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Chemical graph theory deals with the basic properties of a molecular graph. In graph theory, we correlate molecular descriptors to
the properties of molecular structures. Here, we compute some Banhatti molecular descriptors for water-soluble dendritic
unimolecular polyether micelle. Our results prove to be very significant to understand the behaviour of water-soluble dendritic
unimolecular polyether micelle as a drug-delivery agent.

1. Introduction

Topological indices are graph invariants associated with
numbers that describe the properties of the graph. In chemical
graph theory, topological indices play a vital role to explore the
structures of different graphs. In 1947, Harold Wiener gave the
idea of topological indices [1]. After that, he published a series of
papers describe the relation between wiener index and physi-
cochemical properties of carbon-based compounds [2, 3] in
1947 and [4, 5] in 1948. /e analysis of topological indices has
great importance in nanotechnology and theoretical chemistry.
/e irregularity of graph was discussed [6] in 1997. In the last
decade of the 20th century, a large number of topological indices
were introduced that were related to the Wiener index. In the
second decade of the 21st century, irregularity topological in-
dices were computed for different chemical structures. In [7], it
was shown that Randic andmodified Zagreb indices are in one-
to-one correspondence for all acyclicmolecules which consist of
no more than 100 atoms. In [8], the new notion of total ir-
regularity was introduced, and the authors determined the

graphs with maximum total irregularity. In [9–11], the total
irregularity of graphs was discussed under the graph operations.
In [12], the total irregularity of graphs was discussed to study
QSPR. An Indian mathematician Kulli in 2016 [13] introduced
some new Banhatti indices such as K Banhatti indices, modified
Banhatti indices and, hyper K Banhatti indices. In the last
decade, irregular, distance- and degree-based topological indices
became hot topics for research in chemical graph theory. Many
researchers computed these indices for different chemical
graphs to study their biochemical properties. In [14], Zheng
et al. computed some eccentricity-based topological indices and
polynomials of Poly(E/ylene Amido Amine) (PETAA) den-
drimers. In [15], Ye et al. worked on the Zagreb connection
number index of nanotubes and regular hexagonal lattice. In
[16], Fahad et al. studied the topological descriptors of Poly
Propyl Ether Imine (PETIM) dendrimers. In [17], Qureshi
studied the Zagreb connection index of drug-related chemical
structures. In [18], Zhang et al. worked on a newly defined
topological index named face index for silicon carbides. In [19],
Luo et al. computed lower bounds on the entire Zagreb indices
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of trees. In [20], Chu et al. studied the irregular indices formetal
organic frameworks and certain 2D lattices. /e Zagreb con-
nection index is computed for silicate, hexagonal, honeycomb,
and oxide networks in [21] in 2021. In [22], Rao et al. studied
some degree-based topological indices of a caboxy-terminated
dendritic macromolecule. In [23], the authors computed the
face index for Boron triangular nanotubes and for quadrilateral
sections cut from a regular hexagonal lattice. In [24], Hussain
et al. computed topological indices for new classes of Benes
network.

Let G(V, E) be a graph where V is a set of vertices and
E is a set of edges. A cardinality of edges associated with a
vertex is called the degree of the vertex. Here, we use a
special term of e � st as an edge of G where the vertex s

and vertex t are linked together by edge e. Let dG(e)

denote the degree of an edge e in G, which is defined by
dG(e) � dG(s) + dG(t) − 2 with e � st. For more details,
refer the work of Kulli [25].

/e first and second K Banhatti indices were introduced
by Kulli in [13] as

B1(G) � 
e�stϵE(G)

dG(s) + dG(e) ,

B2(G) � 
e�stϵE(G)

dG(s)∗ dG(e) .
(1)

/e first and second K hyper Banhatti index of G were
introduced by Kulli in [26] defined as

HB1(G) � 
e�stϵE(G)

dG(s) + dG(e) 
2
,

HB2(G) � 
e�stϵE(G)

dG(s)∗dG(e) 
2
.

(2)

/e first and second modified Banhatti indices of G were
introduced by Kulli in [27] as

mB1(G) � 
e�stϵE(G)

1
dG(s) + dG(e)(  + dG(t) + dG(e)( 

 ,

mB2(G) � 
e�stϵE(G)

2
dG(s) + dG(e)(  + dG(t) + dG(e)( 

 .

(3)

/e harmonic K-Banhatti index of a graph G was in-
troduced by Kulli in [27] as

Hb(G) � 
e�stϵE(G)

2
dG(s) + dG(e)(  + dG(t) + dG(e)( 

 .

(4)

Let G be a graph of water-soluble dendritic unimolecular
polyether micelle. It has 38(2n) − 4 number of vertices and
42(2n) − 5 number of edges where n is the number of growth
of the graph. /e graph has 4(2n) number of vertices having
degree 1, 22(2n) − 2 vertices having degree 2 and 12(2n) − 2
vertices having degree 3. /e graph has 4(2n) number of
edges having degree (1, 3), 8(2n) + 2 edges having degree
(2, 2), 28(2n) − 8 edges having degree (2, 3), and (2, 3)

number of edges having degree (3, 3). In Figure 1, the graph
G is given for n � 4. Dendritic unimolecular micelles play an
important role in drug delivery systems. Unimolecular
micelles have a unique property of uniform size and high
stability. Also, they have attracted increasing attention due
to their high functionality in various applications.

In the next section, we will compute the Banhatti indices for
the water-soluble dendritic unimolecular polyether micelle.

2. Main Results

Table 1 shows the partition of the edge set for the molecular
graph G of water-soluble dendritic unimolecular polyether
micelle.

Theorem 1. Let G be the molecular graph of water-soluble
dendritic unimolecular polyether micelle; then, the first K

Banhatti index of G is

B1(G) � 432 2n
(  − 58. (5)

Proof. By using Table 1 and the definition of the first K

Banhatti index, we have

B1(G) � 
e�stϵE(G)

dG(s) + dG(e) ,

� 4 2n
( [(1 + 2) +(3 + 2)] + 8 2n

(  + 2( [(2 + 2) +(2 + 2)]

+ 28 2n
(  − 8( [(2 + 3) +(3 + 3)] + 2 2n

(  + 1( [(3 + 4) +(3 + 4)],

� 32 2n
(  + 64 2n

(  + 16 + 308 2n
(  − 88 + 28 2n

(  + 14,

� 432 2n
(  − 58.

(6)

□
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Figure 1: Graph of water-soluble unimolecular polyether micelle for growth four.

Table 1: Edge partition of water-soluble dendritic unimolecular polyether micelle.

(dG(s), dG(t)), where stϵE(G) dG(e) Number of edges

(1, 3) 2 4(2n)

(2, 2) 2 8(2n) + 2
(2, 3) 3 28(2n) − 8
(3, 3) 4 2(2n) + 1
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Theorem 2. Let G be the molecular graph of water-soluble
dendritic unimolecular polyether micelle; then, the second K

Banhatti index of G is

B2(G) � 564 2n
(  − 80. (7)

Proof. To compute the second K Banhatti index, we will use
Table 1.

B2(G) � 
e�stϵE(G)

dG(s)∗dG(e) ,

� 4 2n
( [(1∗ 2) +(3∗ 2)] + 8 2n

(  + 2( [(2∗ 2) +(2∗ 2)]

+ 28 2n
(  − 8( [(2∗ 3) +(3∗ 3)] + 2 2n

(  + 1( [(3∗ 4) +(3∗ 4)],

� 32 2n
(  + 64 2n

(  + 16 + 420 2n
(  − 120 + 48 2n

(  + 24,

� 564 2n
(  − 80.

(8)

□
Theorem 3. Let G be the molecular graph of water-soluble
dendritic unimolecular polyether micelle; then, the first K

hyper Banhatti index of G is

HB1(G) � 2296 2n
(  − 326. (9)

Proof. /e edge partition given in Table 1 and the definition
of the first K hyper Banhatti index give

HB1(G) � 
e�stϵE(G)

dG(s) + dG(e) 
2
,

� 4 2n
(  (1 + 2)

2
+(3 + 2)

2
  + 8 2n

(  + 2(  (2 + 2)
2

+(2 + 2)
2

 

+ 28 2n
(  − 8(  (2 + 3)

2
+ 3 + 32   + 2 2n

(  + 1(  (3 + 4)
2

+(3 + 4)
2

 ,

� 136 2n
(  + 256 2n

(  + 64 + 1708 2n
(  − 488 + 196 2n

(  + 98,

� 2296 2n
(  − 326.

(10)

□
Theorem 4. Let G be the molecular graph of water-soluble
dendritic unimolecular polyether micelle; then, the second K

hyper Banhatti index of G is

HB2(G) � 4268 2n
(  − 584. (11)

Proof. /e result follows by using the values from Table 1
and the definition of the second K hyper Banhatti index.

HB2(G) � 
e�stϵE(G)

dG(s)∗dG(e) 
2
,

� 4 2n
(  (1∗ 2)

2
+(3∗ 2)

2
  + 8 2n

(  + 2(  (2∗ 2)
2

+(2∗ 2)
2

 

+ 28 2n
(  − 8(  (2∗ 3)

2
+(3∗ 3)

2
  + 2 2n

(  + 1(  (3∗ 4)
2

+(3∗ 4)
2

 ,

� 160 2n
(  + 256 2n

(  + 64 + 3276 2n
(  − 936 + 576 2n

(  + 288,

� 4268 2n
(  − 584.

(12)

□
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Theorem 5. Let G be the molecular graph of water-soluble
dendritic unimolecular polyether micelle; then, the first
modified Banhatti index of G is

mB1(G) � 4.1884 2n
(  − 0.4059. (13)

Proof. By using the definition of the first modified Banhatti
index and Table 1, we have

mB1(G) � 
e�stϵE(G)

1
dG(s) + dG(e)(  + dG(t) + dG(e)( 

 ,

� 4 2n
( 

1
(1 + 2) +(3 + 2)

  + 8 2n
(  + 2( 

1
(2 + 2) +(2 + 2)

 +

28 2n
(  − 8( 

1
(2 + 3) +(3 + 3)

  + 2 2n
(  + 1( 

1
(3 + 4) +(3 + 4)

 ,

�
2n

2
+ 2n

+
1
4

+
28 2n

( 

11
−

8
11

+
2n

7
+

1
14

,

� 4.1884 2n
(  − 0.4059.

(14)

□
Theorem 6. Let G be the molecular graph of water-soluble
dendritic unimolecular polyether micelle; then, the second
modified Banhatti index of G is

mB2(G) � 3.45 2n
(  − 0.2416. (15)

Proof. /e second modified Banhatti index can be com-
puted by using Table 1 as

mB2(G) � 
e�stϵE(G)

2
dG(s) + dG(e)(  + dG(t) + dG(e)( 

 ,

� 4 2n
( 

1
(1 × 2) +(3 × 2)

  + 8 2n
(  + 2( 

2
(2 × 2) +(2 × 2)

 +

28 2n
(  − 8( 

2
(2 × 3) +(3 × 3)

  + 2 2n
(  + 1( 

2
(3 × 4) +(3 × 4)

 ,

�
2n

2
+ 2n

+
1
4

+
28 2n

( 

15
−

8
15

+
2n

12
+

1
24

,

� 3.45 2n
(  − 0.2416.

(16)

□

Table 2: Banhatti indices of water-soluble dendritic unimolecular polyether micelle.

Banhatti indices n � 1 n � 2 n � 3 n � 4 n � 5
B1(G) 806 1670 3398 6854 13766
B2(G) 1048 2176 4432 8944 17968
HB1(G) 4266 8858 18042 36410 73146
HB2(G) 7952 16488 33560 67704 135992
mB1(G) 7.9709 16.3477 33.1013 66.6085 133.6229
mB2(G) 6.6584 13.5584 27.3584 54.9584 110.1584
Hb(G) 15.9416 32.6948 66.2012 133.214 267.2396
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Theorem 7. Let G be the molecular graph of water-soluble
dendritic unimolecular polyether micelle; then, the harmonic
Banhatti index of G is

Hb(G) � 8.3766 2n
(  − 0.8116. (17)

Proof. /e result can be obtained as follows by using Table 1
and the definition of the harmonic Banhatti index:

Hb(G) � 
e�stϵE(G)

2
dG(s) + dG(e)(  + dG(t) + dG(e)( 

 ,

� 4 2n
( 

2
(1 + 2) +(3 + 2)

  + 8 2n
(  + 2( 

2
(2 + 2) +(2 + 2)

 +

28 2n
(  − 8( 

2
(2 + 3) +(3 + 3)

  + 2 2n
(  + 1( 

2
(3 + 4) +(3 + 4)

 ,

� 2n
+ 2 2n

(  +
1
2

+
56 2n

( 

11
−
16
11

+
2 2n
( 

7
+

2
14

,

� 8.3766 2n
(  − 0.8116.

(18)

□
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Figure 2: Comparison graph of Banhatti indices of water-soluble unimolecular polyether micelle for growth four.
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3. Graphical Analysis and Conclusions

/is section actually provides the summary of this article.
Table 2 gives the comparison for the said topological indices
of the graph. We can see that mB2(G) gives the least values
for different growths of the graph whereas HB2(G) gives
largest values. In Table 2, we can check the values for some
test values of parameter n. Also, the graphical comparison is
presented in Figure 2.
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