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We introduce a new method for estimating the nonparametric regression curve for longitudinal data. ,is method combines two
estimators: truncated spline and Fourier series. ,is estimation is completed by minimizing the penalized weighted least squares
and weighted least squares. ,is paper also provides the properties of the new mixed estimator, which are biased and linear in the
observations. ,e best model is selected using the smallest value of generalized cross-validation. ,e performance of the new
method is demonstrated by a simulation study with a variety of time points. ,en, the proposed approach is applied to a stroke
patient dataset. ,e results show that simulated data and real data yield consistent findings.

1. Introduction

Nonparametric regression is a statistical method used if the
data show an unknown regression curve.,e strength of this
method is its great flexibility since the data are used to find
the form of its estimated regression curve without being
influenced by subjective judgements [1]. Some estimators
used are spline, Fourier series, kernel, and polynomial.

,e truncated spline is a function where there is a change
in the behaviour of the curve in certain subintervals. ,e
spline is one of the popular estimators in nonparametric
regression because it has an excellent visual interpretation.
Montoya et al. [2] conducted a simulation study to compare
knot selection methods in a penalized regression spline
model. Next, the Fourier series is much used to describe
curves that present sine and cosine waves. ,is estimator is
commonly used when the data have the characteristics of a
periodicity. Bilodeau [3] estimated additive components
with functions consisting of truncated Fourier cosine series,
using penalized least squares to obtain the coefficients.
Furthermore, Tripena [4] developed a Fourier series esti-
mator for bi-response nonparametric regression. Gong and

Gao [5] discussed a nonparametric kernel estimation of tax
policy’s impact on the demand for private health insurance
in Australia.

A single estimator in nonparametric regression is
commonly used but does not limit the possibility of de-
veloping into a mixed estimator.,ere are many cases where
each predictor variable has a different pattern. ,erefore,
applying only a single estimator can make the regression
model’s estimation incorrect and produce a large error.
Some previous studies that have been mentioned have
limitations in that they can only be used for cross-sectional
data. To overcome this limitation, a longitudinal data model
has been developed. ,e use of longitudinal data has in-
creased in recent years because it can be applied in various
fields. Longitudinal data are data obtained in observations of
independent subjects, where each subject is observed re-
peatedly at a certain period. ,is has the advantage of being
able to observe changes based on time [6].

In [7], the mixed estimator is limited in the sample size it
can treat. ,e present study extends the use of the mixed
truncated spline and Fourier series (MTSFS) model to larger
sample sizes and various time point designs. Some properties
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of the new mixed estimator will also be provided. We use
generalized cross-validation (GCV) to determine the best
model from various knots, oscillations, and smoothing
parameters. A simulation study and real data are employed
to demonstrate the performance of the proposed method.
,e case study includes the factors that affect the Glasgow
Coma Scale (GCS) on stroke patients, i.e., body temperature
(BT) and pulse rate (PR).

,e rest of this paper is divided into several main topics.
Section 2 introduces the materials and methods used in this
study. Section 3 consists of five subsections: the theory of the
new mixed estimator, its properties, the selection of the best
model, the simulation study, and a case study. ,e details of
the new mixed estimator are presented in Section 3.1, fol-
lowed by its properties in Section 3.2. Section 3.3 presents
how to select the optimum knot point, oscillation parameter,
and smoothing parameter to obtain the best model. ,e
results of a simulation study of the proposed method are
presented in Section 3.4, followed by an application to real
data in Section 3.5. Section 4 concludes the paper.

2. Materials and Methods

Suppose yit is the response variable and xit and zit are the
corresponding predictor variables with sample size of n

subjects (i � 1, 2, . . . , n), with each subject having T ob-
servations (t � 1, 2, . . . , T). ,e relations between the re-
sponse and predictors for the nonparametric regression
model for longitudinal data are

yit � μ x1it, . . . , xpit, z1it, . . . , zqit􏼐 􏼑 + εit, (1)

where μ is the regression curve and εit is a random error.
Assume that the form of the regression curve μ is unknown
and additive, so that

μ x1it, . . . , xpit, z1it, . . . , zqit􏼐 􏼑 � 􏽘

p

j�1
fji xjit􏼐 􏼑 + 􏽘

q

k�1
gki zkit( 􏼁,

(2)

where 􏽐
p

j�1 fji(xjit) is the truncated spline component and
􏽐

q

k�1 gki(zkit) is the Fourier series component.
,e function fji, j � 1, 2, . . . p, is an approximation

using truncated spline functions and gki, k � 1, 2, . . . , q, is
that using Fourier series. ,e estimator μ is obtained
through a two-step optimization, i.e., penalized weighted
least squares (PWLS) and weighted least squares (WLS).

3. Results and Discussion

3.1. MTSFSModel for Longitudinal Data. Some lemmas and
theorems are provided to obtain an MTSFS model for
longitudinal data. Lemma 1 presents the goodness of fit of
the Fourier series component, Lemma 2 presents the penalty
component, and Lemma 3 gives the solution for the trun-
cated spline component. ,eorem 1 presents the PWLS
optimization, and ,eorem 2 presents WLS optimization.
,e results are summarized as follows.

Lemma 1. If the Fourier series component in equation (2) is
given by 􏽐

q

k�1 gki(zkit), then the goodness of fit can be for-
mulated as follows:

N
− 1 y∗ − Zc( 􏼁′W y∗ − Zc( 􏼁, (3)

where N � n × T, W is the nT × nT weighting matrix,
y∗ � y − f , and

y∗ � y
∗′
1 y
∗′
2 . . . y

∗′
n􏽨 􏽩′,

y∗i � y∗i1 y∗i2 . . . y∗iT􏼂 􏼃′,

f � f1′ f2′ . . . fn
′􏼂 􏼃′,

f i � 􏽘

p

j�1
fji xji1􏼐 􏼑, 􏽘

p

j�1
fji xji2􏼐 􏼑, . . . , 􏽘

p

j�1
fji xjiT􏼐 􏼑⎛⎝ ⎞⎠

′
,

Z �

Z1 0 . . . 0

0 Z2 . . . 0

⋮ ⋮ ⋱ ⋮

0 0 . . . Zn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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c �

c1

c2

⋮

cn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Zi �

z1i1
1
2

cos z1i1 cos 2z1i1 . . . cos Hz1i1 . . . zqi1
1
2

cos zqi1 cos 2zqi1 . . . cos Hzqi1

z1i2
1
2

cos z1i2 cos 2z1i2 . . . cos Hz1i2 . . . zqi2
1
2

cos zqi2 cos 2zqi2 . . . cos Hzqi2

⋮ ⋮ ⋮ ⋮ ⋰ ⋮ ⋰ ⋮ ⋮ ⋮ ⋮ ⋰ ⋮

z1iT

1
2

cos z1iT cos 2z1iT . . . cos Hz1iT . . . zqiT

1
2

cos zqiT cos 2zqiT . . . cos HzqiT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

ci � d1i c01i c11i c21i . . . cH1i . . . dqi c0qi c1qi c2qi . . . cHqi􏽨 􏽩′.
(4)

Proof. ,e function gki is assumed to be unknown and
contained in the spaceC(0, π).,e function is approximated
using Fourier series with a trend, modified from Bilodeau
[3]:

gki zkit( 􏼁 � dkizkit +
1
2
c0ki + 􏽘

H

h�1
chki cos hzkit. (5)

Equation (5) can be written in matrix form

g �

g1′

g2′

⋮

gn
′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

Z1c1
Z2c2
⋮

Zncn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

Z1 0 . . . 0

0 Z2 . . . 0

⋮ ⋮ ⋱ ⋮

0 0 . . . Zn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

c1
c2
⋮

cn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� Zc, (6)

where Z is a nT × (2 + H)nq matrix and c is a (2 + H)nq

vector.
,e nonparametric model in equation (2) can be re-

written as

yit − 􏽘

p

j�1
fji xjit􏼐 􏼑 � 􏽘

q

k�1
gki zkit( 􏼁 + εit,

y
∗
it � 􏽘

q

k�1
gki zkit( 􏼁 + εit,

i � 1, 2, . . . , n, t � 1, 2, . . . , T.

(7)

,en, the goodness of fit for equation (7) can be written
as

N
− 1

􏽘

n

i�1
􏽘

T

t�1
wit y

∗
it − 􏽘

q

k�1
􏽘

T

t�1
gki zkit( 􏼁⎛⎝ ⎞⎠

2

� N
− 1

􏽘

n

i�1
􏽘

T

t�1
wit y

∗
it − 􏽘

q

k�1
􏽘

T

t�1
dkizkit +

1
2
c0ki + 􏽘

H

h�1
chki cos hzkit

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

2

.

(8)

,emodel in equation (8) can be written in matrix form:

N
− 1W y∗ − Zc( 􏼁

2
� N

− 1 y∗ − Zc( 􏼁′W y∗ − Zc( 􏼁. (9)
□

Lemma 2. If the penalty component is given,

􏽘

q

k�1
λk 􏽚

π

0

2
π

gki
″ zk( 􏼁( 􏼁

2dzk, (10)

then

􏽘

q

k�1
λk 􏽚

π

0

2
π

gki
″ zk( 􏼁( 􏼁

2dzk � c′D(λ)c, (11)
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where

c � c1 c2 . . . cn􏼂 􏼃′,

ci � d1i c01i c11i c21i . . . cH1i . . . dqi c0qi c1qi c2qi . . . cHqi􏽨 􏽩′,

D(λ) �

D1(λ) 0 . . . 0

0 D2(λ) . . . 0

⋮ ⋮ ⋱ ⋮

0 0 . . . Dn(λ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Di(λ) �

d1 0 . . . 0

0 d2 . . . 0

⋮ ⋮ ⋱ ⋮

0 0 . . . dq

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Ik � λk1
4 λk2

4
. . . λkH

4􏽨 􏽩,

dk � diag 0, 0, Ik( 􏼁, k � 1, 2, . . . , q.

(12)

Proof. Regarding equation (5), we define

gki
″ zk( 􏼁 �

d
dzk

d
dzk

dkizkit +
1
2
c0ki + 􏽘

H

h�1
chki cos hzkit

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

� − 􏽘
H

h�1
h
2
chki cos hzkit.

(13)

Consequently,

Pk gk( 􏼁 � 􏽚
π

0

2
π

􏽘

H

h�1
h
2
chki cos hzkit

⎛⎝ ⎞⎠

2

dzk

�
2
π

􏽚
π

0
􏽘

H

h�1
h
2
chki cos hzkit

⎛⎝ ⎞⎠

2
⎡⎢⎢⎢⎢⎣

+2 􏽘
H

h<m
h
2
chki cos hzkit􏼐 􏼑 m

2
cmki cos mzkit􏼐 􏼑⎤⎦dzk.

(14)

Let

A �
2
π

􏽘

H

h�1
􏽚
π

0
h
2
chki cos hzkit􏼐 􏼑

2
dzk,

B �
2
π
2 􏽘

H

h< l

􏽚
π

0
h
2
chki cos hzkit􏼐 􏼑 l

2
clki cos lzkit􏼐 􏼑dzk.

(15)

,us,

Pk gk( 􏼁 � A + B � 􏽘
H

h�1
h
4
c
2
hki. (16)

,e penalty in equation (16) can be rewritten in matrix
form

c′D(λ)c. (17)

Regarding the goodness of fit in Lemma 1 and the
penalty component in Lemma 2, we obtain the PWLS op-
timization as

N
− 1

􏽘

n

i�1
􏽘

T

t�1
wit y

∗
it − 􏽘

q

k�1
gki zkit( 􏼁⎛⎝ ⎞⎠

2

+ 􏽘

q

k�1
λk 􏽚

π

0

2
π

gki
″ zk( 􏼁( 􏼁

2dzk, 0< λk <∞.

(18)

Equation (18) can be rewritten in the form

N
− 1 y∗ − Zc( 􏼁′W y∗ − Zc( 􏼁 + c′D(λ)c. (19)

Theorem 1. If the goodness of fit is as in Lemma 1 and the
penalty component is as in Lemma 2, then the Fourier series
component obtained by minimizing the PWLS in equation
(18) is

􏽢g(k,h,λ)(x, z) � Ly∗, (20)

where y∗ � y − f and L � Z[Z′WZ + ND(λ)]− 1Z′W.

Proof. ,e optimization in equation (18) can be written as
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Min
gk∈C(0,π)

N
− 1

􏽘

n

i�1
􏽘

T

t�1
wit y

∗
it − 􏽘

q

k�1
􏽘

T

t�1
gki zkit( 􏼁⎛⎝ ⎞⎠

2

+ 􏽘

q

k�1
λk 􏽚

π

0

2
π

gk
″ zk( 􏼁( 􏼁

2dzk

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (21)

Equation (21) can be rewritten in the form

Min
c∈C(0,π)

N
− 1 y∗ − Zc( 􏼁′W y∗ − Zc( 􏼁 + c′D(λ)c􏽮 􏽯

� Min
c∈C(0,π)

Q(c){ }.
(22)

We obtain

Q(c) � N
− 1y∗′Wy∗ − 2N

− 1
c′Z′Wy∗

+ N
− 1

c′Z′WZc + c′D(λ)c.
(23)

,e completion of the optimization in (23) is obtained by
taking the partial derivative of Q(c) with respect to c and
setting it equal to zero, i.e.,

zQ(c)

zc
� 0, (24)

giving the result

􏽢c � Z′WZ + ND(λ)􏼂 􏼃
− 1

Z′Wy∗. (25)

By substituting (25) into (6), we obtain

􏽢g(k,h,λ)(x, z) � Z􏽢c � Z Z′WZ + ND(λ)􏼂 􏼃
− 1

Z′Wy∗ � Ly∗.
(26)

,e nonparametric regression model in equation (7) can
be written as

y∗ � 􏽢g(k,h,λ)(x, z) � Ly∗, (27)

where y∗ � y − f and L � Z[Z′WZ + ND(λ)]− 1Z′W. □

Lemma 3. If the truncated spline component in equation (2)
is 􏽐

p
j�1 fji(xjit), then the WLS is

[(I − L)y − (I − L)Mγ]′W[(I − L)y − (I − L)Mγ], (28)

where L � Z[Z′WZ + ND(λ)]− 1Z′W.

Proof. ,e function fji is a linear truncated spline function
with s knot for each xj, j � 1, 2, . . . , p:

fji xjit􏼐 􏼑 � αjixjit + 􏽘
s

u�1
βuji xjit − Kuji􏼐 􏼑

+
, (29)

where (xjit − Kuji)+ �
(xjit − Kuji), xjit ≥Kuji,

0, xjit <Kuji
􏼨 .

Equation (29) can be rewritten in matrix form

f � [X|S]
α

β
􏼢 􏼣 � Mγ, (30)

where

X �

X1 0 · · · 0

0 X2 · · · 0

⋮ ⋮ ⋱ ⋮

0 0 · · · Xn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

S �

S1 0 · · · 0

0 S2 · · · 0

⋮ ⋮ ⋱ ⋮

0 0 · · · Sn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

α �

α1

α2

⋮

αn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

β �

β1

β2

⋮

βn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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Xi �

x1i1 x2i1 . . . xpi1

x1i2 x2i2 . . . xpi2

⋮ ⋮ ⋱ ⋮

x1iT x2iT . . . xpiT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

αi �

α1i

α2i

⋮

αpi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Si �

x1i1 − K11i( 􏼁
1
+ . . . x1i1 − Ks1i( 􏼁

1
+ . . . xpi1 − K1pi􏼐 􏼑

1
+

. . . xpi1 − Kspi􏼐 􏼑
1
+

x1i2 − K11i( 􏼁
1
+ . . . x1i2 − Ks1i( 􏼁

1
+ . . . xpi2 − K1pi􏼐 􏼑

1
+

. . . xpi2 − Kspi􏼐 􏼑
1
+

⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮

x1iT − K11i( 􏼁
1
+ . . . x1iT − Ks1i( 􏼁

1
+ . . . xpiT − K1pi􏼐 􏼑

1
+

. . . xpiT − Kspi􏼐 􏼑
1
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

βi � β11i . . . βs1i . . . β1pi . . . βspi􏽨 􏽩
T
.

(31)

,e MTSFS model for longitudinal data in equation (1)
can be written in the form

y � f + g + ε. (32)

By substituting (26) into (32), we obtain

y � f + Ly∗ + ε. (33)

To obtain the estimator of truncated spline component,
equation (33) can be written as

y − Ly∗ � f + ε,

y − L(y − f) � f + ε,

(I − L)y � (I − L)f + ε.

(34)

Equation (34) can be rewritten as

(I − L)y � (I − L)Mγ + ε. (35)

,us,

ε � (I − L)y − (I − L)Mγ. (36)

As a consequence, the WLS is given by

ε′ε � [(I − L)y − (I − L)Mγ]′W[(I − L)y − (I − L)Mγ].

(37)

□

Theorem 2. Suppose the WLS is as in Lemma 3. 9en, the
mixed estimator obtained by minimizing WLS is

􏽢f(k,h,λ)(x, z) � MJ− 1Ky, (38)

where J � (2 − L′)WLM − WM andK � [(L′ − I)W(I − L)].

Proof. ,eWLS optimization in Lemma 3 can be written as

Min
γ

[(I − L)y − (I − L)Mγ]′W[(I − L)y − (I − L)Mγ]􏼈 􏼉

� Min
γ

Q(γ)􏼈 􏼉.

(39)

We obtain

Q(γ) � y′Wy + y′L′WLy + c′M′L′WLMγ + c′M′WMγ − 2y′L′Wy􏼈

+ 2c′M′L′Wy + − 2N
− 1

c′M′Wy − 2N
− 1

c′M′L′WLy + 2N
− 1

c′M′WLy − 2N
− 1

c′M′WLMγ􏽯.
(40)
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,e complete optimization is obtained by setting equal
to zero the partial derivative ofQ(c) with respect to c, that is,

zQγ
zγ

� 0, (41)

giving the result

􏽢c � 2 − L′( 􏼁WLM − WM􏼂 􏼃
− 1 L′ − I( 􏼁W(I − L)􏼂 􏼃y � J− 1Ky.

(42)

By substituting 􏽢c into equation (30), we obtain
􏽢f(k,h,λ)(x, z) � M􏽢c � MJ− 1Ky � A(k, h, λ)y. (43)

We obtain 􏽢c by substituting (43) into (25):

􏽢c � Z′WZ + ND(λ)􏼂 􏼃
− 1

Z′Wy∗ � Z′WZ + ND(λ)􏼂 􏼃
− 1

Z′W(y − 􏽢f)

� Z′WZ + ND(λ)􏼂 􏼃
− 1

Z′W(y − M􏽢c) � Z′WZ + ND(λ)􏼂 􏼃
− 1

Z′W y − MJ− 1Ky􏼐 􏼑

� Z′WZ + ND(λ)􏼂 􏼃
− 1

Z′W I − MJ− 1K􏼐 􏼑y.

(44)

As a consequence,

􏽢g(k,h,λ)(x, z) � Z􏽢c

� Z Z′WZ + ND(λ)􏼂 􏼃
− 1

Z′W I − MJ− 1K􏼐 􏼑y

� L I − MJ− 1K􏼐 􏼑y � B(k, h, λ)y.

(45)

By substituting 􏽢c and 􏽢c into the MTSFS model for
longitudinal data, we obtain

􏽢y � 􏽢μ(k,h,λ)(x, z) � 􏽢f(k,h,λ)(x, z) + 􏽢g(k,h,λ)(x, z) � M􏽢c + Z􏽢c

� MJ− 1Ky + L I − MJ− 1K􏼐 􏼑y

� MJ− 1K + L I − MJ− 1K􏼐 􏼑􏽨 􏽩y

� C(k, h, λ)y,

(46)

where J � (2 − L′)WLM − WM, K � [(L′ − I)W(I − L)],
and L � Z[Z′WZ + ND(λ)]− 1Z′W.

3.2. 9e Properties of MTSFS Model for Longitudinal Data.
,is section provides the MTSFS model’s properties for
longitudinal data, i.e., it is biased and linear in observations.
,e mixed estimator is biased, as proved by

E 􏽢μ(k,h,λ)(x, z)􏽨 􏽩 � E 􏽢f(k,h,λ)(x, z) + 􏽢g(k,h,λ)(x, z)􏽨 􏽩

� E[A(k, h, λ)y + B(k, h, λ)y]

� E[C(k, h, λ)y] � C(k, h, λ)E(y).

(47)

Assuming that C(k, h, λ)≠ I,

E 􏽢μ(k,h,λ)(x, z)􏽨 􏽩 � C(k, h, λ)E(y)

� C(k, h, λ) f(k,h,λ)(x, z) + g(k,h,λ)(x, z)􏼐 􏼑

� C(k, h, λ)μ(k,h,λ)(x, z).

(48)

,e result in equation (48) showed that the mixed es-
timator is biased because E[􏽢μ(k,h,λ)(x, z)]≠ μ(k,h,λ)(x, z).
Even though the mixed estimator is biased, the mixed es-
timator is linear in observations proved by equation (49)
below.

􏽢μ(k,h,λ)(x, z) � 􏽢f(k,h,λ)(x, z) + 􏽢g(k,h,λ)(x, z)

� A(k, h, λ)y + B(k, h, λ)y

� C(k, h, λ)y.

(49)

3.3. 9e Selection of the Optimal Number of Knot Points,
Oscillation Parameter, and Smoothing Parameter. ,e
MTSFS model is very dependent on the number of the knot
points, oscillation parameter, and smoothing parameter.,e
best model is obtained by using the optimal values of these
parameters. In semiparametric and nonparametric regres-
sion, there are several methods to obtain the best regression
model. One of the popular methods is generalized cross-
validation (GCV).

Craven and Wahba [8] introduced a modified cross-
validation (CV) method called GCV. ,is method was
developed to overcome the shortcomings of complex CV
calculations. GCV has several advantages: it is simple and
efficient in calculation, invariant to transformation, and does
not require information about variant. In addition, GCV has
better asymptotic properties than other methods [9, 10].

In this study, the value of GCV is a criterion that can be
used to determine the best model from variety of knots,
oscillations, and smoothing parameters. ,e criterion for
selecting the best model includes taking the model with the
lowest GCV value.,emodified GCVmethod of theMTSFS
model for longitudinal data is stated as follows.

GCV(k, h, λ) �
N

− 1
‖(I − C(k, h, λ))y‖

2

N
− 1trace(I − C(k, h, λ))􏽨 􏽩

2. (50)
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,e optimal number of knot points, oscillation, and
smoothing parameters is obtained by minimizing
GCV(k, h, λ).

3.4. Simulation Study. ,is section presents the use of the
MTSFS model on simulation data to see the performance
of the estimators obtained. ,e simulation was done with
two predictor variables, sample size n � 20, and varied
number of time points, T � 5, 10, 15. We considered 20
models for each subject generated from a formula that
contains two different functions representing the trun-
cated spline and Fourier series pattern. A polynomial
function is used to present the truncated spline, while
trigonometric functions are used to present the Fourier
series. ,e predictors are generated from U(0, 1), and the
random errors εit are generated from a multivariate
normal distribution.

,e weight matrix is user-specified [6], and in this paper,
we use W � N− 1I so that each of the measurements is
treated equally. In this study, we use two numbers of knots
(K � 1 and K � 2) and several oscillation parameters
(H � 1, 2, 3, 4). ,ese simulation studies based on GCV are
presented in Table 1.

Based on Table 1, for the model with T � 5, it appears
that the smallest GCV value occurs when the oscillation H �

3 for K � 1 and K � 2. ,e same is also seen at T � 10 and
T � 15.,e smallest GCV occurs when the oscillation H � 3
for both knot points.

In general, the larger the number of time points, the
smaller the resulting value of the GCV. Furthermore, the
greater the number of knot points, the larger the GCV. Other
results show that a larger oscillation is not guaranteed to
produce large or small values of the GCV. So, it is necessary
to choose the optimum oscillation that produces the smallest
GCV.

3.5. Application to Real Data. ,e MTSFS model for lon-
gitudinal data obtained has been applied to the stroke patient
dataset. ,ese data were taken after an initial study of GCS
on stroke patients and the factors that influenced it. ,e
pattern of the relations between the predictors and response
followed the characteristics of a truncated spline and a
Fourier series. ,ere is a predictor with the form of a
truncated spline, which is changing in certain subintervals.
,e other predictor has the form of a Fourier series, with a
repeating pattern.

Stroke is a noncommunicable disease. ,e number of
those who suffer from it continues to increase in the world.
In 2013, stroke was the second leading cause of death
globally (11.8% of all deaths) after ischemic heart disease
(14.8% of all deaths). Besides, stroke is the third cause of
disability, namely, 4.5% of all causes of disability [11].
Based on the Global Burden of Disease (GBD) Study 2016,
the estimated global lifetime risk of stroke for those aged 25
years or older almost reached 25% [12]. ,e global prev-
alence of stroke in 2017 was 104.2 million people. In ad-
dition, age-standardized stroke prevalence rates were
highest in Eastern Europe, North Africa, the Middle East,

and Central and East Asia. Several countries in Europe,
North Africa, and Central Asia have the highest rates of
stroke mortality. Indonesia is one of the countries with the
highest death rate due to stroke. According to the Indo-
nesia Basic Health Survey 2007, stroke was the highest
cause of death (15.4%) [13]. ,e prevalence of stroke in
Indonesia in 2013 was 7% and increased to 10.9%,
according to the Indonesia Basic Health Survey 2018.
Furthermore, the stroke prevalence for those aged 15 years
or older was 10.85%.

Stroke patients often experience head injuries due to
falls. Trauma or head injury requires supervision to
ensure further medical treatment. GCS was initially used
to assess consciousness level after head injury and is now
used in the medical field of both acute and trauma pa-
tients. According to Champion [14], trauma severity
assessment is used to measure the severity of the injury
and describe the patient’s case’s severity. An injury to the
head will activate the immune response and release of
interleukins by activating white blood cells and in-
creasing the temperature. Injury to the hypothalamus
also increases interference with body temperature reg-
ulation [15]. Fever is generally defined as an increase in
body temperature above average and has been identified
as one of the causes of worsening head injury [16]. Based
on previous studies, the pulse was found to be dys-
functional in patients with severe brain injury. Changes
in pulse rate are associated with increased mortality in
brain injury patients. ,erefore, changes in patients’
pulse rates with severe brain injury should be carefully
observed [17].

,is article uses GCS as a response variable with 20
stroke patients (n � 20) with 14-day (T � 14) measure-
ments for each subject. Simultaneously, the predictor
variables are body temperature (BT) and pulse rate (PR).
,e partial relationship between GCS and each predictor
variable is illustrated in Figure 1.,e plot in Figure 1 shows
a different pattern for each predictor. For this reason, we
propose the MTSFS model for longitudinal data. Body
temperature will be approximated by a truncated spline
estimator, while the pulse rate will be approximated by a
Fourier series estimator.

Based on Table 2, some scenarios were performed to
compare the effectiveness of the proposed model, i.e., using a
single estimator and the mixed estimator. By using the GCV
formula in Section 3.3, we selected the best model according
to the minimum GCV criterion. As shown in Table 2,
modeling GCS in stroke patients produces the smallest GCV
value of 45.3517, achieved at when the number of knots is
K � 1 and number of oscillation is H � 3 with λ � 10. ,is
study revealed that the MTSFS model is better than using a
single estimator. ,is model yields a RMSE� 2.43. ,e
important result was that the number of knots and the
number of the oscillation parameters of the best model in the
simulation study are in line with those for the case study.
Similar to the simulation study, the best model had one knot
and the oscillation parameter H equal to three.

Figure 2 presents a comparison between the response
variable (red line) and fitted values (blue line) using the
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Table 1: Comparison of the values of GCV based on variations in number of time points.

Number of time points Number of knots Number of oscillations λ GCV

5

1

1 10.0000 4.9326
2 8.7755 4.9349
3 0.8163 4.0640
4 10.0000 4.9211

2

1 10.0000 5.9051
2 0.2041 5.9128
3 0.8163 4.7601
4 10.0000 5.9013

10

1

1 0.2041 3.8454
2 10.0000 3.8051
3 0.8163 2.7655
4 10.0000 3.8482

2

1 0.2041 4.1491
2 10.0000 4.1060
3 0.8163 2.9306
4 10.0000 4.1519

15

1

1 0.2041 3.8133
2 7.9592 3.8207
3 0.8163 2.5196
4 10.0000 3.8124

2

1 0.2041 3.9663
2 5.1020 3.9717
3 0.8163 2.5693
4 10.0000 3.9660
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Figure 1: Continued.
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MTSFS model. From the graph, we can see that some of the
fitted values resemble the pattern of the real data; although
some do not, there are deviations. Despite its limitations, the

present study certainly adds to our understanding of the
theory of the new mixed estimator in nonparametric re-
gression for longitudinal data.
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Figure 1: Scatterplot of 20 stroke patients. (a) GCS and body temperature. (b) GCS and pulse rate.

Table 2: Summary of case study results.

Model Number of knots Number of oscillations λ GCV
Truncated spline estimator 1 — — 391858.1

Fourier series estimator —

1

—

323174.4
2 161621.0
3 101785.9
4 75480.3

Mixed truncated spline and Fourier series

1

1 0.2041 48.5434
2 10.0000 47.4535
3 10.0000 45.3517
4 9.3878 45.3519

2

1 0.2041 51.6948
2 10.0000 50.6872
3 9.3878 48.7345
4 7.1429 48.7347
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4. Conclusions

,is article presented a new mixed estimator for non-
parametric regression models for longitudinal data, com-
bining the truncated spline estimator and Fourier series to
obtain better estimation results if the predictors have dif-
ferent data patterns. A new two-step method for estimating
the parameters used penalized weighted least squares and
weighted least squares.

In both the simulation study and case study, the best
model was selected by using theminimum generalized cross-
validation (GCV). A higher number of knots or oscillation
parameter does not produce a high GCV. ,erefore, several
combinations of knots and oscillations had to be tried to
determine the best model. Interestingly, the number of knots
and oscillations of the best model is the same for the
simulation study as for the case study with real data: one
knot and three oscillations.

,e proposed model estimator is a useful alternative for
estimating nonparametric regression curves for longitudinal
data. ,e presented results suggest that the next study can
use different weighting matrices and more knots, so that
researchers can compare the results for improving the model
performance. Another possible line of further research could
be simulation studies using another function to evaluate the
performance of the proposed model.
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