g p
j

􏼐 􏼑

p
s + 4c

3
1c2 􏽘

p

λ3f p
j

􏼐 􏼑λg p
j

􏼐 􏼑

p
s

+ 4c1c
3
2 􏽘

p

λf p
j

􏼐 􏼑λ3g p
j

􏼐 􏼑

p
s + 6c

2
1c

2
2 􏽘

p

λ2f p
j

􏼐 􏼑λ2g p
j

􏼐 􏼑

p
s

� (j + 1) c
4
1 + c

4
2􏼐 􏼑 + 6c

2
1c

2
2􏼐 􏼑 􏽘

p

1
p

s + O(1).

(79)

We finish the proof by inserting (68), (69), (74), and (79)
into (67). □

Lemma 8. Let f, g ∈ H∗k be two distinct cusp forms. Let
a, b, c1, c2 ∈ R with a< b. 'en, for j≥ 1, we have

c1λf p
j

􏼐 􏼑 + c2λg p
j

􏼐 􏼑 − a􏼐 􏼑 c1λf p
j

􏼐 􏼑 + c2λg p
j

􏼐 􏼑 − b􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤ (j + 1)
2

c1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + c2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑
2

+(j + 1)(|a| +|b|) c1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + c2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 +|ab|.

(80)

Proof. It follows from (9) and (11) that

λf p
j

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ αf(p)
j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + αf(p)
j− 2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + · · · + αf(p)
− j+2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

+ αf(p)
− j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ (j + 1).
(81)

By similar computations, we infer from (13) and (50) that

λf p
j

􏼐 􏼑λg p
j

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ (j + 1)
2
,

λ2f p
j

􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ (j + 1)
2
.

(82)

For j≥ 1, we have

c1λf p
j

􏼐 􏼑 + c2λg p
j

􏼐 􏼑 − a􏼐 􏼑 c1λf p
j

􏼐 􏼑 + c2λg p
j

􏼐 􏼑 − b􏼐 􏼑

� c
2
1λ

2
f p

j
􏼐 􏼑 + c

2
2λ

2
g p

j
􏼐 􏼑 + 2c1c2λf p

j
􏼐 􏼑λg p

j
􏼐 􏼑 − (a + b) c1λf p

j
􏼐 􏼑 + c2λg p

j
􏼐 􏼑􏼐 􏼑 + ab.

(83)

According to the triangle inequality, we draw the
conclusion. □

Proof. of (eorem 3. Let f, g ∈ H∗k be two distinct cusp
forms. It is easy to verify from (15), (17), (50), and (83) that

􏽘
p

c1λf p
j

􏼐 􏼑 + c2λg p
j

􏼐 􏼑 − a􏼐 􏼑 c1λf p
j

􏼐 􏼑 + c2λg p
j

􏼐 􏼑 − b􏼐 􏼑

p
s

� c
2
1 + c

2
2 + ab􏼐 􏼑 􏽘

p

1
p

s + O(1), as s⟶ 1+
.

(84)
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Combining the above result with Lemmas 7 and 8,
(eorem 3 follows apparently by applying Lemma 4 with

hp � c1λf p
j

􏼐 􏼑 + c2λg p
j

􏼐 􏼑 − a􏼐 􏼑 c1λf p
j

􏼐 􏼑 + c2λg p
j

􏼐 􏼑 − b􏼐 􏼑,

B � (j + 1)
2

c1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + c2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑
2

+(j + 1)(|a| +|b|) c1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + c2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑 +|ab|,

m � (j + 1) c
4
1 + c

4
2􏼐 􏼑 + δ3 c

3
1 + c

3
2􏼐 􏼑 + 6c

2
1c

2
2 + (a + b)

2
+ 2ab􏼐 􏼑 c

2
1 + c

2
2􏼐 􏼑 + a

2
b
2
,

M � c
2
1 + c

2
2 + ab.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(85)

□
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