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Squeezing flow has many applications in different fields including chemical, mechanical, and electrical engineering as these flows
can be observed in many hydrodynamical tools and machines. Due to importance of squeezing flow, in this paper, an unsteady
squeezing flow of a viscous magnetohydrodynamic (MHD) fluid which is passing through porous medium has been modeled and
analyzed with and without slip effects at the boundaries. +e least squares homotopy perturbation method (LSHPM) has been
proposed to determine the solutions of nonlinear boundary value problems. To check the validity and convergence of the
proposed scheme (LSHPM), the modeled problems are also solved with the Fehlberg–Runge–Kutta method (RKF45) and
homotopy perturbationmethod (HPM) and residual errors are compared with LSHPM. To the best of the authors’ knowledge, the
current problems have not been attempted before with LSHPM.Moreover, the impact of different fluid parameters on the velocity
profile has been examined graphically in slip and no-slip cases. Analysis shows that the Reynolds number, MHD parameter, and
porosity parameter have opposite effects in case of slip and no slip at the boundaries. It is also observed that nonzero slip parameter
accelerates the velocity profile near the boundaries. Analysis also reveals that LSHPM provides better results in terms of accuracy
as compared to HPM and RKF45 and can be effectively used for the fluid flow problems.

1. Introduction

In squeezing flow, fluid is squeezed between two parallel
objects. +is phenomenon can be observed in many hy-
drodynamical machines and tools. One can observe the
application of these flows in food industry and chemical
engineering [1–4]. Few common examples are polymer
handling, compression and injectionmolding, andmodeling
of lubrications. Modeling of squeezing flow was initiated
around nineteenth century, and from then onward, it got
attention because of its endless implementations in various
fields. +e initial studies in these flows were done by Stefan
[5], and he worked on Newtonian fluid and found an as-
ymptotic solution.

+e study of fluids with electromagnetic field is an ex-
ceptionally interesting area of magnetohydrodynamics
(MHD). Utilizing MHD fluid as lubricant is intriguing, since
under certain extreme conditions, it averts the unpredicted

change of lubricant viscosity with temperature. Maki et al.
[6] investigated the MHD fluid as lubricant in an externally
pressurized thrust bearing. Different authors have examined
the effects of magnetic field in the flow of fluids [7–10]. +e
squeezing flow between two disks together with the presence
of a magnetic field was studied in [11], and that between the
rotating disks was studied in [12, 13]. A material that has
fluid-filled pores is known as porous medium. It is described
by properties which are permeability and porosity. +e
amount of fluid which passes through the porous medium is
known as permeability, while porosity is characterized as the
sum of fluid held by the fabric. Porous medium has several
applications in the field of petroleum, reservoir, and
chemical engineering [14–18].

Slip is difficult to calculate or observe directly in a porous
medium [19]. +us, most observations rely upon theoretical
analysis and numerical methods. +e affirmation of slip has
been confirmed experimentally through indirect approaches
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[20]. Considering slip results in increasing error and
computational time, which is why it is ignored in many
theoretical analyses [21, 22].

At a fluid-solid interface, the effect of slip is an estab-
lished boundary condition. It has various applications in
science and technology, for instance, material processing,
rheometric measurements, and fluid transportation [20, 23].
+e boundary condition of a viscous fluid at a macroscopic
level is considered to be no-slip condition [21] which means
that the instantaneous velocity would be zero at the
boundary. Nonetheless, noninstantaneous slip conditions
because of shear stress have also been investigated by the
implication of unexpected decrease in viscosity or increase
in flow rates [20]. +is slip condition is known as the ap-
parent slip in fluid mechanics.

Mooney presented the pioneering work in slip analysis
[24]. He determined explicit formulas for fluidity and slip.
+e techniques for dealing with slip condition are significant
for investigation of fluid flow; however, it is generally
underestimated or ignored in the investigations including
complex fluid systems [25].

In this paper, numerical and seminumerical solutions of
an unsteady squeezing flow of viscous fluid with MHD and
porosity effects have been analyzed with slip and no-slip
conditions at the boundary. Problems have been solved
through LSHPM which is the modification of well-known
HPM [26]. LSHPM is the coupling of HPM along with least
squares optimizer [27–29]. +e main feature of LSHPM is
accelerated convergence with less computational cost. For
validation of the LSHPM results, these problems were also
solved with HPM and Fehlberg–Runge–Kutta method
(RKF45), and the results were compared with LSHPM. Error
analysis is performed in this study via tables and graphs. +e
remaining sections are organized as follows. Mathematical
formulation is given in Section 2. +e basic concept of
LSHPM is given in Section 3. +e application of LSHPM on
modeled problems is given in Section 4. Results and dis-
cussion are given in Section 5. Finally, the conclusion is
presented in Section 6.

2. Problem Formulation

Let us consider a rectilinear, unsteady magnetohydrody-
namic squeezing flow of an incompressible viscous fluid
passing through a porous medium between two infinite
parallel plates. +e distance between the plates is always
2α(t) at any time t. +e x-axis is considered the central axis
of the channel, and the y-axis is perpendicular to the
channel. β � β(0, β0, 0) is a uniform magnetic field that acts
along the y-axis. +e induced magnetic field is considered
negligible, and the direction of the magnetic field is per-
pendicular to the flow of the fluid and has a constant
strength H0. In fact, β0 � H0μ0, where μ0 is the magnetic
permeability. Furthermore, the plate is considered to move
symmetrically about the central axis of the channel.

Following are the mass and momentum conservation
equations presenting the unsteady flow [30]:
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where 􏽥u and 􏽥v are the velocity components along x-axis and
y-axis, respectively, and σ, ρ, and ] represent the electric
conductivity, density, and kinematic viscosity, respectively.
Let us define the vorticity function 􏽥ω as
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By plugging (4) and (5) in (1)–(3), the above mass and
momentum equations turn out be
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After eliminating pressure gradient using (7) and (8), the
following is obtained:
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along with boundary conditions

y � α,

􏽥u(x, y, t) � 0,

􏽥v(x, y, t) � 􏽥uw(t),

(10)

y � 0,

􏽥v(x, y, t) � 0,

z􏽥u(x, y, t)

zy
� 0,

(11)

where 􏽥vw(t) � dα/dt represents the velocity of plates. Let a
dimensionless variable ξ � y/α(t), where 2α(t) is the dis-
tance between the plates at any time t. Here equations (6)
and (9) have the following form:
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On 􏽥u(x, ξ, t) and 􏽥v(x, ξ, t), the boundary conditions are
as follows:

at ξ � 1,

􏽥u(x, ξ, t) � 0,

􏽥v(x, ξ, t) � vw(t),

(14)

at ξ � 0,

􏽥u(x, ξ, t) � 0,
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zξ
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(15)

Velocity components are defined as [30, 31]
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By plugging (16) in (12) and (13), the continuity equation
is identically satisfied and (13) becomes
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where the primes are representing the derivative of f with
respect to ξ and Mg and Mp are theMHD parameter and the
porosity parameter, respectively. We determine the
boundary conditions from (14)–(16):

f(1) � 1,

f′(1) � 0,
(18)

f(0) � 0,

f″(0) � 0.
(19)

+erefore, for a similarity solution, let us define the
following:
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where R and Q are the functions of t, but these functions are
taken to be constants for a similarity solution. By integrating
α􏽥vw/] � R, we obtain
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It follows from (13) and (14) that Q � −1, so (10)
becomes

f
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where R denotes the Reynolds number. +e boundary
conditions in case of no slip subject to (18) and (19) are

f(1) � 1,

f′(1) � 0,

f(0) � 0,

f″(0) � 0,

(23)

and in case of slip at the boundary, the corresponding
conditions are

f(1) � 1,

f′(1) � cf″(1),

f(0) � 0,

f″(0) � 0,

(24)

where c is the slip parameter.

3. Basic Idea of Least Squares Homotopy
Perturbation Method

Let us consider a general differential equation

L(φ) + N(φ) − g(r) � 0, r ∈ Ω, (25)

B φ,
dnφ
dr

n􏼠 􏼡 � 0, r ∈ c, (26)

where L, N, and B represent the linear and nonlinear parts
and boundary operator, respectively, and φ represents an
unknown function while g(x) is known function.

First of all, we construct a homotopy for (25) such that
η(r, p): φ × [0, 1]⟶ R which satisfies

ψ(η, p) � (1 − p) L(η) − L φ0( 􏼁􏼂 􏼃 + p[L(η) + N(η) − g(r)]

� 0, r ∈ Ω,

(27)

where p ∈ [0, 1] is the embedding parameter and L(φ0) is
the initial guess.

As p varies from 0 to 1, then φ0 approaches 􏽥φ(r). Taylor
series expansion of η(r, p) about p is
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Setting p � 1, the approximate solution of (25) would be
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After reassigning the dummy coefficients ci′s in obtained
series solution (29), we substitute the approximate solution
􏽥φ back in equation (25) to get the residual function:

R x, ci( 􏼁 � R(x, 􏽥φ). (30)

Now we will compute the sum of squares of residuals:
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2
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After computing J(ci), we find the optimal values of ci
′s

from system of equations obtained from zJ/zci � 0.
Putting these optimal values back into series (29), we will

get our final series form solution of LSHPM.

4. Application of LSHPM to Squeezing Flow

Let us construct a homotopy for the given problem as
follows:
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Using (32) and (23), various order problems along with
solutions are given as follows.
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+e solution (37) is
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It follows that (39) consists of ξ, ξ3, ξ5, ξ7, ξ9, ξ11. Let us
assume that
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Now, we find the optimal coefficients of ξi
′s by using the

least squares optimizer. By applying boundary conditions
(23), the problem reduces to the following form:
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Putting c1 and c2 in 􏽥f(ξ) gives
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Next, putting 􏽥f(ξ) in (22) will gives us the following
residual function.

After computing J(c3, c4, c5, c6) � 􏽒
1
0 R2(c3, c4, c5, c6)dξ,

optimal values of ci
′s can be obtained from zJ/zci � 0.

+e same procedure is applied to (22) and (24) to cal-
culate the second-order solution in case of slip at the
boundary.

5. Results and Discussion

In this article, an unsteady squeezing flow of MHD fluid
passing through a porousmediumwith slip and no slip at the

boundary has been examined through various methods
including LSHPM, HPM, and RKF45.

+e problems have been solved for various values of fluid
parameters in case of slip and no slip at the boundary.
Validity of the obtained solutions through LSHPM has been
confirmed by comparing results with numerical schemes
(RKF45) and a semianalytical scheme (HPM). +is can also
be observed from Tables 1 and 2 in case of no slip and
Tables 3 and 4 in case of slip at the boundary. +ese tables
signify the efficiency of LSHPM and clearly show that the
results obtained from LSHPM are better in terms of accuracy
along with less computational cost.
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Table 1: Solutions along with residual errors for RKF45, HPM, and LSHPM when R � 0.5, Mg � 1, andMp � 0.7 in case of no slip.

ξ
Fehlberg RK HPM LSHPM

Solution Error Solution Error Solution Error
0. 0. 3.4693 × 10−3 0. 0. 0. 0.
0.1 0.149891 5.0355 × 10−4 0.149891 3.42652 × 10−5 0.149891 1.56717 × 10−7

0.2 0.296726 7.76524 × 10−5 0.296726 6.52833 × 10−5 0.296726 3.04651 × 10−7

0.3 0.437456 3.7471 × 10−5 0.437456 8.99533 × 10−5 0.437456 2.8858 × 10−7

0.4 0.56905 2.18501 × 10−5 0.56905 1.05351 × 10−4 0.56905 5.63137 × 10−8

0.5 0.688501 2.01114 × 10−5 0.6885 1.08865 × 10−4 0.688501 5.35202 × 10−7

0.6 0.792825 5.14344 × 10−6 0.792825 9.90945 × 10−5 0.792825 4.88741 × 10−7

0.7 0.879069 5.4068 × 10−5 0.879068 7.82969 × 10−5 0.879069 4.36404 × 10−7

0.8 0.944296 6.14172 × 10−5 0.944296 5.62981 × 10−5 0.944296 9.08635 × 10−7

0.9 0.985583 4.71814 × 10−4 0.985583 5.30898 × 10−5 0.985583 1.06586 × 10−6

1. 1. 3.11918 × 10−3 1. 9.17254 × 10−5 1. 3.97623 × 10−6

Table 2: Solutions along with residual errors for RKF45, HPM, and LSHPM when R � 1, Mg � 1, andMp � 0.3 in case of no slip.

ξ
Fehlberg RK HPM LSHPM

Solution Error Solution Error Solution Error
0. 0. 2.58588 × 10−2 0. 0. 0. 0.
0.1 0.156416 1.94025 × 10−3 0.156262 3.36615 × 10−2 0.156416 5.4093 × 10−5

0.2 0.30896 5.70757 × 10−4 0.308676 6.23969 × 10−2 0.30896 6.35526 × 10−5

0.3 0.453866 2.11488 × 10−4 0.453494 8.19041 × 10−2 0.453866 1.74718 × 10−5

0.4 0.587568 5.92517 × 10−5 0.587161 8.90784 × 10−2 0.587568 4.80029 × 10−5

0.5 0.706796 2.15368 × 10−4 0.706409 8.24848 × 10−2 0.706796 7.03709 × 10−5

0.6 0.808646 1.07431 × 10−4 0.808327 6.26809 × 10−2 0.808646 1.40914 × 10−5

0.7 0.890646 1.38249 × 10−4 0.890426 3.23326 × 10−2 0.890646 7.08122 × 10−5

0.8 0.950797 7.04565 × 10−4 0.950682 3.95662 × 10−3 0.950797 5.19128 × 10−5

0.9 0.987588 2.49995 × 10−3 0.987555 4.02371 × 10−2 0.987588 9.77666 × 10−5

1. 1. 2.86845 × 10−2 1. 7.04387 × 10−2 1. 2.68303 × 10−4

Table 3: Solutions along with residual errors for RKF45, HPM, and LSHPM when R � 0.5, Mg � 1, Mp � 0.8, and c � 0.9 in case of slip.

ξ
Fehlberg RK HPM LSHPM

Solution Error Solution Error Solution Error
0. 0. 1.51816 × 10−3 0. 0. 0. 0.
0.1 0.0693885 1.12203 × 10−4 0.0693931 1.17989 × 10−4 0.0693885 5.75455 × 10−7

0.2 0.140654 2.57789 × 10−5 0.140663 2.51814 × 10−4 0.140654 6.52198 × 10−7

0.3 0.21567 8.08689 × 10− 6 0.215683 4.13354 × 10−4 0.21567 1.39485 × 10−7

0.4 0.296303 2.76334 × 0− 6 0.296317 6.07337 × 10−4 0.296303 5.24535 × 10−7

0.5 0.384403 4.29423 × 10− 6 0.384419 8.29514 × 10−4 0.384403 6.79866 × 10−7

0.6 0.481805 8.05261 × 10− 6 0.481821 1.06662 × 10−3 0.481805 6.10725 × 10−8

0.7 0.590316 4.58094 × 10−5 0.590331 1.29826 × 10−3 0.590316 7.03765 × 10−7

0.8 0.71171 8.15773 × 10−5 0.711721 1.50056 × 10−3 0.71171 3.9953 × 10−7

0.9 0.847715 6.82106 × 10−4 0.847721 1.65152 × 10−3 0.847715 8.87157 × 10−7

1. 1. 4.53456 × 10−3 1. 1.73788 × 10−3 1. 2.24424 × 10− 6

Table 4: Solutions along with residual errors for RKF45, HPM, and LSHPM when R � 0.3, Mg � 0.9, Mp � 0.9, and c � 0.9 in case of slip.

ξ
Fehlberg RK HPM LSHPM

Solution Error Solution Error Solution Error
0. 0. 4.83512 × 10− 4 0. 0. 0. 0.
0.1 0.0731283 5.03095 × 10− 5 0.0731173 9.14697 × 10− 4 0.0731283 2.14086 × 10− 7

0.2 0.147841 7.32584 × 10− 6 0.14782 1.74106 × 10− 3 0.147841 2.519 × 10− 7

0.3 0.225732 4.51413 × 10− 6 0.225703 2.39716 × 10− 3 0.225732 7.00476 × 10− 8

0.4 0.308414 4.8655 × 10− 6 0.308379 2.81394 × 10− 3 0.308414 1.89255 × 10− 7

0.5 0.397527 1.11029 × 10− 6 0.39749 2.94152 × 10− 3 0.397527 2.79031 × 10− 7

0.6 0.494748 5.13492 × 10− 6 0.494712 2.75542 × 10− 3 0.494748 5.70387 × 10− 8

0.7 0.601801 2.07476 × 10− 5 0.60177 2.26228 × 10− 3 0.601801 2.8116 × 10− 7

0.8 0.720459 3.57011 × 10− 5 0.720436 1.50464 × 10− 3 0.720459 2.07976 × 10− 7

0.9 0.852559 2.49738 × 10− 4 0.852546 5.64127 × 10− 4 0.852559 3.93393 × 10− 7

1. 1. 1.64469 × 10− 3 1. 4.38301 × 10− 4 1. 1.09093 × 10− 6
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Figure 1: Comparison of errors for RKF45, HPM, and LSHPM when R � 0.5, Mg � 1, andMp � 0.7 in case of no slip.
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Figure 2: Comparison of errors for RKF45, HPM, and LSHPM when R � 1, Mg � 1, andMp � 0.3 in case of no slip.
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Figure 3: Comparison of errors for RKF45, HPM, and LSHPM when R � 0.5, Mg � 1, Mp � 0.8, and c � 0.9 in case of slip.
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Figure 4: Comparison of errors for RKF45, HPM, and LSHPM when R � 0.3, Mg � 0.9, Mp � 0.9, and c � 0.9 in case of slip.
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Figure 5: Effect of R on the velocity profile keeping Mg � 1 and Mp � 1 fixed in case of no slip. (a) Normal component of velocity. (b) Axial
component of velocity.
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Figure 6: Effect of R on the velocity profile keeping Mg � 1, Mp � 1, and c � 1 fixed in case of slip. (a) Normal velocity. (b) Axial velocity.
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Figure 7: Effect of Mg on the velocity profile keeping R � 1 and Mp � 1 fixed in case of no slip. (a) Normal component of velocity. (b) Axial
component of velocity.

f (
ξ)

0.38 0.40 0.42 0.44 0.46 0.480.36
0.50

0.52

0.54

0.56

0.58

0.60

0.2 0.4 0.6 0.8 1.00.0
ξ

0.0

0.2

0.4

0.6

0.8

1.0

Mp=4.5
Mp=0.1

Mp=12.5
Mp=8.5

(a)

f' 
(ξ

)

0.0

0.5

1.0

1.5

0.2 0.4 0.6 0.8 1.00.0
ξ

Mp=4.5
Mp=0.1

Mp=12.5
Mp=8.5

(b)

Figure 8: Effect of Mp on the velocity profile keeping R � 1 and Mg � 1 fixed in case of no slip. (a) Normal component of velocity. (b) Axial
component of velocity.
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Figure 9: Effect of Mg on the velocity profile keeping R � 1, Mp � 0.1, and c � 1 fixed in case of slip. (a) Normal component of velocity.
(b) Axial component of velocity.
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+e convergence of LSHPM is also shown in Figures 1
and 2 in case of no slip and Figures 3 and 4 in case of slip at
the boundary.

R ξ, c3, c4c5, c6( 􏼁 � 120c3ξ + 840c4ξ
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7
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9
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3
+ 42c4ξ

5
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Figure 10: Effect of MP on the velocity profile keeping R � 1.5, Mg � 1, and c � 1 fixed in case of slip. (a) Normal component of velocity.
(b) Axial component of velocity.
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Figure 11: Effect of c on the velocity profile keeping R � 0.5, Mg � 1, and Mp � 0.5 fixed in case of slip. (a) Normal component of velocity.
(b) Axial component of velocity.
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(43)

In addition, a graphical study has also been conducted to
check the impact of different fluid parameters on the normal
and axial velocity. Figures 5 and 6 show the effect of R on the
velocity profile in case of no slip and slip at the boundary. As
the Reynolds number is the ratio of inertial forces to viscous
forces within a fluid, it has the ability to calculate scaling
effects and can be used to help predict fluid behavior on a
larger scale. Due to this, normal velocity has shown an
increase with an increase in R, while axial velocity decreases
near the central axis and increases near the wall when no-slip
boundary condition is employed. R shows opposite effect
when slip occurs at the boundary. Figures 7 and 8 present the
effect of Mg and Mp on velocity profile in case of no slip. Mg

plays the role of a resistance contributed to by the magnetic
pressure field component of Lorentz force. Due to this, the
normal velocity decreases with an increase in Mg, whereas
the axial velocity increases near the wall but decreases near
the central axis of the channel. Mp has an inverse rela-
tionship with the permeability constant k, and hence it
shows similar behavior as Mg when keeping other pa-
rameters fixed. Mg and Mp show opposite effect in slip case
which can be seen in Figures 9–11.

6. Conclusion

In this article, an unsteady squeezing flow of MHD fluid
passing through a porous medium has been modeled and
analyzed considering the cases of slip and no slip at the
boundaries using LSHPM. For validation purpose, the
modeled nonlinear problems are also solved through HPM
and Fehlberg–Runge–Kutta method. +e obtained results
show the effectiveness of LSHPM over other schemes.
Obtained solutions clearly show that LSHPM is a more
consistent scheme in terms of accuracy with less compu-
tational cost as compared to the other stated schemes and
can be employed in various fields of science and engineering.

Abbreviations

􏽥u: Velocity components along x-axis
􏽥v: Velocity components along y-axis
σ: Electric conductivity
ρ: Density
]: Kinematic viscosity
􏽥ω: Vorticity function
μ0: Magnetic permeability
β: Uniform magnetic field

R: Reynolds number
Mg: MHD parameter
Mp: Porosity parameter
h: Generalized pressure
ξ: Dimensionless variable
c: Slip parameter
HPM: Homotopy perturbation method
LSHPM: Least squares homotopy perturbation method.
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