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In the present paper, we introduce the classical mean labeling of graphs and investigate their related properties. Moreover, it is
obtained that the line graph operation preserves the classical meanness property for some standard graphs.

1. Introduction and Preliminaries

All through this paper, by a graph we mean a simple, un-
directed, and finite graph. For documentations and wording,
we follow [1–5]. For a point by point review on graph la-
beling, we refer [6]. 'e line graph L(G) of a graph G is
defined to have as its vertices the edges of G, with two being
adjacent if the corresponding edges share a vertex in G. 'e
graph G°Sm is obtained from G by attaching m pendant
vertices to each vertex of G. Let uα: 1≤ α≤ n and
v

(α)
β : 1≤ β≤m + 1 be the nodes of pathPn and αth copy of the
star graph Sm, respectively, then the graph [Pn; Sm] is ob-
tained from n copies of Sm and the path Pn by joining uα with
the central vertex v

(α)
1 of the αth copy of Sm by means of an

edge, for 1≤ α≤ n. A graph obtained by subdividing edge of
G by a vertex is called subdivision graph S(G) and a graph
obtained from the path by replacing every edge of a path by a
C3 is called triangular snake graph Tn.

2. Literature Survey

'e investigation of graceful labeling is characterized by
Rosa in [7] and prime labeling is defined by Tout et al. in
[8]. Somasundram and Ponraj introduced the mean la-
beling of graphs in [9]. Durai Baskar and Arockiaraj de-
fined the F-harmonic mean labeling [10] and discussed its

meanness for some standard graphs. 'e idea of F-geo-
metric was presented by Durai Baskar et al. in [11] and
F-root mean labeling was presented by Arockiaraj et al. in
[12] and talked about its meanness of ladder graph in [13].
Vaidya and Barasara in [14] have discussed so many results
on product cordial labeling. Vaidya and Lekha in [15]
presented the idea of a bi-odd sequential labeling. 'e
labeling of L (2, 1) in [16] is researched by Prajapati and
Patel. Rajesh Kannan et al. discussed the FCM labeling of
graphs and its line graphs in [17]. Propelled by and crafted
by such a large number of creators in the territory of graph
labeling, we present another labeling called classical mean
labeling. A classical mean of two positive integers need not
be an integer in general. For the classical mean is to be an
integer, we may use either flooring or ceiling function. In
this paper, we consider only the flooring function of our
discussion and try to analyze that the line graph operation
preserves the classical meanness property for some stan-
dard graphs. 'e labeling is one of the well studied area in
Graph 'eory. So, we are interested in defining new la-
beling called classical mean labeling. A classical mean la-
beling is for getting more accuracy of all the edge labeling
by using the average of four different types of means of the
vertex labeling of the given graph. Recently, Muhiuddin
et al. studied various related concepts on graphs (see
[18–22]).
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Graph labeling assumes an essential job in different areas
of the real world system. 'e concepts of classical mean
labeling are utilized to demonstrate numerous kinds of
processes and relations in biological, social, material
physical, and data systems. It is a powerful tool that makes
complicated patterns to be learned easily and conveniently
in various fields. A static network can be represented as a
specific kind of graph by connecting nodes in some to-
pology, and labeling can be applied for automatic routing of
data in a network.'e graph can be cycle, path, circuit, walk,
and connected which represent a fixed network. For each
network, labeling is done with a constant which helps
routing to automatically detect next node in the network.
'e classical mean labeling is used in fast communication in
sensor networks for finding the more accuracy level of
sensor units.

3. Methodology

A function χ is known as a classical mean labeling of a graph
G(V, E) with p nodes and q edges if
χ: V(G)⟶ 1, 2, 3, . . . , q + 1􏼈 􏼉 is injective and the incited
edge assignment function χ∗: E(G)⟶ 1, 2, 3, . . . , q􏼈 􏼉

characterized as

χ∗(uv) �
1
4

χ(u) + χ(v)

2
+

��������

χ(u)χ(v)

􏽱

+
2χ(u)χ(v)

χ(u) + χ(v)
􏼠􏼤

+

�����������

χ(u)
2

+ χ(v)
2

2

􏽳

⎞⎟⎠

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(1)

for all uv ∈ E(G), is bijective. From Figure 1, a graph that
concedes a classical mean labeling is said to be classical mean
graph.

As q is the number of edges of the given graph, it cannot
take a randomly large number so that such a labeling exists.
However more than one classical mean labeling exists for the
given graph. So, we show one among in the proof.

Here, it is found that the line graph operation preserves
the classical meanness property for some standard graphs.

4. Classical Meanness of Some Standard Graphs
and Its Line Graph

Theorem 1. Every path Pn for n≥ 1 and its line graph L(Pn)

for n≥ 2 are classical mean graphs.

Proof. Develop a mapping χ from the vertex set of path to
1, 2, 3, . . . , n{ } by χ(vα) � α, for 1≤ α≤ n, where
vα: 1≤ α≤ n􏼈 􏼉 be the nodes of the path. 'erefore, for
1≤ α≤ n − 1, χ∗(vαvα+1) � α. Since L(Pn) is again a path,
L(Pn) is also a classical mean graph. Hence, every path Pn for
n≥ 1 and its line graph L(Pn) for n≥ 2 are classical mean
graphs. □

Theorem 2. Every cycle Cn and its line graph L(Cn) are
classical mean graphs, for n≥ 3.

Proof. Develop a mapping χ from the vertex set of cycle to
1, 2, 3, . . . , n + 1{ } by

χ uα( 􏼁 �

−1 + 2α, 1≤ α≤
n

2
􏼖 􏼗 + 1,

2n − 2α + 4,
n

2
􏼖 􏼗 + 2≤ α≤ n.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

'erefore,

χ∗ uαu1+α( 􏼁 �

2α − 1, 1≤ α≤
n

2
􏼖 􏼗,

n, α �
n

2
􏼖 􏼗 + 1,

2n − 2α + 2,
n

2
􏼖 􏼗 + 2≤ α≤ − 1 + n and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χ∗ unu1( 􏼁 � 2.

(3)

Also, the graph L(Cn) is again a cycle, which is given by
Figure 2. Hence, every cycle Cn and its line graph L(Cn) are
classical mean graphs, for n≥ 3. □

5. Classical Meanness of Graphs Obtained from
Vertex Identification and Its Line Graph

Theorem 3. . 6e graph Pn°Sm and its line graph L(Pn ∘ Sm)

are classical mean graphs, for n≥ 1 and m≤ 2.

Proof. Let uα
β: 1≤ α≤ n and 1≤ β≤m􏼚 􏼛 be the pendant

vertices at each vα.

Case i. m � 1 in the graph Pn°Sm. Develop a mapping χ
from the vertex set of Pn°S1 to 1, 2, 3, . . . , 2n{ } by

χ vα( 􏼁 �
1, α � 1,

2α, 2≤ α≤ n and,
􏼨

χ u
(α)
1􏼐 􏼑 �

2, α � 1,

2α − 1, 2≤ α≤ n.
􏼨

(4)

'erefore,
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Figure 1: A classical mean labeling of C4°S1.
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χ∗ vα+1vα( 􏼁 � 2α, for 1≤ α≤ n − 1 and,

χ∗ u
(α)vα
1􏼐 􏼑 � −1 + 2α, 1≤ α≤ n.

(5)

Case ii. m � 2 in the graph Pn°Sm.

Develop a mapping χ from the vertex set of Pn°S2 to
1, 2, 3, . . . , 3n{ } by

χ vα( 􏼁 � 3α − 1, for 1≤ α≤ n,

χ u
(α)
1􏼐 􏼑 � 3α − 2, for 1≤ α≤ n and,

χ u
(α)
2􏼐 􏼑 � 3α, for 1≤ α≤ n.

(6)

'erefore,

χ∗ vαvα+1( 􏼁 � 3α, for 1≤ α≤ n − 1,

χ∗ vαu
(α)
1􏼐 􏼑 � 3α − 2, for 1≤ α≤ n and,

χ∗ vαu
(α)
2􏼐 􏼑 � 3α − 1, for 1≤ α≤ n.

(7)

Hence, a classical mean labeling of P7°S1 and P7°S2 is
given by Figure 3.

Let V(L(Pn°S1)) � v1, v2, v3, . . . , vn, e1, e2, e3, . . . ,􏼈

en−1} and E(L(Pn°S1)) � vαeα, eαvα+1: 1≤ α≤n − 1􏼈 􏼉∪
eαeα+1: 1≤ α≤ n − 2􏼈 􏼉.

Case iii. m � 1 in the graph L(Pn°Sm).

Develop a mapping χ from the line graph of vertex set
of Pn°S1 to 1, 2, 3, . . . , 3n − 3{ } by

χ vα( 􏼁 �
2α − 1, 1≤ α≤ 3,

3α − 4, 4≤ α≤ n and,

⎧⎨

⎩

χ eα( 􏼁 �
2, α � 1,

3α, 2≤ α≤ n − 1.

⎧⎨

⎩

(8)

'erefore,

χ∗ vαeα( 􏼁 �
3α − 2, 1≤ α≤ 2,

3α − 3, 3≤ α≤ − 1 + n,
􏼨

χ∗ eαvα+1( 􏼁 � 3α − 1, for 1≤ α≤ n − 1 and,

χ∗ eαeα+1( 􏼁 �
3, α � 1,

3α + 1, 2≤ α≤ − 2 + n.
􏼨

(9)

Let V(L(Pn°S2)) � xα: 1≤ α≤ n − 1􏼈 􏼉∪ yα, zα: 1≤􏼈

α≤ n} and E(L(Pn°S2)) � xαzα, xαyα+1, xαzα+1,􏼈 xαyα:

1≤ α≤ n − 1}∪ xαxα+1: 1≤ α≤ n − 2􏼈 􏼉∪ yαzα: 1≤􏼈 α≤
n}.
Case iv. m � 2 in the graph L(Pn°Sm). Develop a
mapping χ from the line graph of vertex set of Pn°S2 to
1, 2, 3, . . . , 6n − 5{ } by

χ xα( 􏼁 �
5, α � 1,

6α, 2≤ α≤ n − 1,
􏼨

χ yα( 􏼁 �
1, α � 1,

6α − 8, 2≤ α≤ n and,
􏼨

χ zα( 􏼁 �
6α − 4, 1≤ α≤ 2,

6α − 5, 3≤ α≤ n.
􏼨

(10)

'erefore,

χ∗ xαxα+1( 􏼁 � 2 + 6α, for 1≤ α≤ n − 2,

χ∗ xαyα( 􏼁 �
2, α � 1,

6α − 5, 2≤ α≤ − 1 + n,
􏼨

χ∗ xαzα( 􏼁 � 6α − 3, for 1≤ α≤ n − 1,

χ∗ xαzα+1( 􏼁 � 6α, for 1≤ α≤ − 1 + n,

χ∗ xαyα+1( 􏼁 � 6α − 2, for 1≤ α≤ − 1 + n and,

χ∗ yαzα( 􏼁 �
1, α � 1,

6α − 7, 2≤ α≤ n.
􏼨

(11)

Hence, from Figure 4, the graph Pn°Sm and its line
graph L(Pn°Sm) are classical mean graphs, for m≤ 2
and n≥ 1. □

Theorem 4. 6e graph [Pn; Sm] and its line graph
L([Pn; Sm]) are classical mean graphs, for m≤ 2 and n≥ 1.

Proof.

Case i. m � 1 in the graph [Pn; Sm]. Develop a mapping
χ from the vertex set of [Pn; S1] to 1, 2, 3, . . . , 3n{ } by

χ uα( 􏼁 �
3α, α is odd and 1≤ α≤ n,

3α − 2, α is even and 1≤ α≤ n,
􏼨

χ v
(α)
1􏼐 􏼑 � 3α − 1, 1≤ α≤ n and,

χ v
(α)
2􏼐 􏼑 �

−2 + 3α, α is odd and 1≤ α≤ n,

3α, α is even and 1≤ α≤ n.
􏼨

(12)

'erefore,
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Figure 2: A classical mean labeling of C9.
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χ∗ uαuα+1( 􏼁 � 3α, for 1≤ α≤ n − 1,

χ∗ uαv
(α)
1􏼐 􏼑 �

−1 + 3α, α is odd and 1≤ α≤ n,

−2 + 3α, α is even and 1≤ α≤ n and

⎧⎪⎪⎨

⎪⎪⎩

χ∗ v
(α)
1 v

(α)
2􏼐 􏼑 �

−2 + 3α, α is odd and 1≤ α≤ n,

−1 + 3α, α is even and 1≤ α≤ n.

⎧⎪⎪⎨

⎪⎪⎩

(13)

Case ii. m � 2 in the graph [Pn; Sm]. Develop a mapping
χ from the vertex set of [Pn; S2] to 1, 2, 3, . . . , 4n{ } by

χ uα( 􏼁 �
4α, α is odd and 1≤ α≤ n,

−2 + 4α, α is even and 1≤ α≤ n,

⎧⎪⎨

⎪⎩

χ v
(α)
1􏼐 􏼑 � 4α − 1, 1≤ α≤ n,

χ v
(α)
2􏼐 􏼑 �

1, α � 1,

4α + 1, 2≤ α≤ n and,

⎧⎪⎨

⎪⎩

χ v
(α)
3􏼐 􏼑 �

4α − 2, α is odd and 1≤ α≤ n,

4α, α is even and 1≤ α≤ n.

⎧⎪⎨

⎪⎩

(14)

'erefore,

1 3

2 3
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Figure 4: A classical mean labeling of L(P7°S1) and L(P7°S2).
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Figure 3: A classical mean labeling of P7°S1 and P7°S2.
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χ∗ uαuα+1( 􏼁 � 4α, for 1≤ α≤ n − 1,

χ∗ uαv
(α)
1􏼐 􏼑 �

−1 + 4α, α is odd and 1≤ α≤ n,

−2 + 4α, α is even and 1≤ α≤ n,
􏼨

χ∗ v
(α)
1 v

(α)
2􏼐 􏼑 � −3 + 4α, for 1≤ α≤ n − 1,

χ∗ v
(α)
1 v

(α)
3􏼐 􏼑 �

−2 + 4α, α is odd and 1≤ α≤ n,

4α − 1, α is even and 1≤ α≤ n.
􏼨

(15)

It is clearly seen that a classical mean labeling of [P7; S1]

and [P6; S2] is given by Figure 5.
Case iii. m � 1 and n≥ 2 in the graph L([Pn; Sm]).
Develop a mapping χ from the line graph of vertex set
of [Pn; S1] to 1, 2, 3, . . . , 4n − 3{ } by

χ uα( 􏼁 � 4α, for 1≤ α≤ n − 1,

χ v
(α)
1􏼐 􏼑 �

2, α � 1,

4α − 3, 2≤ α≤ n and,
􏼨

χ v
(α)
2􏼐 􏼑 �

1, α � 1,

4α − 5, 2≤ α≤ n.
􏼨

(16)

'erefore,

χ∗ uαuα+1( 􏼁 � 4α + 1, for 1≤ α≤ n − 1,

χ∗ uαv
(α+1)
1􏼐 􏼑 � 4α, for 1≤ α≤ n − 1,

χ∗ uαv
(α)
1􏼐 􏼑 � 4α − 2, for 1≤ α≤ n − 1 and,

χ∗ v
(α)
1 v

(α)
2􏼐 􏼑 �

1, α � 1,

4α − 5, 2≤ α≤ n.
􏼨

(17)

Case iv. m � 1 and n � 1 in the graph L([Pn; Sm]). For
n � 1, the graph L([Pn; S1]) is a path and by'eorem 1,
the result follows.
Case v. m � 2 and n≥ 2 in the graph L([Pn; Sm]).
Develop a mapping χ from the line graph of vertex set
of [Pn; S2] to 1, 2, 3, . . . , 5n − 3{ } by

χ uα( 􏼁 �

−4 + 8α, 1≤ α≤ 2,

5α, α is odd and 3≤ α≤ n,

1 + 5α, α is even and 1≤ α≤ n,

⎧⎪⎪⎨

⎪⎪⎩

χ v
(α)
1􏼐 􏼑 �

3α, 1≤ α≤ 2,

11, α � 3,

5α − 3, 4≤ α≤ n and α is odd,

5α − 4, 4≤ α≤ n and α is even,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

χ v
(α)
2􏼐 􏼑 �

4α − 3, 1≤ α≤ 2,

5α − 7, 3≤ α≤ n and α is odd,

−6 + 5α, 3≤ α≤ n and α is even and,

⎧⎪⎪⎨

⎪⎪⎩

χ v
(α)
3􏼐 􏼑 �

2, α � 1,

−5 + 5α, α is odd and 2≤ α≤ n,

−3 + 5α, α is even and 2≤ α≤ n.

⎧⎪⎪⎨

⎪⎪⎩

(18)

'erefore,

χ∗ uαuα+1( 􏼁 �
6α + 1, 1≤ α≤ 2,

5α + 2, 3≤ α≤ n − 2,

⎧⎨

⎩

χ∗ uαv
(α)
1􏼐 􏼑 �

3, α � 1,

4α, 2≤ α≤ 3,

5α − 2, 4≤ α≤ n − 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

χ∗ uαv
(α+1)
1􏼐 􏼑 �

4, α � 1,

5α, α is odd and 2≤ α≤ n,

5α + 1, α is even and 2≤ α≤ n,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

χ∗ v
(α)
1 v

(α)
2􏼐 􏼑 �

4α − 3, 1≤ α≤ 2,

5α − 6, 3≤ α≤ n and,

⎧⎨

⎩

χ∗ v
(α)
1 v

(α)
3􏼐 􏼑 �

2, α � 1,

5α − 5, α is odd and 2≤ α≤ n,

5α − 4, α is even and 2≤ α≤ n.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(19)

Case vi. m � 2 and n � 1 in the graph L([Pn; Sm]).

For n � 1, the graph L([P1; S2]) is C3 and by'eorem 2,
the result follows.

Hence, the graph [Pn; Sm] for m≤ 2 and n≥ 1 and its line
graph L([Pn; Sm]) for n≥ 1 are classical mean graphs given
by Figure 6. □

6. Classical Meanness of Graphs Obtained from
Other Graph Operations and Its Line Graph

Theorem 5. . For n≥ 2, M(Pn) and its line graph L(M(Pn))

are classical mean graphs.

Proof. Since M(Pn) is a graph L(Pn°S1), for n≥ 2 and by
'eorem 3, the result follows. Let V(L(M

(Pn))) � xα: 1≤ α≤ n + 1􏼈 􏼉∪ xα′: 1≤ α≤ n − 3􏼈 􏼉∪ yα: 1≤ α􏼈

≤ n − 2} and E(L(M(Pn))) � yαyα+1, xα′xα+3, xα′yα+1,􏼈
yαxα′: 1≤ α≤ n − 3}∪ yαxα+2: 1≤ α≤ n − 2􏼈 􏼉∪ yα􏼈 xα+1: 2≤
α≤ n − 2}∪ xαxα+1, xαy1: 1≤ α≤􏼈 2}∪ yn−2xn+1, xnxn+1􏼈 􏼉.

Case i. n≥ 3 in the graph L(M(Pn)). Develop a map-
ping χ from the line graph of vertex set of M(Pn) to
1, 2, 3, . . . , 7n − 13{ } by

χ xα( 􏼁 �

α, 1≤ α≤ 2,

−14 + 7α, 3≤ α≤ n,

−13 + 7n, α � n + 1,

⎧⎪⎪⎨

⎪⎪⎩

χ xα′( 􏼁 � 2 + 7α, for 1≤ α≤ n − 3 and,

χ yα( 􏼁 � −2 + 7α, for 1≤ α≤ n − 2.

(20)

'erefore,
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2 9 13 21 25

1 3 7 11 15 19 23

1 3 7 11 15 19 23

2420195

17 24 287

17

14 22

12 13 17

Figure 6: A classical mean labeling of L([P7; S1]) and L([P7; S2]).
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Figure 5: A classical mean labeling of [P7; S1] and [P6; S2].
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χ∗ yαyα+1( 􏼁 � 7α + 1, for 1≤ α≤ n − 3,

χ∗ xα′xα+3( 􏼁 � 7α + 4, for 1≤ α≤ n − 3,

χ∗ xα′yα+1( 􏼁 � 7α + 3, for 1≤ α≤ n − 3,

χ∗ yαxα′( 􏼁 � 7α − 1, for 1≤ α≤ n − 3,

χ∗ yαxα+2( 􏼁 � 7α − 2, for 1≤ α≤ n − 2,

χ∗ yαxα+1( 􏼁 �
3, α � 1,

7α − 5, 2≤ α≤ n − 2,
􏼨

χ∗ xαxα+1( 􏼁 � 3α − 2, for 1≤ α≤ 2,

χ∗ xαy1( 􏼁 � α + 1, for 1≤ α≤ 2,

χ∗ yn−2xn+1( 􏼁 � 7n − 15 and

χ∗ xnxn+1( 􏼁 � −14 + 7n.

(21)

Case ii. n � 2 in the graph L(M(Pn)). For n � 2, the
graph L(M(Pn)) is P2 and by 'eorem 1, the result
follows. Hence, from Figure 7, for n≥ 2, the graph
M(Pn) and its line graph L(M(Pn)) are classical mean
graphs. □

Theorem 6. . 6e graph S(Pn°K1) and its line graph
L(S(Pn°K1)) are classical mean graphs, for n≥ 1.

Proof. Let V(S(Pn°K1)) � uα, vα, xα, yβ: 1≤ α≤n, 1≤􏽮

β≤ n − 1} and E(S(Pn°K1)) � uαxα, vαxα: 1≤ α≤n􏼈 􏼉∪
uαyα,􏼈 yαuα+1: 1≤ α≤ n − 1}. Develop a mapping χ from the
vertex set of S(Pn°K1) to 1, 2, 3, . . . , 4n − 1{ } by

χ uα( 􏼁 �
3α, 1≤ α≤ 2,

4α − 1, 3≤ α≤ n,
􏼨

χ yα( 􏼁 �
4, α � 1,

4α + 1, 2≤ α≤ n − 1,
􏼨

χ xα( 􏼁 �
5α − 3, 1≤ α≤ 2,

4α − 2, 3≤ α≤ n and,
􏼨

χ vα( 􏼁 �
4α − 3, 1≤ α≤ 2,

4α − 4, 3≤ α≤ n.
􏼨

(22)

'erefore,

χ∗ uαyα( 􏼁 � −1 + 4α, 1≤ α≤ n − 1,

χ∗ yαuα+1( 􏼁 �
4, α � 1,

1 + 4α, 2≤ α≤ n − 1,
􏼨

χ∗ uαxα( 􏼁 �
2, α � 1,

4α − 2, 2≤ α≤ n and,
􏼨

χ∗ vαxα( 􏼁 �
4α − 3, 1≤ α≤ 2,

4α − 4, 3≤ α≤ n.
􏼨

(23)

Let V(L(S(Pn°K1))) � uα, uβ′, vα,wα: 1≤ α≤n, 1≤􏽮

β≤ n − 2} and E(L(S(Pn°K1))) � uαvα, vαwα:􏼈 1≤ α≤ n}∪
uα′vα+1: 1≤ α≤ n − 2􏼈 􏼉∪ uαuα−1′: 2≤ α≤ n − 1􏼈 􏼉∪ uα′uα+2:􏼈

1≤ α≤ n − 2}∪ u1u2.

Case i. n≥ 3 in the graph L(S(Pn°K1)). Develop a
mapping χ from the line graph of vertex set of S(Pn°K1)

to 1, 2, 3, . . . , 5n − 4{ } by

χ uα( 􏼁 �

3, α � 1,

5α − 6, 2≤ α≤ n − 1,

5n − 4, α � n,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

χ uα′( 􏼁 � 5α + 3, for 1≤ α≤ n − 2,

χ vα( 􏼁 �

2, α � 1,

5α − 4, 2≤ α≤ n − 1,

5α − 5, α � n and,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

χ wα( 􏼁 �

1, α � 1,

5α, 2≤ α≤ n − 2,

5n − 6, α � n − 1,

5n − 8, α � n.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(24)

'erefore,

χ∗ uαvα( 􏼁 �

2, α � 1

5α − 6, 2≤ α≤ n − 1,

5n − 5, α � n,

⎧⎪⎪⎨

⎪⎪⎩

χ∗ vαwα( 􏼁 �

1, α � 1

5α − 3, 2≤ α≤ n − 1

5n − 7, α � n,

⎧⎪⎪⎨

⎪⎪⎩

χ∗ uα′vα+1( 􏼁 �
6, α � 1

5α + 1, 2≤ α≤ n − 2,
􏼨

χ∗ uαuα−1′( 􏼁 � 5α, for 2≤ α≤ n − 1,

χ∗ uα′uα+2( 􏼁 �
5α + 3, 1≤ α≤ n − 3

6α − 1, α � n − 2 and,
􏼨

χ∗ u1u2( 􏼁 � 3.

(25)

Case ii. 1≤ n≤ 2 in the graph L(S(Pn°K1)). For
1≤ n≤ 2, the graph L(S(Pn°K1)) is a path and by
'eorem 1, the result follows. Hence, from Figure 9, the
graph S(Pn°K1) and its line graph L(S(Pn°K1)) are
classical mean graphs, for n≥ 1. □

Theorem 7. 6e triangular snake Tn and its line graph L(Tn)

are classical mean graphs, for n≥ 2.

Proof. Let V(Tn) � uα: 1≤ α≤ n − 1􏼈 􏼉∪ vα′: 1≤ α≤ n􏼈 􏼉 and
E(Tn) � uαvα, uαvα+1, vαvα+1: 1≤ α≤ n − 1􏼈 􏼉. Develop a
mapping χ from the vertex set of Tn to 1, 2, 3, . . . , 3n − 2{ } by

χ uα( 􏼁 � 3α, 1≤ α≤ n − 1 and,

χ vα( 􏼁 � −2 + 3α, 1≤ α≤ n.
(26)

'erefore,
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Figure 7: A classical mean labeling of L(M(P7)).
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11 13 17 193 4 6 9

2

1

2
3

6

97 13 15 17

7 10
14

10 14 18

5 8 12 16
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21 23
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20

19 21
22
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114
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Figure 8: A classical mean labeling of S(P6°K1). 'erefore, a classical mean labeling of S(P6°K1) is given by Figure 8.

3 3 4 8 13 13 14 18 31

2 21 26
30

2 30

1 7 17 27

5 8 9 10 15 18 19 2320 23 24 2825 29

4 9 14 19 24

6 11 21 26

12 22 28

1 10 15 20 25 27

6 11 16

16

29

Figure 9: A classical mean labeling of L(S(P7°K1)).
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1 6
7

9

10

12

13
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Figure 10: A classical mean labeling labeling of T7.

1 2 12 17 26 31 321 14 21
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15 22

27
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10 2419 3128
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Figure 11: A classical mean labeling labeling of L(T6).
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χ∗ uαvα( 􏼁 � 3α − 2, 1≤ α≤ n − 1,

χ∗ uαvα+1( 􏼁 � 3α, 1≤ α≤ n − 1 and,

χ∗ vαvα+1( 􏼁 � −1 + 3α, 1≤ α≤ n − 1.

(27)

Hence, a classical mean labeling of T7 is given by
Figure 10.

Let V(L(Tn)) � xα: 1≤ α≤ n􏼈 􏼉∪ xα′: 1≤ α≤ n − 2􏼈 􏼉∪
yα′: 1≤ α≤ n − 1􏼈 􏼉 and E(L(Tn)) � yαyα+1, xαxα−1′,􏼈 xα′

xα+2: 1≤ α≤ n − 2}∪ yαxα+1,􏼈 yαxα−1′, xαyα: 1≤ α≤ n − 1}

∪ x1x2, x2x1′􏼈 􏼉.

Case i. n≥ 3 in the graph L(Tn). Develop a mapping χ
from the line graph of Tn to 1, 2, 3, . . . , 7n − 10{ } by

χ xα( 􏼁 �

α, 1≤ α≤ 2,

11, α � 3 and α � n,

12, α≠ 3 and α � n,

7α − 9, 4≤ α≤ n − 1,

7α − 10, α � n,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χ xα′( 􏼁 � 7α + 3, for 1≤ α≤ n − 2 and,

χ yα( 􏼁 �

5, α � 1.

7α − 6, 2≤ α≤ n − 1.

⎧⎪⎨

⎪⎩

(28)

'erefore,

χ∗ yαyα+1( 􏼁 �
6, α � 1,

7α − 3, 2≤ α≤ n − 2,

⎧⎨

⎩

χ∗ yαxα+1( 􏼁 �
3, α � 1,

7α − 5, 2≤ α≤ n − 1,

⎧⎨

⎩

χ∗ xαxα−1′( 􏼁 �
5, i � 2,

7α − 7, 3≤ α≤ n − 2,

⎧⎨

⎩

χ∗ yαxα−1′( 􏼁 � −6 + 7α, for 2≤ α≤ n − 1,

χ∗ xαyα( 􏼁 �
2α, 1≤ α≤ 2,

−8 + 7α, 3≤ α≤ n − 1,

⎧⎨

⎩

χ∗ xα′xα+2( 􏼁 �
10, α � 1,

7α + 3, 2≤ α≤ n − 2,

⎧⎨

⎩

χ∗ x1x2( 􏼁 � 1 and χ∗ x2x1′( 􏼁 � 5.

(29)

Case ii. n � 2 in the graph L(Tn). For n � 2, the graph
L(Tn) is a cycle C3 and by'eorem 2, the result follows.
Hence, from Figure 11, the triangular snake Tn and its
line graph L(Tn) are classical mean graphs, for
n≥ 2. □

7. Conclusion

In this paper, it is found that the line graph operation
preserves the classical meanness property for some standard
graphs. Further investigation can be done to analyze the
preservation of the classical meanness property by the line
graph operation for other graphs.
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