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In this paper, we aim to construct a new strong convergence algorithm for a split common fixed point problem involving the
demicontractive operators. It is proved that the vector sequence generated via the Halpern-like algorithm converges to a solution
of the split common fixed point problem in norm.)emain convergence results presented in this paper extend and improve some
corresponding results announced recently. )e highlights of this paper shed on the novel algorithm and the new
analysis techniques.

1. Introduction

Let H1 and H2 be the Hilbert spaces and C and Q be
nonempty closed and convex subsets of H1 and H2,
respectively.

)e split feasibility problem (SFP) is known to find

x ∈ C, such thatAx ∈ Q, (1)

where A: H1⟶ H2 is a linear bounded operator.
In [1], the split feasibility problem (SFP) in the finite-di-

mensional Hilbert spaces was introduced by Censor and
Elfving. )is problem is equivalent to a number of nonlinear
optimization problems and finds numerous real applications,
such as signal processing andmedical imaging (see, e.g., [2–7]).

For this split problem, simultaneous multiprojections
algorithm was employed by Censor and Elfving in the finite-
dimensional space Rn to obtain the algorithm as follows:

xn+1 � A
− 1

PQPA(C)Axn, (2)

where both C and Q are convex and closed subsets of Rn, the
linear bounded operator A of Rn is an n × n matrix, and PQ is
the orthogonal projection operator onto the sets Q.

)e above algorithm (2) involves the matrix A− 1 (one
always assumes the existence of A− 1) at every iterative step.
Calculating A− 1 is very much time-consuming, if the di-
mensions are large scale, in particular, and thus it does not
become popular.

In order to overcome the fault, Byrne [2, 8] proposed the
following novel algorithm CQ, which is under the spotlight
of recent research

xn+1 � PC xn − cA
∗

I − PQ Axn , n≥ 0, (3)

where PC and PQ are the orthogonal projection operators
onto the sets C and Q, respectively, and 0< c< (2/ρ) with ρ
being the spectral radius of the composite mapping A∗A. But,
the CQ algorithm’s step-size is fixed, and it is related to
spectral radius of A∗A. On the other hand, the orthogonal
projection onto the subsetsC andQ in Hilbert spaceH1 is not
easily calculated generally except the special cases, such as
balls and polyhedrals. With the real applications (intensity-
modulated radiation therapy andmedical imaging) of the SFP
in signal processing, the SFP has obtained much attention.
Now, the approximate solutions of the SFP have been studied
extensively by scholars and engineers (see, e.g., [9–13]).
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In (1), if C andQ are the intersections of fixed point sets
of finite many nonlinear operators, the SFP becomes the split
common fixed point problem (SCFPP). )e SCFPP was
studied first by Censor and Segal [14] in 2009, which consists
of finding an element x ∈ H1 with

x ∈ ∩
m

i�1
Fix Ti( , s.t. Ax ∈ ∩

n

j�1
Fix Sj , (4)

where Fix(Ti) denotes the fixed point set of Ti: H1⟶ H1
and Fix(Sj) denotes the fixed point sets of Si: H2⟶ H2,
respectively.

In particular, if m � n � 1, then

x ∈ Fix(T), s.t. Ax ∈ Fix(S), (5)

and T: H1⟶ H1, S: H2⟶ H2, and Fix(T) denotes the
fixed point set of T, and Fix(S) denotes the fixed point set
of S.

)e SCFPP becomes a specific case of SFP and closely
related to SFP. To solve this problem, the original algorithm
for the directed operator was introduced by Censor and
Segal [14] in 2009 as follows:

xn+1 � T xn − ρA
∗
(I − S)Axn( , n≥ 0, (6)

where ρ satisfies the constraint condition 0< ρ< (2/‖A‖2),
and the authors got the weak convergence of the sequence
xn  for solving the SCFPP (5) if the SCFPP consists, that is,
its solution set is nonempty.

Recently, Cui and Wang [15] studied the following al-
gorithm, and they got the weak convergence of the sequence
xn  for solving the SCFPP (5):

xn+1 � Uλ xn − ρnA
∗
(I − T)Axn( , (7)

where Uλ � (1 − λ)I + λU and ρn is given in the following
pattern:

ρn �

(1 − τ) (I − T)Axn

����
����
2

2 A
∗
(I − T)Axn

����
����
2 , Axn ≠T Axn( ,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

)e step-size of this algorithm ρn does not depend on the
norm of the operator A and searches automatically.

In 2015, Boikanyo [16] extended the main results of Cui
and Wang [15] and constructed the Halpern-type algorithm
for demicontractive operators that converge to a solution of
the SCFPP (5) strongly:

xn+1 � αnu + 1 − αn( Uλ xn − ρnA
∗
(I − T)Axn( , (9)

where ρn is given as (8). In this result, the resolvent I −

ρnA∗(I − T)A plays an important role. Indeed, the tech-
niques of resolvents is quite popular, and it acts as a bridge
between fixed point problems and a number of optimization
problems (see, e.g., [17–21] and the references therein).

Motivated by the above results, we propose a novel al-
gorithm on demicontractive operators for approximating a
solution of the SCFPP (5):

un � xn − ρnA
∗
(I − T)Axn,

xn+1 � 1 − αn(  1 − ξn( I + ξnU 1 − ηn( I +ηnU  un +αnu,

⎧⎨

⎩

(10)

where ρn is also obtained by (8). Our algorithm is also based
on the Halpern iteration. Indeed, it is a core for many al-
gorithms in split problems (see, e.g., [22–26]). We get the
strong convergence of the iterative sequence xn  generated
by (10) for solving the SCFPP (5). Our main results are in
two folds. First, we construct a novel iterative algorithm to
solve the split common fixed point problem for the demi-
contractive operators. Second, we permit step-size to be
selected self-adaptively by the self-adaptive method, which
avoids to depend on the norm of the nonlinear operator A.
Our results extend and improve some results of Boikanyo
[16], Cui and Wang [15], Yao et al. [27], and many others.

2. Preliminaries

In this section, we will present some lemmas, which are
useful to prove our main results as follows.

Let H be a Hilbert space, which is endowed with the
inner product 〈·, ·〉, norm ‖ · ‖. )en, the following in-
equalities hold:

‖u + v‖
2 ≤ ‖u‖

2
+ 2〈v, u + v〉, ∀u, v ∈ H, (11)

‖tu +(1 − t)v‖
2

� t‖u‖
2

+(1 − t)‖v‖
2

− t(1 − t)‖u − v‖
2
,

∀t ∈ R and∀u, v ∈ H.

(12)

Definition 1. Let T: H⟶ H be an operator, then I − T

called demiclosed at zero, if the following implication holds
for any xn  in H:

xn ⇀x

(I − T)xn ⟶ 0
⇒x � Tx. (13)

Note that the nonexpansive operator is demiclosed at
zero [28].

Lemma 1 (see [29]). Let an  be a sequence of real non-
negative numbers with

an+1 ≤ 1 − cn( an + δn, (14)

where cn  is a sequence in (0, 1) and δn  is a real sequence
such that

(i) 
∞
n�1 cn �∞

(ii) limsupn⟶∞(δn/cn)≤ 0 or 
∞
n�1 |δn|<∞

Then, limn⟶∞an � 0.

Lemma 2 (see [15]). Let A: H1⟶ H2 be a linear bounded
operator and T: H2⟶ H2 a τ− demicontractive mapping
with τ < 1. If A− 1Fix(T)≠∅, then it is as follows:
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(a) (I − T)Ax � 0⇔A∗(I − T)Ax � 0, ∀x ∈ H1.
(b) In addition, for z ∈ A− 1Fix(T),

x − z − ρA
∗
(I − T)Ax

����
����
2

+
(1 − τ)

2
‖(I − T)Ax‖

4

4 A
∗
(I − T)Ax

����
����
2

≤ ‖x − z‖
2
,

(15)

where x ∈ H1, Ax≠T(Ax) and

ρ ≔
(1 − τ)‖(I − T)Ax‖

2

2 A
∗
(I − T)Ax

����
����
2 . (16)

Lemma 3 (see [30]). Let H be a Hilbert space and let T be an
L-Lipschitzian mapping defined on H with the module L≥ 1.
Set

K ≔ ξT(ηT +(1 − η)I) +(1 − ξ)I. (17)

If 0< ξ < η< (1/1 +
�����
1 + L2

√
), then the following con-

clusions hold:

(1) K is demiclosed at zero point 0, if T is demiclosed at
0

(2) Fix(T) � Fix(T(ηT + (1 − η)I)) � Fix(K)

(3) If T: H⟶ H is a quasi-pseudo-contractive oper-
ator, then the operator K is quasi-non-expansive

Lemma 4 (see [31]). Let sk  be a real numbers sequence that
does not decrease at infinity in the sense that there exists a

subsequence skj
  of sk  such that skj

 < skj+1
  for all j≥ 0.

Define an integer sequence mk k≥ k0
by

mk � max k0 ≤ l≤ k: sl < sl+1 . (18)

Then, mk⟶∞ as k⟶∞ and

smk+1≥max smk
, sk , (19)

for all k≥ k0.

3. Some Nonlinear Operators

Definition 2. An operator T: H⟶ H is said to be
L− Lipschitzian if and only if there exists L> 0 such that

‖Tx − Ty‖≤L‖x − y‖, (20)

for all x, y ∈ C.

Definition 3. An operator T: H⟶ H is said to be non-
expansive if and only if

‖Tx − Ty‖≤ ‖x − z‖, ∀x ∈ H. (21)

Definition 4. An operator T: H⟶ H is said to be quasi-
non-expansive if and only if Fix(T)≠∅ and

‖Tx − z‖≤ ‖x − z‖, ∀x ∈ H, ∀z ∈ Fix(T). (22)

Definition 5. An operator T: H⟶ H is said to be firmly
nonexpansive if and only if

‖Tx − Ty‖
2 ≤ ‖x − y‖

2
− ‖(I − T)x − (I − T)y‖

2
,

∀x, y ∈ H.
(23)

Definition 6. An operator T: H⟶ H is said to be firmly
quasi-non-expansive if and only if Fix(T)≠∅ and

‖Tx − z‖
2 ≤ ‖x − z‖

2
− ‖(I − T)x‖

2
, ∀x ∈ H, ∀z ∈ Fix(T).

(24)

Definition 7. An operator T: H⟶ H is said to be pseu-
docontractive if and only if

〈Tx − Ty, x − y〉≤ ‖x − y‖
2
, ∀x, y ∈ H. (25)

Note that T is pseudocontractive if and only if the op-
erator I − T is monotone. )ere is also an alternative def-
inition for pseudocontractive operators, that is, T is said to
be pseudocontractive if and only if

‖Tx − Ty‖
2 ≤ ‖x − y‖

2
+‖(I − T)x − (I − T)y‖

2
,

∀x, y ∈ H.
(26)

Definition 8. An operator T: H⟶ H is said to be quasi-
pseudo-contractive if and only if Fix(T)≠∅ and

Tx − x
∗����
����
2 ≤ x − x

∗����
����
2

+‖Tx − x‖
2
,

∀x ∈ H, ∀x∗ ∈ Fix(T).
(27)

Definition 9. An operator T: H⟶ H is said to be strictly
pseudocontractive if and only if there exists k ∈ [0, 1) such
that

‖Tx − Ty‖
2 ≤ ‖x − y‖

2
+ k‖(I − T)x − (I − T)y‖

2
,

∀x, y ∈ H.
(28)

Definition 10. A operator T: H⟶ H is said to be directed
if and only if

〈z − Tx, x − Tx〉≤ 0, ∀x ∈ H, ∀z ∈ Fix(T). (29)

Definition 11. An operator T: H⟶ H is said to be
τ− demicontractive with τ < 1 if and only if

‖Tx − z‖
2 ≤ ‖x − z‖

2
+ τ‖x − Tx‖

2
,

∀x ∈ H, ∀z ∈ Fix(T).
(30)

It is easy to obtain that (29) is equivalent to
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‖z − Tx‖
2

+‖x − Tx‖
2

− ‖x − z‖
2 ≤ 0,

∀x ∈ H, ∀z ∈ Fix(T).
(31)

Remark 1. )e classes of k-demicontrative mappings, di-
rected mappings, quasi-non-expansive mappings, and
nonexpansive mappings are closely related. By the above
definitions, we obtain the following conclusion relations
easily (see Figures 1–7).

(1) )e nonexpansive mapping with Fix(T)≠∅ is
quasi-non-expansive mapping

(2) )e quasi-non-expansive mapping is
0− demicontrative mapping

(3) )e firmly nonexpansive mapping is nonexpansive
mapping

(4) )e firmly quasi-non-expansive mapping is quasi-
non-expansive mapping

(5) )e firmly nonexpansive mapping is firmly quasi-
non-expansive mapping

(6) )e directed mapping is demicontractive mapping
(7) )e demicontractive mapping is quasi-pseudo-

contractive mapping
(8) )e strictly pseudocontractive mapping is pseudo-

contractive mapping
(9) )e pseudocontractive mapping is quasi-pseudo-

contractive mapping

4. Main Results

In this section, some assumptions are as follows:

(1) H1 and H2 are twoHilbert spaces, A: H1⟶ H2 is a
linear bounded operator, and A∗ is the adjoint of A

(2) U: H1⟶ H1 and T: H2⟶ H2 are two
L− Lipschitzian operators with L≥ 1, Fix(U)≠∅,
andFix(T)≠∅

(3) U: H1⟶ H1 is a κ-demicontractive operator
(κ< 1), and T: H2⟶ H2 is a τ-demicontractive
operator (τ < 1)

(4) I − U and I − T are two demiclosed operators at O

(5) )e set of solutions of SCFPP (5), denoted by S, is
nonempty

)e strong convergence of a sequence xn  to a point
x ∈ H is denoted by xn⟶ x.

Now, we give the new algorithm to find x∗ ∈ S.where A

is a bounded and linear mapping, A∗ is the adjoint of op-
erator A, and ρn is obtained as follows:

ρn �

(1 − τ) (I − T)Axn

����
����
2

2 A
∗
(I − T)Axn

����
����
2 , Axn ≠T Axn( ,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(33)

Algorithm 1. H1 is a real Hilbert space, and Fix(U)≠∅.
Take an initial point x0 ∈ H1 arbitrarily, and fix u ∈ H1 and
θn  ⊂ (0, 1). If the n− th iteration xn is available, then the

(n + 1)− th iteration is constructed via the following formula:

un � xn − ρnA
∗
(I − T)Axn,

xn+1 � θnu + 1 − θn(  1 − μn( I +μnU 1 − ]n( I + ]nU  un,

⎧⎨

⎩

(32)

Lemma 5. Assume that H1 is a Hilbert space, U: H1⟶ H1
is a κ-demicontractive operator with κ≤ 1, L− Lipschitzian

Quasi-non-expansive mapping

Non-expansive mapping

Figure 1: )e relations of some nonlinear operators.

Non-expansive mapping

Firmly non-expansive mapping

Figure 2: )e relations of some nonlinear operators.

Firmly non-expansive mapping

Firmly quasi-non-expansive mapping

Figure 3: )e relations of some nonlinear operators.
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mappings (L≥ 1), and Fix(U)≠∅. Denote Uμ,] ≔ (1 − μ)I +

μU[(1 − ])I + ]U] with 0< μ< ]< (2 − κ/1+�����������
1 + L2(2 − κ)


). Gen, for all x ∈ H1,

z − Uμ,]

�����

�����
2
≤ ‖x − z‖

2
− μ] 2 − 2] − κ − ]2L2

 ‖Ux − x‖
2
,

(34)

where z ∈ Fix(U). Moreover,

z − Uμ,]

�����

�����≤ ‖z − x‖. (35)

That is, Uμ,] is quasi-non-expansive.

Proof. Since z ∈ Fix(U), we get from (30) that

Directed mapping

Demicontractive mapping

Quasi-pseudo-contractive mapping

Figure 5: )e relations of some nonlinear operators.

Quasi-pseudo-contractive mapping

Pseudocontractive mapping

Strictly pseudocontractive mapping

Figure 6: )e relations of some nonlinear operators.

Quasi-non-expansive mapping

Firmly quasi-non-expansive
mapping

Figure 4: )e relations of some nonlinear operators.
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‖U[(1 − ])I + ]U]x − z‖
2

≤ ‖[(1 − ])I + ]U]x − z‖
2

+ κ‖[(1 − ])I + ]U]x − U[(1 − ])I + ]U]x‖
2

≤ ‖(1 − ])(x − z) + ](Ux − z)‖
2

+ κ‖[(1 − ])I + ]U]x − U[(1 − ])I + ]U]x‖
2
.

(36)

Based on the fact that U is L− Lipschitzian, we get

‖Ux − U[(1 − ])I + ]U]x‖≤ ]L‖x − Ux‖. (37)

Also, from (30) and (12), we can get

‖(1 − ])(x − z) + ](Ux − z)‖
2

� (1 − ])‖x − z‖
2

+ ]‖Ux − z‖
2

− ](1 − ])‖x − Ux‖
2

≤ (1 − ])‖x − z‖
2

+ ] ‖x − z‖
2

+ κ‖Ux − x‖
2

 

− ](1 − ])‖x − Ux‖
2

� ‖x − z‖
2

+ ](] + κ − 1)‖Ux − x‖
2
.

(38)

By (12) and (37), we get

‖[(1 − ])I + ]U]x − U[(1 − ])I + ]U]x‖
2

� ‖(1 − ])(x − U[(1 − ])I + ]U]x) + ](Ux − U[(1 − ])I + ]U]x)‖
2

� (1 − ])‖x − U[(1 − ])I + ]U]x‖
2

+ ]‖Ux − U[(1 − ])I + ]U]x‖
2

− ](1 − ])‖x − Ux‖
2

≤ (1 − ])‖x − U[(1 − ])I + ]U]x‖
2

+ ]]2L2
‖Ux − x‖

2

− ](1 − ])‖x − Ux‖
2

� (1 − ])‖x − U[(1 − ])I + ]U]x‖
2

− ] 1 − ] − ]2L2
 ‖x − Ux‖

2
.

(39)

Quasi-pseudo-contractive mapping

0-demicontractive mapping

Quasi-non-expansive mapping

Non-expansive mapping

Figure 7: )e relations of some nonlinear operators.
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Substituting (38) and (39) into (36), we have

‖U[(1 − ])I + ]U]x − z‖
2

≤ ‖x − z‖
2

+ ](] + κ − 1)‖Ux − x‖
2

+(1 − ])‖x − U[(1 − ])I + ]U]x‖
2

− ] 1 − ] − ]2L2
 ‖x − Ux‖

2

� ‖x − z‖
2

+(1 − ])‖x − U[(1 − ])I + ]U]x‖
2

− ] 2 − 2] − κ − ]2L2
 ‖x − Ux‖

2
.

(40)

Since μ< ], combining (12) and (40), we get

‖(1 − μ)x + μU[(1 − ])I + ]U]x − z‖
2

� ‖(1 − μ)(x − z) + μ U[(1 − ])I + ]U]x − z{ }}‖
2

� (1 − μ)‖x − z‖
2

+ μ‖U[(1 − ])I + ]U]x − z‖
2

− μ(1 − μ)‖U[(1 − ])I + ]U]x − x‖
2

� (1 − μ)‖x − z‖
2

− μ(1 − μ)‖U[(1 − ])I + ]U]x − x‖
2

+ μ ‖x − z‖
2

+(1 − ])‖x − U[(1 − ])I + ]U]x‖
2



− ] 2 − 2] − κ − ]2L2
 ‖x − Ux‖

2

� ‖x − z‖
2

+ μ(μ − ])‖x − U[(1 − ])I + ]U]x‖
2

− ] 2 − 2] − κ − ]2L2
 ‖x − Ux‖

2

≤ ‖x − z‖
2

− ] 2 − 2] − κ − ]2L2
 ‖x − Ux‖

2
.

(41)

Since ]< (2 − κ/1 +
�����������
1 + L2(2 − κ)


), we deduce

2 − 2] − κ − ]2L2 > 0. (42)

Hence,

‖(1 − μ)x + μU[(1 − ])I + ]U]x − z‖
2 ≤ ‖x − z‖

2
. (43)

)at is, Uμ,] is quasi-non-expansive. □

Theorem 1. Assume that problem (5) is consistent (S≠∅).
Let H1, H2, A, U, T, xn  be the same as above. If θn ⊂ (0, 1)

satisfies limn⟶∞θn � 0 and 
∞
n�0 θn �∞, where a and b are

constants and μn  and ]n  satisfies 0< a< μn < ]n <
b< (2 − κ/1 +

�����������
1 + L2(2 − κ)


), ∀n≥ 1, then the sequence

xn  converges to a point x ∈ S in norm and x is the nearest
point S to u (x � tPSnu).

Proof. )is proof is split into three parts as follows. □

Step 1. Prove that xn  is a bounded sequence.
Take p ∈ S. From )eorem 1, we know that Uμn,]n

is
quasi-non-expansive. From (32), we have

xn+1 − p
����

���� � θnu + 1 − θn( Uμn,]n
un − p

�����

�����

� θn(u − p) + 1 − θn(  Uμn,]n
un − p 

�����

�����

≤ θn‖u − p‖ + 1 − θn(  Uμn,]n
un − p

�����

�����

≤ θn‖u − p‖ + 1 − θn(  un − p
����

����

≤ θn‖u − p‖ + 1 − θn(  xn − p
����

����.

(44)

By induction, we get

xn − p
����

����≤max ‖u − p‖, x0 − p
����

���� . (45)

)us, xn  is bounded.

Step 2

xn+1 − x
����

����
2 ≤ 1 − θn(  xn − x

����
����
2

+ 2θn〈u − x, xn+1 − x〉,
(46)

where x � PSu.
Consider the case ρn ≠ 0. From (32), (35), and (11), we get

xn+1 − x
����

����
2

� θnu + 1 − θn( Uμn,]n
un − x

�����

�����

� θn(u − x) + 1 − θn(  Uμn,]n
un − x 

�����

�����

≤ 1 − θn( 
2

Uμn,]n
un − x

�����

�����
2

+ 2θn〈u − x, xn+1 − x〉

≤ 1 − θn(  Uμn,]n
un − x

�����

�����
2

+ 2θn〈u − x, xn+1 − x〉

≤ 1 − θn(  un − x
����

����
2

+ 2θn〈u − x, xn+1 − x〉

≤ 1 − θn(  xn − x
����

����
2

−
(1 − τ)

2

4
(I − T)Axn

����
����
4

A
∗
(I − T)Axn

����
����
2

⎡⎢⎢⎣ ⎤⎥⎥⎦

+ 2θn〈u − x, xn+1 − x〉

≤ 1 − θn(  xn − x
����

����
2

+ 2θn〈u − x, xn+1 − x〉.

(47)

Hence,

xn+1 − x
����

����
2 ≤ 1 − θn(  xn − x

����
����
2

+ 2θn〈u − x, xn+1 − x〉.
(48)

Consider the case ρn � 0. From (32) and (11), we get

xn+1 − x
����

����
2

� θnu + 1 − θn( Uμn,]n
un − x

�����

�����

� θn(u − x) + 1 − θn(  Uμn,]n
un − x 

�����

�����

≤ 1 − θn( 
2

Uμn,]n
un − x

�����

�����
2

+ 2θn〈u − x, xn+1 − x〉

≤ 1 − θn(  Uμn,]n
un − x

�����

�����
2

+ 2θn〈u − x, xn+1 − x〉

≤ 1 − θn(  un − x
����

����
2

+ 2θn〈u − x, xn+1 − x〉

≤ 1 − θn(  xn − x
����

����
2

+ 2θn〈u − x, xn+1 − x〉.

(49)
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Hence,

xn+1 − x
����

����
2 ≤ 1 − θn(  xn − x

����
����
2

+ 2θn〈u − x, xn+1 − x〉.
(50)

Step 3. Prove that xn⟶ x as n⟶∞.
)is step is divided into two cases. Denote

sn ≔ ‖xn − x‖2.

Case 1. Assume there exists a positive integer n0 and the
sequence sn  is decreasing for any n≥ n0. )en, sn  con-
verges to some point strongly by the monotonic bounded
principle.

First, we show that

limsup
n⟶∞
〈u − x, xn − x〉 ≤ 0. (51)

Using the choice (33) of the step-size ρn, (32), (34), (35),
and (11), we get

xn+1 − x
����

����
2

� θnu + 1 − θn( Uμn,]n
un − x

�����

�����

� θn(u − x) + 1 − θn(  Uμn,]n
un − x 

�����

�����

≤ 1 − θn( 
2

Uμn,]n
un − x

�����

�����
2

+2θn〈u − x,xn+1 − x〉

≤ Uμn,]n
un − x

�����

�����
2

+2θn〈u − x,xn+1 − x〉

≤ un − x
����

����
2

− μn]n 2 − 2]n − κ − ]2nL
2

  Uun − un

����
����
2

+2θn〈u − x,xn+1 − x〉

≤ xn − x
����

����
2

−
(I − T)Axn

����
����
4

A
∗
(I − T)Axn

����
����
2

(1 − τ)
2

4

− μn]n 2 − 2]n − κ − ]2nL
2

  Uun − un

����
����
2

+2θn〈u − x,xn+1 − x〉.
(52)

So,

μn]n 2 − 2]n − κ − ]2nL
2

  Uun − un

����
����
2 ≤ sn − sn+1 + θnL,

0≤
(1 − τ)

2
(I − T)Axn

����
����
4

4 A
∗
(I − T)Axn

����
����
2 ≤ sn − sn+1 + θnL,

(53)

where L is a nonnegative real constant such that
supn∈N 2〈f(xn) − x, xn+1 − x〉 ≤L. Based on the fact that
sn  is convergent, we have

un − Uun

����
����⟶ 0, as n⟶∞, (54)

(I − T)Axn

����
����
2

A
∗
(I − T)Axn

����
����
⟶ 0, as n⟶∞. (55)

Moreover,

(I − T)Axn

����
����
2

A
∗
(I − T)Axn

����
����
≥

(I − T)Axn

����
����
2

(I − T)Axn

����
���� · ‖A‖
≥

(I − T)Axn

����
����

‖A‖
.

(56)

Hence,

Axn − TAxn

����
����⟶ 0. (57)

Since

xn − un

����
���� � ρn A

∗
(I − T)Axn

����
����

�
(1 − τ) (I − T)Axn

����
����
2

2 A
∗
(I − T)Axn

����
����
⟶ 0, as n⟶∞.

(58)

Since xn⇀q, we have un⇀ q due to (58). From (54) and
as I − U is demiclosed at zero, we have

q ∈ Fix(U). (59)

From (55) and I − T is demiclosed at zero, we have

Aq ∈ Fix(T). (60)

)us, q ∈ S by (59) and (60). Hence, it follows from x �

PSu that

limsup\limits n⟶∞〈u − x, xn − x〉

� 〈u − x, q − x〉≤ 0.
(61)

Secondly, we show that

xn+1 − xn

����
����⟶ 0, as n⟶∞. (62)

From (32), we have

Uμn,]n
un − un

�����

����� � μn un − U 1 − ]n( I + ]nU un

����
����

� μn un − Uun + Uun − U 1 − ]n( I + ]nU un

����
����

≤ μn un − Uun

����
���� + μn Uun − U 1 − ]n( I + ]nU un

����
����

≤ μn un − Uun

����
���� + μnL un − 1 − ]n( I + ]nU un

����
����

� μn un − Uun

����
���� + μn]nL un − Uun

����
����

� μn 1 + ]nL(  un − Uun

����
����.

(63)

From the above equation and (32), (54), and (58), we
have
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xn+1 − xn

����
����≤ θn u − xn

����
���� + 1 − θn(  xn − Uμn,]n

un

�����

�����

≤ θn u − xn

����
���� + xn − un

����
���� + un − Uμn,]n

un

�����

�����

≤ θn u − xn

����
���� + xn − un

����
���� + μn 1 + ]nL(  un − Uun

����
����

≤ θn u − xn

����
���� + xn − un

����
���� + b(1 + bL) un − Uun

����
����.

(64)

Combining (54) and 58, we get

xn+1 − xn

����
����⟶ 0, as n⟶∞. (65)

)irdly, we show that xn⟶ x as n⟶∞.
Together with (51) and (62), we get

limsup
n⟶∞
〈u − x, xn+1 − x〉 ≤ 0. (66)

Applying Lemma 2 to (46), which together with the
assumption of θn  and (66), we get xn⟶ x as n⟶∞
easily.

Case 2. Assume that there is no positive integer n0 and a
decreasing sequence sn  for any n≥ n0. )at is, there is a
subsequence ski

  of sk  such that ski
< ski+1 for any i ∈ N.

From Lemma 4, we can define a nondecreasing sequence
mk  ⊂ N such that mk⟶∞ as k⟶∞ and

smk
≤ smk+1. (67)

Firstly, we show

limsup
n⟶∞
〈u − x, xmk

− x〉 ≤ 0. (68)

It follows from (52) and (67) and the boundedness of
xmk

  that

μmk
]mk

2 − 2]mk
− κ − ]2mk

L
2

  Uumk
− umk

�����

�����
2
≤ smk

− smk+1 + αmk
L

≤ αmk
L,

0≤
(1 − τ)

2

4
(I − T)Axmk

�����

�����
4

A
∗
(I − T)Axmk

�����

�����
2 ≤ smk

− smk+1 + αmk
L

≤ αmk
L.

(69)

)us,

umk
− Uumk

�����

�����⟶ 0, as n⟶∞,

(I − T)Axmk

�����

�����
2

A
∗
(I − T)Axmk

�����

�����
⟶ 0, as n⟶∞.

(70)

Moreover,

1
‖A‖

(I − T)Axmk

�����

�����≤
(I − T)Axmk

�����

�����
2

‖A‖ · (I − T)Axmk

�����

�����
≤

(I − T)Axmk

�����

�����
2

A
∗
(I − T)Axmk

�����

�����
.

(71)

Hence,

Axmk
− TAxmk

�����

�����⟶ 0, (72)

due to

xmk
− umk

�����

����� � ρmk
A
∗
(I − T)Axmk

�����

�����

�
(1 − τ) (I − T)Axmk

�����

�����
2

2 A
∗
(I − T)Axmk

�����

�����
⟶ 0, as n⟶∞.

(73)

Since xmk
⇀q, then umk

⇀q. So, we have q ∈ S by the
similar proofs in Case 1. Hence, it follows from x � PSu that

limsup
n⟶∞
〈u − x, xmk

− x〉 � 〈u − x, q − x〉≤ 0. (74)

Secondly, we show

xmk+1 − xmk

�����

�����⟶ 0, as k⟶∞. (75)

From (32), we have

Uμmk
,]mk

umk
− umk

������

������

� μmk
umk

− U 1 − ]mk
 I + ]mk

U umk

�����

�����

� μmk
umk

− Uumk
+ Uumk

− U 1 − ]mk
 I + ]mk

U umk

�����

�����

≤ μmk
umk

− Uumk

�����

����� + μmk
Uumk

− U 1 − ]mk
 I + ]mk

U umk

�����

�����

≤ μmk
umk

− Uumk

�����

����� + μmk
L umk

− 1 − ]mk
 I + ]mk

U umk

�����

�����

� μmk
umk

− Uumk

�����

����� + μmk
]mk

L umk
− Uumk

�����

�����

� μmk
1 + ]mk

L  umk
− Uumk

�����

�����.

(76)

By the above equation and (32), we have
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xmk+1 − xmk

�����

�����

≤αmk
u − xmk

�����

����� + 1 − αmk
  xmk

− Uμmk
,]mk

umk

������

������

≤αmk
u − xmk

�����

����� + xmk
− umk

�����

����� + umk
− Uμmk

,]mk

umk

������

������

≤αmk
u − xmk

�����

����� + xmk
− umk

�����

����� +μmk
1+ ]mk

L  umk
− Uumk

�����

�����

≤αmk
u − xmk

�����

����� + xmk
− umk

�����

����� + b(1+ bL) umk
− Uumk

�����

�����.

(77)

Combining (54) and the (58), we get

xmk+1 − xmk

�����

�����⟶ 0, as n⟶∞. (78)

)irdly, we show that xmk
⟶ x as n⟶∞.

Using (68) and (75), we get

limsup
n⟶∞
〈u − x, xmk+1 − x〉 ≤ 0. (79)

Based on smk
≤ smk+1, ∀k ∈ N and (46), we get

αmk
smk+1 + 1 − αmk

  smk+1 − smk
 ≤ 2αmk

〈u − x, xmk+1 − x〉.

(80)

So,

αmk
smk+1≤ 2αmk

〈u − x, xmk+1 − x〉, (81)

that is,

smk+1≤ 2〈u − x, xmk+1 − x〉. (82)

Taking the limit k⟶∞, using (79), we obtain

smk+1⟶ 0, as k⟶∞. (83)

)us,

sk⟶ 0, as k⟶∞, (84)

due to sk ≤ smk+1. )e proof is completed.

5. Numerical Example

In the section, we present a numerical experiment to
demonstrate the convergence of this algorithm.

Assume H1 � H2 � (R3, ‖ · ‖2) and T, U: R3⟶ R3 is
defined by

T

x

y

z

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�
1
3

x

y

z

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

U

a

b

c

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

0

a

b

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(85)

Let the bounded linear operator A be defined by

A �

5 − 5 − 7

− 4 2 − 4

− 7 − 4 5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (86)

Clearly, both U and T are 0− demicontractive mappings.
Choose the parameters as follows:

θn �
1
n

,

μn �
1
n

,

]n �
1
�
n

√ , ∀n≥ 1.

(87)

ρn is chosen in the following way:

ρn �

(1 − τ) (I − T)Axn

����
����
2

2 A
∗
(I − T)Axn

����
����
2 , Axn ≠T Axn( ,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(88)

where A is a bounded and linear mapping and A∗ is its
adjoint. )en, the iterative algorithm (10) becomes as
follows:

un � xn − ρnA
∗
(I − T)Axn,

xn+1 �
1
n

u + 1 −
1
n

  1 −
1
n

 I +
1
n

U 1 −
1
�
n

√ I +
1
�
n

√ U  un,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(89)

where u �

1
− 1
2

⎛⎜⎝ ⎞⎟⎠ is a fixed point in R3, and the initial point

x1 �

a1
b1
c1

⎛⎜⎝ ⎞⎟⎠ �

1
− 2
5

⎛⎜⎝ ⎞⎟⎠ and xn �

an

bn

cn

⎛⎜⎝ ⎞⎟⎠ is generated by the

algorithm (10). We plot the numbers of iterations and
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Figure 8: )e iterative curves of algorithm (21) under different n.
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‖xn+1 − xn‖2 in the following graphs (Figures 8 and 9), the
numbers of iterations and xn  � an, bn, cn .

6. Conclusion

In this paper, we proposed a new iteration algorithm (10)
and we obtained the strong convergence of the sequence
xn  for split common fixed point problems (5). )e main
result is an extension of the related results announced in
[15, 16, 27]. )e research highlights of this paper are novel
algorithms and their analysis techniques. )e improvement
on the extension of the operator, such as the demicontractive
mappings, the directed operators, the quasi-non-expansive
operators, and quasi-pseudo-contractive operators will be of
interest for further research in the future.
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