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In this study, a new modification of the homotopy perturbation method (HPM) is introduced for various order boundary value
problems (BVPs). In this modification, HPM is hybrid with least square optimizer and named as the least square homotopy
perturbation method (LSHPM). ,e proposed scheme is tested against various linear and nonlinear BVPs (second to seventh
order DEs). Validity of the obtained solutions is confirmed by finding absolute errors. To analyze the efficiency of the proposed
scheme, tested problems have also been solved through HPM and results are compared with LSHPM. Furthermore, obtained
results are also compared with other numerical schemes available in literature. Analysis reveals that LSHPM is a consistent and
effective scheme which can be used for more complex BVPs in science and engineering.

1. Introduction

Most of the phenomena in mathematical physics, biological
mathematics, and applied mathematics are modeled in the
form of differential equations. Solutions to such differential
equations are needed to analyze and predict changes in a
physical system. In most cases, it is impossible to calculate an
exact solution. ,erefore, to solve these problems, various
numerical and seminumerical methods have been modeled.

Liao presented one of the first analytical methods for
nonlinear problems which do not require a small parameter
[1]. ,is method has been applied to many situations in
various fields of science and technology [2–4]. In late 90s,
Prof. He introduced the homotopy perturbation method
(HPM) for highly nonlinear equations [5]. ,is technique
matures into a full fledged theory for nonlinear problems
with the efforts of many researchers, notably Ji-Huan He
and his students. ,is method combines homotopy con-
cepts with perturbation theory and does not rely on small
or large parameter like other traditional perturbation
techniques [6]. Wide range of problems has been solved
using HPM [7–10].

Various modifications of HPM have also been proposed
by different researchers to tackle more complex problems.
Darvishi et al. combine HPM with adomian polynomials to
sine-Gorden type equations in [11]. Biazar and Eslami
proposed a modification of HPM based on Taylor series
expansion of the kernel and source term [12]. HPM with
rank upgrading technique for the superior nonlinear os-
cillation is proposed in [13]. Qayyum et al. used coupling of
HPM with Laplace transform for squeezing flows in [14].
Bota and Caruntu applied HPM with the least square
method to fluid flow problems in [15]. For enhanced results,
Le-He extension of HPM is proposed in [16]. Ji et al. further
applied Le-He extension of HPM to nonlinear packaging
system in [17]. Ain et al. introduced Li-He modified ex-
tension of HPM for micro-electro-mechanical systems in
[18].

In this article, HPM is combined with LS optimizer along
with some refine inital guesses to obtain fast convergent
semianalytical solutions of linear and nonlinear BVPs. ,is
scheme takes few iterations (cycles) to achieve accurate
solution, and hence, it has less computational cost with
improved accuracy.
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2. Basic Idea of LSHPM

Let us consider the following differential equations along
with boundary conditions.

L(φ) + N(φ) − g(r) � 0, r ∈ Ω, (1)

B φ,
dnφ
dr

n  � 0, r ∈ c, (2)

where L and N represent the linear and nonlinear parts, B

represents the boundary operator, c is the boundary of the
domain, φ represents an unknown value, and g(x) is a
known function. We construct a homotopy such that
η(r, p): φ × [0, 1]⟶ R which satisfies

ψ(η, p) � (1 − p) L(η) − L φ0(   + p[L(η) + N(η) − g(r)] � 0, r ∈ Ω, (3)

where p ∈ [0, 1] is the embedding parameter and L(φ0) is
the initial guess of equation (1) that satisfies the boundary
conditions:

ψ(η, 0) � L(η) − L φ0(  � 0,

ψ(η, 1) � L(η) + N(η) − g(r) � 0.
(4)

,erefore, as p changes from 0 to 1, the solution η(r, p)

approaches from φ0 to φ(r). We expand η(r, p) into a Taylor
series expansion about p to obtain an approximate solution:

η(r, p) � η0 + 
∞

k�1
ηkp

k
. (5)

Setting p � 1, the approximate HPM solution of (1)
would be

φ � lim
p⟶1

η(r, p) � 

∞

k�1
ηk. (6)

We reassign the convergence controlling parameters ci′s

as coefficients of series (6) and substitute supposed solution
φ back in (1) to get the residual function:

R x, ci(  � R(x, φ). (7)

Now, we compute the sum of square of residuals:

J ci(  � 
I
R

2
x, ci( dx. (8)

After computing J(ci), we find the optimal values of ci
′s

from system of equations obtained from (zJ/zci) � 0. ,en,
putting these optimal values back into φ will provide refined
solution.

3. Application of LSHPM

Problem 1. Second-order linear ODE:

G″(x) + 2G′(x) + G(x) � 0, 0<x< 1, (9)

subject to boundary conditions,

G(0) � 1,

G(1) � 3.
(10)

,e exact solution of this problem is e−x + (3e − 1)xe−x.
First, we construct a homotopy as

(1 − p) G″(x)(  + p G″(x) + 2G′(x) + G(x)(  � 0. (11)

Zeroth-order problem is

G0″(x) � 0,

G0(0) � 1,

G0(1) � 3.

(12)

,e solution to (12) is

G0(x) � 1 + 2x. (13)

First-order problem is

G0(x) + 2G0′(x) + G1″(x) � 0,

G1(0) � 0,

G1(1) � 0.

(14)

,e solution to (14) is

G1(x) �
1
6

17x − 15x
2

− 2x
3

 . (15)

Second-order problem is

G1(x) + 2G1′(x) + G2″(x) � 0,

G2(0) � 0,

G2(1) � 0.

(16)

,e solution to (16) is

G2(x) �
1
360

449x − 1020x
2

+ 430x
3

+ 135x
4

+ 6x
5

 .

(17)

,ird-order problem is

G2(x) + 2G2′(x) + G3″(x) � 0,

G3(0) � 0,

G3(1) � 0.

(18)

,e solution to (18) is
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G3(x) �
1

15120
2351x − 18858x

2
+ 25417x

3
− 5460x

4
− 3171x

5
− 273x

6
− 6x

7
 . (19)

By combining (13), (15), (17), and (19) will give ap-
proximate solution of (9) as follows:

G(x) � 1 + 2x +
1
6

17x − 15x
2

− 2x
3

  +
1
360

449x − 1020x
2

+ 430x
3

+ 135x
4

+ 6x
5

 

+
1

15120
2351x − 18858x

2
+ 25417x

3
− 5460x

4
− 3171x

5
− 273x

6
− 6x

7
 .

(20)

It follows that (20) consist of x0, x, x2, x4, x5, x6, x7, and
hence, the required solution is

G � c0 + c1x + c2x
2

+ c3x
4

+ c4x
5

+ c5x
6

+ c6x
7
. (21)

By applying the boundary conditions given in (27), we
have

c0 � 1,

c1 � 2 − c2 − c3 − c4 − c5 − c6 − c7.
(22)

By putting c0, c1 in G gives

G(x) � 1 +(2 − c2 − c3 − c4 − c5 − c6 − c7)x + c2x
2

+ c3x
4

+ c4x
5

+ c5x
6

+ c6x
7
. (23)

Now, replacing G(x) with G(x) in (27)

R x, c2, c3, c4, c5, c6, c7(  � 1 + 2c2 + 6c3x + 2 − c2 − c3 − c4 − c5 − c6 − c7( x + c2x
2

+ 12c4x
2

+ c3x
3

+ 20c5x
3

+ c4x
4

+ 30c6x
4

+ c5x
5

+ 42c7x
5

+ c6x
6

+ c7x
7

+ 2 2 − c2 − c3 − c4 − c5 − c6 − c7 + 2c2x + 3c3x
2

+ 4c4x
3

+ 5c5x
4

+ 6c6x
5

+ 7c7x
6

 .

(24)

Next, we minimize J(c2, c3, c4, c5, c6) � 
1
0 R2(c2, c3,

c4, c5, c6)dx to get optimal values of ci
′s. Here,

c2 � −6.65482,

c3 � 3.4104,

c4 � −1.14897,

c5 � 0.285225,

c6 � −0.0522252,

c7 � 0.00554595.

(25)

,e third-order approximation solution is
G(x) � 1 + 6.15485x − 6.65482x

2
+ 3.4104x

3
− 1.14897x

4

+ 0.285225x
5

− 0.0522252x
6

+ 0.00554595x
7
.

(26)

,e results are presented in Table 1.

Problem 2. Let us consider the following second-order
nonhomogeneous nonlinear ODE [20]:

G″(x) + G(x)
2

− x
4

− 2 � 0, 0<x< 1, (27)

subject to boundary conditions,

G(0) � 0,

G(1) � 1.
(28)

,is problem was studied by Momani [20] by applying
the differential transform method, and later, Mohamad [19]
by applying four different numerical methods for this
problem. ,e exact solution to this problem is x2.

,e first step is to construct a homotopy:

(1 − p) G″(x)(  + p G″(x) + G(x)
2

+ x
4

− 2  � 0. (29)

,en, we linearize the problem as follows.
Zeroth-order problem is

G0″(x) � 0,

G0(0) � 0,

G0(1) � 1.

(30)

,e solution to (30) is
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G0(x) � x. (31)

First-order problem is

−2 + x
4

+ G0(x)
2

+ G1″(x) � 0,

G1(0) � 0,

G1(1) � 0.

(32)

,e solution to (32) is

G1(x) �
1
60

−53x + 60x
2

− 5x
4

− 2x
6

 . (33)

Second-order problem is

2G0(x)G1(x) + G2″(x) � 0,

G2(0) � 0,

G2(1) � 0.

(34)

,e solution to (34) is

G2(x) �
1

7560
−394x + 1113x

4
− 756x

5
+ 30x

7
+ 7x

9
 .

(35)

By combining (31), (33), and (35) will give an approx-
imate series solution of (27) as

G(x) � x +
1
60

−53x + 60x
2

− 5x
4

− 2x
6

  +
1

7560
−394x + 1113x

4
− 756x

5
+ 30x

7
+ 7x

9
 . (36)

(36) consists of x, x2, x4, x5, x6, x7, x9; hence, the re-
quired solution will take the form

G(x) � c1x + c2x
2

+ c3x
4

+ c4x
5

+ c5x
6

+ c6x
7

+ c7x
9
.

(37)

By applying boundary conditions from (27) gives

c1 � 1 − 1 c2 + c3 + c4 + c5 + c6 + c7( . (38)

By putting c1 in G(x) gives

G(x) � 1 − 1 c2 + c3 + c4 + c5 + c6 + c7( ( x + c2x
2

+ c3x
4

+ c4x
5

+ c5x
6

+ c6x
7

+ c7x
9
. (39)

Now, replacing G(x) with G(x) in (27), we get the
following residual function:

R x, c2, c3, c4, c5, c6, c7(  � −2 + 2c2 + 12c3x
2

+ 20c4x
3

+ x
4

+ 30c5x
4

+ 42c6x
5

+ 72c7x
7

+ 1 − c2 − c3 − c4 − c5 − c6 − c7( x + c2x
2

+ c3x
4

+ c4x
5

+ c5x
6

+ c6x
7

+ c7x
9

 
2
.

(40)

Next, we minimize J(c2, c3, c4, c5, c6, c7) � 
1
0 R2(c2, c3,

c4, c5, c6, c7)dx to get optimal values of ci
′s.

Table 1: Comparison of third-order absolute error of LSHPM with HPM in Problem 1.

x
Exact LSHPM HPM

Solution Solution Error Solution Error
0 1 1. 0 1 0
0.1 1.55223 1.55223 3.76 × 10− 8 1.56034 8.10 × 10− 3

0.2 1.99031 1.99031 4.82 × 10− 8 2.00428 1.39 × 10− 2

0.3 2.33095 2.33095 6.86 × 10− 8 2.34683 1.58 × 10− 2

0.4 2.58873 2.58873 3.12 × 10− 8 2.60253 1.37 × 10− 2

0.5 2.77635 2.77635 9.38 × 10− 8 2.7852 8.85 × 10− 3

0.6 2.90481 2.90481 2.57 × 10− 8 2.90766 2.85 × 10− 3

0.7 2.98368 2.98368 6.94 × 10− 8 2.98144 2.23 × 10− 3

0.8 3.02123 3.02123 4.41 × 10− 8 3.01646 4.76 × 10− 3

0.9 3.02462 3.02462 3.67 × 10− 8 3.02073 3.88 × 10− 3

1 3 3 0 3 0
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Here,

c1 � 0.0725613,

c2 � 0.999994,

c3 � −0.0000429997,

c4 � −0.00942955,

c5 � −0.0618513,

c6 � −0.00444548,

c7 � 0.00321356.

(41)

Hence, second-order approximate solution is

G(x) � 0.0725613x + 0.999994x
2

− 0.0000429997x
4

− 0.00942955x
5

− 0.0618513x
6

− 0.00444548x
7

+ 0.00321356x
9
.

(42)

,e results are presented in Table 2.

Problem 3. ,ird-order linear ODE [21]:

G
‴

(x) − xG(x) − x
3

− 2x
2

− 5x − 3 e
x
, 0<x< 1,

(43)

subject to boundary conditions

G(0) � 0,

G′(0) � 1,

G(1) � 0.

(44)

,e exact solution to this problem is x(1 − x)ex. After
applying LSHPM proceedure, second-order approximate
solution is

G(x) � −26.4063 + 26.4063e
x

− 14.2359x − 11.1703e
x
x − 2.77751x

2

+ 0.744709e
x
x
2

− 0.0605874e
x
x
3

+ 0.118979x
4

− 0.00260775e
x
x
4

+ 0.029123x
5

+ 0.00352613x
6

− 0.0000251847x
9

− 3.92104 × 10− 7
x
10

.

(45)

,e results are presented in Table 3.

Problem 4. ,ird-order nonlinear ODE [24]:

G
‴

(x) − G
2
(x) + G(x) + x

2
x
2

− 1 , 0<x< 1, (46)

subject to boundary conditions

G(1) � 0,

G′(1) � −2,

G′(0) � 0.

(47)

,e exact solution to this problem is 1 − x2. ,e first-
order approximate solution using LSHPM is

G(x) � 1 − x
2

+ 1.45333 × 10− 18
x
3

− 2.76238 × 10− 17
x
5

+ 3.64818 × 10− 16
x
7

− 7.51562 × 10− 16
x
8

+ 1.13156 × 10− 15
x
10

− 2.20449 × 10− 15
x
12

+ 1.83775 × 10− 15
x
13

− 4.11003 × 10− 16
x
15

+ 5.91342 × 10− 17
x
17

.

(48)

,e results are presented in Table 4.

Problem 5. Fourth-order linear ODE [25]:

G
(iv)

(x) − G″(x) − G(x) − e
x
(x − 3) � 0, 0<x< 1,

(49)

subject to boundary conditions

G(0) � 1,

G′(0) � 0,

G(1) � 0,

G′(1) � −e.

(50)
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Table 2: Comparison of second-order absolute error of LSHPM with HPM and RK4 in Problem 2.

x
Exact LSHPM HPM RK4

Solution Solution Error Solution Error Error [19]
0.1 0.01 0.01 4.11 × 10− 16 0.00886897 1.13 × 10− 3 2.14 × 10− 8

0.2 0.04 0.04 1.04 × 10− 15 0.0378151 2.18 × 10− 3 8.56 × 10− 8

0.3 0.09 0.09 1.04 × 10− 15 0.086977 3.02 × 10− 3 1.86 × 10− 7

0.4 0.16 0.16 5.55 × 10− 16 0.156489 3.51 × 10− 3 3.42 × 10− 7

0.5 0.25 0.25 1.38 × 10− 16 0.246425 3.57 × 10− 3 5.06 × 10− 7

0.6 0.36 0.36 1.66 × 10− 16 0.356776 3.22 × 10− 3 7.45 × 10− 7

0.7 0.49 0.49 3.88 × 10− 16 0.487449 2.55 × 10− 3 1.07 × 10− 6

0.8 0.64 0.64 3.33 × 10− 16 0.638298 1.70 × 10− 3 1.43 × 10− 6

0.9 0.81 0.81 0. 0.809174 8.25 × 10− 4 1.90 × 10− 6

1. 1. 1. 0. 1. 0. 2.38 × 10− 6

Table 3: Comparison of second-order absolute error of LSHPM with HPM, Q-spline, and B-spline in Problem 3.

x
Exact LSHPM HPM Q-spline B-spline

Solution Solution Error Solution Error Error [22] Error [23]
0 0 −1.77 × 10− 15 1.77 × 10− 15 0 0 0 0
0.1 0.0994654 0.0994654 3.36 × 10− 10 0.0994651 3.05 × 10− 7 1 × 10− 7 0
0.2 0.195424 0.195424 5.43 × 10− 10 0.195423 1.22 × 10− 6 2 × 10− 7 2 × 10− 3

0.3 0.28347 0.28347 2.01 × 10− 10 0.283468 2.72 × 10− 6 3 × 10− 7 5 × 10− 3

0.4 0.358038 0.358038 7.95 × 10− 10 0.358033 4.73 × 10− 6 5 × 10− 7 7 × 10− 3

0.5 0.41218 0.41218 4.16 × 10− 10 0.412173 7.04 × 10− 6 6 × 10− 7 8 × 10− 3

0.6 0.437309 0.437309 3.07 × 10− 10 0.437299 9.25 × 10− 6 7 × 10− 7 8 × 10− 3

0.7 0.422888 0.422888 4.05 × 10− 10 0.422877 1.06 × 10− 5 7 × 10− 7 7 × 10− 3

0.8 0.356087 0.356087 1.68 × 10− 11 0.356076 1.03 × 10− 5 7 × 10− 7 6 × 10− 3

0.9 0.221364 0.221364 1.17 × 10− 10 0.221357 7.15 × 10− 6 4 × 10− 7 4 × 10− 3

1 0 −7.52 × 10− 15 7.52 × 10− 15 −1.59 × 10− 13 1.59 × 10− 13 0 1.4 × 10− 2

Table 4: Comparison of second-order absolute error of LSHPM with HPM and MADM in Problem 4.

x
Exact LSHPM HPM MADM [24]

Solution Solution Error Solution Error Error
0.1 0.99 0.99 0 0.990368 3.67 × 10− 4 2.78 × 10− 3

0.2 0.96 0.96 0 0.960324 3.23 × 10− 4 3.44 × 10− 3

0.3 0.91 0.91 0 0.910265 2.65 × 10− 4 6.41 × 10− 3

0.4 0.84 0.84 0 0.840202 2.02 × 10− 4 7.05 × 10− 3

0.5 0.75 0.75 0 0.750142 1.42 × 10− 4 6.14 × 10− 3

0.6 0.64 0.64 0 0.640091 9.11 × 10− 5 4.37 × 10− 3

0.7 0.51 0.51 0 0.510051 5.08 × 10− 5 2.31 × 10− 3

0.8 0.36 0.36 1.11 × 10− 16 0.360022 22 × 10− 5 3.98 × 10− 4

0.9 0.19 0.19 0 0.190006 5.57 × 10− 6 1.04 × 10− 3

1 0 0 0 0 0 1.79 × 10− 3

Table 5: Comparison of first-order absolute error of LSHPM with HPM and VIM in Problem 5.

x
Exact LSHPM HPM VIM [25]

Solution Solution Error Solution Error Error
0 1 1 0 1 0 0
0.1 0.994654 0.994654 0 0.99462 3.37 × 10− 5 2.00 × 10− 10

0.2 0.977122 0.977122 0 0.977 1.21 × 10− 4 7.00 × 10− 10

0.3 0.944901 0.944901 0 0.944672 2.29 × 10− 4 1.35 × 10− 9

0.4 0.895095 0.895095 0 0.894777 3.17 × 10− 4 2.00 × 10− 9

0.5 0.824361 0.824361 0 0.824006 3.54 × 10− 4 2.50 × 10− 9

0.6 0.728848 0.728848 0 0.728521 3.26 × 10− 4 2.72 × 10− 9

0.7 0.604126 0.604126 0 0.603883 2.42 × 10− 4 2.21 × 10− 9

0.8 0.445108 0.445108 0 0.444976 1.32 × 10− 4 1.80 × 10− 9

0.9 0.24596 0.24596 0 0.245923 3.74 × 10− 5 7.25 × 10− 10

1 0 0 0 5.55112 × 10− 16 5.55 × 10− 16 9.94 × 10− 14
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,e exact solution to this problem is ex − xex. ,e first-
order approximate solution using LSHPM is

G(x) � e
x

− xe
x
. (51)

,e results are presented in Table 5.

Problem 6. Fourth-order nonlinear ODE [26]:

G
(iv)

(x) + R (x − G(x))G
‴

(x) + 3G″(x)  � 0, 0<x< 1, (52)

subject to boundary conditions

G(1) � 1,

G′(1) � 0,

G(0) � 0,

G″(0) � 0,

(53)

where R is the Reynolds number, and we have fixed it to
R � 0.1. ,e second-order approximate solution of this
problem using LSHPM is

G(x) � 1.50671x − 0.513264x
3

+ 0.00639854x
5

+ 0.00016573x
7

− 7.3875 × 10− 6
x
9

− 1.43995 × 10− 7
x
11

.

(54)

,e results are presented in Table 6.

Problem 7. Fifth-order linear ODE [26]:

G
(v)

(x) − G(x) + 15e
x

+ 10xe
x

� 0, 0<x< 1, (55)

subject to boundary conditions

Table 6: Comparison of second-order absolute error of LSHPM with HPM in Problem 6.

x
LSHPM HPM

Solution Error Solution Error
0 0 0 0 0
0.1 0.150158 5.14 × 10− 7 0.150157 2.54 × 10− 5

0.2 0.297237 5.99 × 10− 7 0.297237 5.10 × 10− 5

0.3 0.43817 1.56 × 10− 7 0.438169 7.55 × 10− 5

0.4 0.5699 4.59 × 10− 7 0.569899 9.58 × 10− 5

0.5 0.689397 6.55 × 10− 7 0.689396 1.06 × 10− 4

0.6 0.793661 1.16 × 10− 7 0.793661 9.88 × 10− 5

0.7 0.879734 6.64 × 10− 7 0.879734 6.54 × 10− 5

0.8 0.944705 4.64 × 10− 7 0.944705 2.03 × 10− 6

0.9 0.985722 9.06 × 10− 7 0.985722 8.25 × 10− 5

1 1 2.46 × 10− 6 1 1.51 × 10− 4

Table 7: Comparison of second-order absolute error of LSHPM with HPM, OHAM, and B-spline in Problem 7.

x
Exact LSHPM HPM OHAM B-spline

Solution Solution Error Solution Error Error [27] Error [28]
0 0 0 0 0 0 0 0
0.1 0.0994654 0.0994654 1.57 × 10−14 0.0994654 4.85 × 10−12 9 × 10−11 8 × 10−3

0.2 0.195424 0.195424 3.63 × 10−13 0.195424 3.26 × 10−11 4 × 10−10 1 × 10−3

0.3 0.28347 0.28347 1.24 × 10−12 0.28347 8.99 × 10−11 5 × 10−10 5 × 10−3

0.4 0.358038 0.358038 1.75 × 10−12 0.358038 1.66 × 10−10 2 × 10−11 3 × 10−3

0.5 0.41218 0.41218 8.38 × 10−13 0.41218 2.38 × 10−10 1 × 10−9 8 × 10−3

0.6 0.437309 0.437309 7.74 × 10−13 0.437309 2.76 × 10−10 2 × 10−9 6 × 10−3

0.7 0.422888 0.422888 1.35 × 10−12 0.422888 2.56 × 10−10 2 × 10−9 0
0.8 0.356087 0.356087 6.56 × 10−13 0.356087 1.74 × 10−10 1 × 10−9 9 × 10−3

0.9 0.221364 0.221364 7.23 × 10−14 0.221364 6.34 × 10−11 4 × 10−10 9 × 10−3

1 0 8.56 × 10−15 8.56 × 10−15 −6.57 × 10−14 6.57 × 10−14 0 0

Table 8: Comparison of zeroth-order absolute error of LSHPM
with HPM in Problem 8.

x
Exact LSHPM HPM

Solution Solution Error Solution Error
0 1.60944 1.60944 0 1.60944 0
0.1 1.62924 1.62924 1.50 × 10− 9 1.62924 2.36 × 10− 6

0.2 1.64866 1.64866 9.38 × 10− 9 1.64867 1.56 × 10− 5

0.3 1.66771 1.66771 2.38 × 10− 8 1.66775 4.22 × 10− 5

0.4 1.6864 1.6864 4.09 × 10− 8 1.68648 7.67 × 10− 5

0.5 1.70475 1.70475 5.46 × 10− 8 1.70486 1.08 × 10− 4

0.6 1.72277 1.72277 5.95 × 10− 8 1.72289 1.24 × 10− 4

0.7 1.74047 1.74047 5.24 × 10− 8 1.74058 1.15 × 10− 4

0.8 1.75786 1.75786 3.42 × 10− 8 1.75794 7.96 × 10− 5

0.9 1.77495 1.77495 1.20 × 10− 8 1.77498 2.93 × 10− 5

1 1.79176 1.79176 0 1.79176 0
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G(0) � 0,

G′(0) � 1,

G″(0) � 0,

G(1) � 0,

G′(1) � −e.

(56)

,e exact solution of this problem is (x − x2)ex. ,e
second-order approximate solution using LSHPM is

G(x) � −36.8878 + 36.8878e
x

− 24.1329x − 11.7548e
x
x − 6.68904x

2
− 0.770542x

3

+ 0.0888158x
4

+ 0.0573868x
5

+ 0.0133906x
6

+ 0.00206275x
7

+ 0.000226806x
8

+ 0.0000165216x
9

− 1.3145 × 10− 7
x
11

− 2.34824 × 10− 8
x
13

+ 2.1814 × 10− 9
x
14

.

(57)

,e results are presented in Table 7.

Problem 8. Fifth-order nonlinear ODE [29]:

G
(v)

(x) −
G′(x)( 

2

(5 + x)
3 −

23
(5 + x)

5 � 0, 0< x< 1, (58)

along with boundary conditions

G(0) � ln(5),

G′(0) �
1
5
,

G″(0) � −
1
25

,

G(1) � ln(6),

G′(1) �
1
6
.

(59)

,e exact solution to this problem is ln(x + 5). ,e
zeroth-order approximate solution using LSHPM is

G(x) � 0.0644833 + 0.00801314x − 0.000801314x
2

+ 0.00010495x
3

−0.0000119326x
4

− 2.38377 × 10− 9
x
6

+ 0.959934 ln[5 + x].

(60)

,e results are presented in Table 8.

Problem 9. Sixth-order linear ODE [14]:

G
(vi)

(x) − G(x) + 6e
x

� 0, 0<x< 1, (61)

subject to boundary conditions

G(0) � 1,

G″(0) � −1,

G
iv

(0) � −3,

G(1) � 0,

G″(1) � −2e,

G
iv

(1) � −4e.

(62)

,e exact solution to this problem is G(x) � (1 − x)ex.
,e first-order approximate solution using LSHPM is

Table 9: Comparison of first-order absolute error of LSHPM with second-order HPM, HPLM, and ADM in Problem 9.

x
Exact LSHPM HPM HPLM ADM

Solution Solution Error Solution Error Error [14] Error [30]
0 1 1 0 1 0 0 0
0.1 0.994654 0.994654 1.88 × 10− 15 0.994658 3.98 × 10− 6 1.1 × 10− 13 4.0 × 10− 4

0.2 0.977122 0.977122 7.77 × 10− 16 0.97713 7.58 × 10− 6 2.2 × 10− 13 7.7 × 10− 4

0.3 0.944901 0.944901 1.99 × 10− 15 0.944912 1.04 × 10− 5 3.0 × 10− 13 1.0 × 10− 3

0.4 0.895095 0.895095 8.21 × 10− 15 0.895107 1.22 × 10− 5 3.6 × 10− 13 1.2 × 10− 3

0.5 0.824361 0.824361 1.33 × 10− 14 0.824374 1.28 × 10− 5 3.9 × 10− 13 1.3 × 10− 3

0.6 0.728848 0.728848 1.60 × 10− 14 0.72886 1.22 × 10− 5 3.7 × 10− 13 1.2 × 10− 3

0.7 0.604126 0.604126 8.99 × 10− 15 0.604136 1.04 × 10− 5 3.2 × 10− 13 1.0 × 10− 3

0.8 0.445108 0.445108 1.11 × 10− 15 0.445116 7.58 × 10− 6 2.4 × 10− 13 4.0 × 10− 4

0.9 0.24596 0.24596 2.41 × 10− 15 0.245964 3.98 × 10− 6 1.3 × 10− 13 7.7 × 10− 4

1 0 −3.19 × 10− 16 3.19 × 10− 16 1.59 × 10− 16 1.59 × 10− 16 1.9 × 10− 15 0
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G(x) � 12.4982 − 11.4982e
x

+ 11.4982x + 5.24912x
2

+ 1.58304x
3

+ 0.354093x
4

+ 0.0624853x
5

+ 0.00902533x
6

+ 0.00109092x
7

+ 0.000111561x
8

+ 9.64481 × 10− 6
x
9

+ 6.83273 × 10− 7
x
10

+ 4.08283 × 10− 8
x
11

.

(63)

Table 10: Comparison of zeroth-order absolute error of LSHPM with second-order HPM, VIM, and ADM in Problem 10.

x
Exact LSHPM HPM VIM ADM

Solution Solution Error Solution Error Error [31] Error [30]
0 1 1 0 1 0 0 0
0.1 1.10517 1.10516 1.22 × 10− 5 1.10561 4.43 × 10− 4 1.2 × 10− 4 1.2 × 10− 4

0.2 1.2214 1.22138 2.32 × 10− 5 1.22225 8.44 × 10− 4 2.3 × 10− 4 2.3 × 10− 4

0.3 1.34986 1.34983 3.21 × 10− 5 1.35102 1.16 × 10− 3 3.2 × 10− 4 3.2 × 10− 4

0.4 1.49182 1.49179 3.78 × 10− 5 1.49319 1.36 × 10− 3 3.8 × 10− 4 3.8 × 10− 4

0.5 1.64872 1.64868 3.99 × 10− 5 1.65016 1.44 × 10− 3 4.0 × 10− 4 4.0 × 10− 4

0.6 1.82212 1.82208 3.79 × 10− 5 1.82349 1.37 × 10− 3 3.9 × 10− 4 3.9 × 10− 4

0.7 2.01375 2.01372 3.22 × 10− 5 2.01492 1.16 × 10− 3 3.3 × 10− 4 3.3 × 10− 4

0.8 2.22554 2.22552 2.34 × 10− 5 2.22639 8.51 × 10− 4 2.4 × 10− 4 2.4 × 10− 4

0.9 2.4596 2.45959 1.22 × 10− 5 2.46005 4.48 × 10− 4 1.2 × 10− 4 1.2 × 10− 4

1 2.71828 2.71828 0 2.71828 4.44 × 10− 16 2.0 × 10− 9 2.0 × 10− 9

Table 11: Comparison of first-order absolute error of LSHPM with second-order HPM and VIM in Problem 11.

x
Exact LSHPM HPM VIM

Solution Solution Error Solution Error Error [32]
0 1 1 0 1 0 0
0.1 0.994654 0.994654 5.55 × 10− 16 0.994654 1.32 × 10− 13 1.22 × 10− 15

0.2 0.977122 0.977122 1.33 × 10− 15 0.977122 1.55 × 10− 12 4.44 × 10− 16

0.3 0.944901 0.944901 2.66 × 10− 15 0.944901 5.52 × 10− 12 9.99 × 10− 16

0.4 0.895095 0.895095 4.99 × 10− 15 0.895095 1.14 × 10− 11 4.55 × 10− 15

0.5 0.824361 0.824361 8.65 × 10− 15 0.824361 1.67 × 10− 11 7.32 × 10− 15

0.6 0.728848 0.728848 4.88 × 10− 15 0.728848 1.83 × 10− 11 1.02 × 10− 14

0.7 0.604126 0.604126 3.10 × 10− 15 0.604126 1.46 × 10− 11 1.22 × 10− 14

0.8 0.445108 0.445108 2.10 × 10− 15 0.445108 7.56 × 10− 12 1.50 × 10− 14

0.9 0.24596 0.24596 1.30 × 10− 15 0.24596 1.52 × 10− 12 1.06 × 10− 14

1 0 −2.02 × 10− 16 2.02 × 10− 16 0 0 1.17 × 10− 14

Table 12: Comparison of zeroth-order absolute error of LSHPM with HPM in Problem 12.

x
Exact LSHPM HPM

Solution Solution Error Solution Error
0 1 1 0 1 0
0.1 1.10517 1.10517 4.76 × 10− 9 1.10517 4.11 × 10− 8

0.2 1.2214 1.2214 5.04 × 10− 8 1.2214 5.42 × 10− 7

0.3 1.34986 1.34986 1.60 × 10− 7 1.34986 2.28 × 10− 6

0.4 1.49182 1.49182 2.99 × 10− 7 1.49183 6.12 × 10− 6

0.5 1.64872 1.64872 3.95 × 10− 7 1.64873 1.30 × 10− 5

0.6 1.82212 1.82212 3.90 × 10− 7 1.82214 2.46 × 10− 5

0.7 2.01375 2.01375 2.83 × 10− 7 2.0138 4.33 × 10− 5

0.8 2.22554 2.22554 1.32 × 10− 7 2.22561 7.28 × 10− 5

0.9 2.4596 2.4596 2.44 × 10− 8 2.45972 1.18 × 10− 4

1 2.71828 2.71828 0 2.71847 1.84 × 10− 4
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Figure 1: Graphical representation of solutions and errors in Problem 1. (a) Comparison of Exact, HPM, and LSHPM solutions.
(b) Comparison of absolute errors of HPM and LSHPM.
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Figure 2: Graphical representation of solutions and errors in Problem 2. (a) Comparison of Exact, HPM, and LSHPM Solutions.
(b) Comparison of absolute errors of HPM and LSHPM.
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Figure 3: Graphical representation of solutions and errors in Problem 3. (a) Comparison of Exact, HPM, and LSHPM Solutions.
(b) Comparison of absolute errors of HPM and LSHPM.
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Figure 4: Graphical representation of solutions and errors in Problem 4. (a) Comparison of Exact, HPM, and LSHPM solutions.
(b) Comparison of absolute errors of HPM and LSHPM.
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Figure 5: Graphical representation of solutions and errors in Problem 5. (a) Comparison of Exact, HPM, and LSHPM solutions.
(b) Comparison of absolute errors of HPM and LSHPM.
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Figure 6: Graphical representation of solutions and errors in Problem 6. (a) Comparison of HPM and LSHPM solutions. (b) Comparison of
absolute residual errors of HPM and LSHPM.
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Figure 7: Graphical representation of solutions and errors in Problem 7. (a) Comparison of Exact, HPM, and LSHPM solutions.
(b) Comparison of absolute errors of HPM and LSHPM.
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Figure 8: Graphical representation of solutions and errors in Problem 8. (a) Comparison of Exact, HPM, and LSHPM solutions.
(b) Comparison of absolute errors of HPM and LSHPM.
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Figure 9: Graphical representation of solutions and errors in Problem 9. (a) Comparison of Exact, HPM, and LSHPM solutions.
(b) Comparison of absolute errors of HPM and LSHPM.
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Figure 10: Graphical representation of solutions and errors in Problem 10. (a) Comparison of Exact, HPM, and LSHPM solutions.
(b) Comparison of absolute errors of HPM and LSHPM.

0.2 0.4 0.6 0.8 1.00.0
x

0.0

0.2

0.4

0.6

0.8

1.0

G
 (x

)

Exact
HPM
LSHPM

(a)

0

5.×10–12

1.×10–11

1.5×10–11

Er
ro

r

0.2 0.4 0.6 0.8 1.00.0
x

HPM
LSHPM

(b)

Figure 11: Graphical representation of solutions and errors in Problem 11. (a) Comparison of Exact, HPM, and LSHPM solutions.
(b) Comparison of absolute errors of HPM and LSHPM.

0.2 0.4 0.6 0.8 1.00.0
x

0.0

0.5

1.0

1.5

2.0

2.5

G
 (x

)

Exact
HPM
LSHPM

(a)

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

Er
ro

r

0.2 0.4 0.6 0.8 1.00.0
x

HPM
LSHPM

(b)

Figure 12: Graphical representation of solutions and errors in Problem 12. (a) Comparison of Exact, HPM, and LSHPM solutions.
(b) Comparison of absolute errors of HPM and LSHPM.
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,e results are presented in Table 9.

Problem 10. Sixth-order nonlinear ODE [14]:

G
(vi)

(x) − e
− x

G
2
(x) � 0, 0<x< 1, (64)

subject to boundary conditions

G(0) � 1,

G″(0) � 1,

G
iv

(0) � 1,

G(1) � e,

G″(1) � e,

G
iv

(1) � e.
(65)

,e exact solution to this problem is ex.,e zeroth-order
approximate solution using LSHPM is

G(x) � 1 + 0.999876x + 0.5x
2

+ 0.166857x
3

+ 0.0416667x
4

+ 0.00833376x
5

+ 0.00121254x
6

+ 0.000335379x
7
.

(66)

,e results are presented in Table 10.

Problem 11. Seventh-order linear ODE [32]:

G
(vii)

(x) − G(x) + 7e
x

� 0, 0<x< 1, (67)

subject to boundary conditions

G(0) � 1,

G′(0) � 0,

G″(0) � −1,

G
‴

(0) � −2,

G(1) � 0,

G′(1) � −e,

G″(1) � −2e.
(68)

,e exact solution to this problem is (1 − x)ex. ,e first-
order approximate solution using LSHPM is

G(x) � 7.99997 − 6.99997e
x

+ 6.99997x + 2.99998x
2

+ 0.833328x
3

+ 0.166665x
4

+ 0.0249997x
5

+ 0.00277773x
6

+ 0.000198406x
7

− 2.75823 × 10− 6
x
9

− 5.4721 × 10− 7
x
10

− 7.9003 × 10− 8
x
11

− 6.14598 × 10− 9
x
12

− 1.47065 × 10− 9
x
13

.

(69)

,e results are presented in Table 11.

Problem 12. Seventh-order nonlinear ODE [32]:

G
(vii)

(x) − e
− x

G
2
(x) � 0, 0<x< 1, (70)

subject to boundary conditions,

G(0) � 1,

G′(0) � 1,

G″(0) � 1,

G
‴

(0) � 1,

G(1) � e,

G′(1) � e,

G″(1) � e.

(71)

,e exact solution to this problem is ex.,e zeroth-order
approximate solution using LSHPM is
G(x) � 1 + x + 0.5x

2
+ 0.166667x

3
+ 0.041736x

4
+ 0.00808598x

5
+

0.00171879x
6

+ 0.0000744048x
8
.

(72)

,e results are presented in Table 12.

4. Results and Discussion

In this article, a new modification of HPM has been in-
troduced by hybriding HPM with LS optimizer. ,e pro-
posed scheme has been tested agaist various order linear and
nonlinear BVPs.,e validity of LSHPM has been checked by
comparing exact and approximate solutions. For testing the
efficiency LSHPM, problems are also solved with HPM and
results are compared with LSHPM. ,is can easily be ob-
served in Tables 1–12. ,ese tables signify the efficiency of
LSHPM in terms of high accuracy with less computational
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cost. ,e convergence of LSHPM can also be observed in
Figures 1–12. ,ese figures show that LSHPM is more
consistent as compared other mentioned schemes.

5. Conclusion

In present article, an efficient and reliable modification of
HPM is introduced by mixing HPM with the LS optimizer.
,e proposed scheme is tested against different order linear
and nonlinear BVPs. ,e obtained solutions are compared
with HPM and other numerical schemes available in the
literature. Analysis of results shows that LSHPM is more
consistent in terms of accuracy with less computational cost
and can be used in different areas of science and technology.
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