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For separable nonlinear least squares models, a variable projection algorithm based on matrix factorization is studied, and the ill-
conditioning of the model parameters is considered in the specific solution process of the model. When the linear parameters are
estimated, the Tikhonov regularization method is used to solve the ill-conditioned problems. When the nonlinear parameters are
estimated, the QR decomposition, Gram-Schmidt orthogonalization decomposition, and SVD are applied in the Jacobian matrix.
These methods are then compared with the method in which the variables are not separated. Numerical experiments are
performed using RBF neural network data, and the experimental results are analyzed in terms of both qualitative and quantitative

indicators. The results show that the proposed algorithms are effective and robust.

1. Introduction

The nonlinear least squares model has been applied to solve
several practical problems in many subject areas. The sep-
arable nonlinear least squares (SNLLS) problem is a special
type of nonlinear least squares problem. The corresponding
estimation model can be expressed as a linear combination
of nonlinear problems. Based on the special structure of this
model, Golub and Pereyra proposed a variable projection
(VP) algorithm to solve the model in 1973 [1]. This algo-
rithm can eliminate the linear parameters, transform the
problem into an estimation problem with only nonlinear
parameters, and reduce the complexity of the model. The VP
algorithm can reduce the dimensions of the parameter space
and the number of iterations, thus improving the efficiency
of finding the global optimal solution to the SNLLS problem.

SNLLS models have a wide range of applications in
engineering. Researchers have combined the VP algorithm
with matrix decomposition or with rank recognition algo-
rithms, which can be used to estimate different system
models. Machine learning, neural networks and their many
variants, and neural fuzzy systems [2] are all linear com-
binations of problems, where the problem is transformed

into a nonlinear basis function. Prony converted a signal
processing problem into a combination of complex expo-
nential functions and used this method to analyze the fre-
quency component of the signal. In time-series analyses, the
smooth transition autoregressive model can be used as the
separable least squares model. RBF-AR neural network
models can be processed with linear combinations of ex-
ponential functions [3]. These examples are only part of the
problem that can be solved using the SNLLS models.

In recent years, many improvements have been made to
the VP algorithm. Krogh presented a more efficient VP
algorithm. Kaufman introduced a simplified Jacobian matrix
calculation method in the VP algorithm, which improved
the calculation efficiency [4]. Ruhe and Wedin analyzed the
asymptotic convergence of the VP algorithm [5]. Gan
proposed a new VP formula that can solve optimization
problems in the absence of a derivative [6]. Most forms of
the VP method require matrix decomposition. O’Leary and
Rust proposed a robust singular value decomposition (SVD)
method [7]. Ruano et al. proposed an error function based
on QR classification [8]. Gan [9] and Wang [10] proposed a
classical and improved Gram-Schmidt orthogonalization
(GSO) method.
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Regarding the SNLLS problem, there are few studies on
the potential ill-conditioning of the parameters to be es-
timated. Regularization is a commonly used method when
ill-conditioned problems are solved. The use of regulari-
zation can make the regression coefficients have lower
variance values, thereby reducing potential ill-conditioned
problems [11, 12]. Commonly used regularization methods
include the Tikhonov regularization method, the truncated
singular value method, the kernel-based regularization
method, and the norm-based regularization method
[13-15].

In this study, the Levenberg-Marquardt (LM) algorithm
is used to estimate the nonlinear parameters, and the Ja-
cobian matrix in the algorithm is in the form given by
Kaufman. During the iteration process, the SVD, QR de-
composition, and GSO decomposition are applied to the
matrix to improve the iteration efficiency. When the linear
parameters are estimated, the Tikhonov regularization
method is used to solve the potential ill-conditioned
problems. Combining the advantages of the two methods
improves not only the calculation efficiency of the algorithm
but also the accuracy of the results. With RBF neural net-
work data, the method is verified through both qualitative
and quantitative analyses.

2. Variable Projection Model and Its Parameter
Estimation Method

2.1. Variable Projection Model. The SNLLS model can be
expressed as follows:

y(t) = ZQL,j¢j(8N;t)’ (1)
=

where ¢;(Oy;t)(j=1,2,....,mt=12,...
ear functions. The linear parameters
0, = (0;,,0;5,-..,0,,) and nonlinear  parameters
Oy = (On.1> 052> - - -» Oyp) are the parameters that need to be
estimated. R R

The parameter estimators 0; and 0y can be obtained by
solving the following formula:

,n) are nonlin-

n m 2
(éL’gN) = min Z y(t) - Z 0.6;(On:t)]| - (2)
j

0,0y t=1
The estimator can be expressed in a matrix form as

(6., 6x) = min |y - @ (6)6, ], 3)

L>YN

where ® (0)) is composed of a column vector ¢j (Ox;1). The
component of the vector y is y(t). |- [, is the Euclidean
norm of the vector.

We first estimate the nonlinear parameters and then
estimate the linear parameters using the following nonlinear
least squares method:

0, =(0(6y) ®(6y)) ®(Oy) y = D(6y)'y. (@
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In the above formula, ® (0y)" is the pseudo-inverse of
D ().

In this paper, the separable nonlinear model can be
expressed as follows:

y=®(0y)0, = DO, (5)

where ® € R™4, 0, € R*!, and y € R™1,

The LM iterative algorithm is used to estimate the
nonlinear parameters. In the calculation process, the cal-
culation of the Jacobian matrix is important. For a matrix
F (6 ,Glz) =y —-®(0y)0,, the Jacobian matrix is its first-
derivative matrix.

(65 = <5F(9kN9k)>

a6
N (6)

qu)(y{ ) (1 - @(e’g)@(eﬁ‘v)*).

N

Thus, we have
F(6h.65) = (1- @ (00)0(6) ), 7)

In this model, the Jacobian matrix can be calculated
using the method proposed by Kaufman [3].

Jxau = —PoD® @y, (8)

where D is the Fréchet derivative of the map, @ is the
symmetric ?seudo—inverse of @ that satisfies PO O = O,
and (OD7) = OO~

r(0y) =|y - (6% )o(6}) y

|, =1 =Po)yl, =Po].-
9)

2.2. Nonlinear Parameter Estimation Method. To improve
the calculation efficiency, the matrix is decomposed first, and
then iterative calculations are performed with the decom-
posed matrix. The SVD, QR decomposition, and GSO de-
composition are used.

2.2.1. SVD. The specific decomposition form is as follows:
0 r
@ =[U,U,] 00 [ViVL]'s (10)

where rank(U;) = rank (V) = rank(®) = r and X is a di-
agonal matrix of order r. Through SVD, we can obtain

> 1o
o :[VI’VZ][ 0 0][U1)U2]T- (11)

The corresponding residual function and Jacobian ma-
trix can be expressed as follows:
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The algorithm based on the SVD is denoted by VPgyp.

2.2.2. GSO Decomposition. The specific decomposition form
is as follows:

Tll T12

CD:S[
0 0

Ty Ty,
]PTz[Sl’Sz][ 0 0 [PI’PZ]T>

(13)

where S is an orthogonal matrix, P is a permutation matrix,

and T,, is an wupper triangular matrix. Here,
rank (s) = m, rank (P) = n, and rank(T,) = r. Through
GSO decomposition, we can obtain
. Ty 0
1] [ (CHES R

The corresponding residual function and Jacobian ma-
trix can be expressed as follows:

oAl sl
Jaso = _stzTDq) PITIIIST)/'

The algorithm based on the GSO decomposition is
denoted by VPg¢.

2.2.3. QR Decomposition. The specific decomposition form
is as follows:

R
@:QR=[Q1,Q2][ 0‘], (16)

where Q is an orthogonal matrix and R and R, are upper
triangular matrices. The corresponding residual function
and Jacobian matrix can be expressed as follows:

rar =[|QQ
Jor = —QngDCD RIlQl)’-

(17)

The algorithm based on the QR decomposition is
denoted by VPqp.

The following iterative methods can be used to estimate
the nonlinear parameters:

O = 0% + Beds (18)

where B is the step size, which can make the objective
function |y — ® (60y)0, |l, decrease.

d,. is the search direction, which can be determined by
solving the following equation:

[7(65) 168 + vt Jd = ~1(68) R0 ). (19

where y, is the damping factor.
In the LM algorithm, f; can be calculated using the
formula

r(6" +p™dy) <r(6°) + p" gy dy. (20)

my in (20) is the nonnegative minimum integer satis-
tying equation (20). Here, p = 0.5, g, = J(0,)r (0)), and
Bi = p™

2.3. Linear Parameter Estimation Method. The SVD of
matrix O can be expressed as

1
(D = USVT = Z LliOiVlT, (21)

i=1

where U and V are the unitary matrices composed of column

vectors. o,(i = j)
- b _ o=
§=(s;j) € RYY, 555 = {01(,-9&]-) » 0120,2 - 20,>0,
041 =0y =+ =03, =0,and {ai}izl is the singular value of

®. Solving equation (21) using the SVD method yields

I T
6, =y "2y, (22)
i=1

0

If the singular value decreases and reaches zero, then (21)
may be an ill-conditioned problem. If the singular value
cannot be zero, when ¢,/0; is very high and the condition
number of @ is also high, then (21) may be an ill-conditioned
problem.

With the addition of filtering factors, the ill-conditioning
is controlled to obtain ideal parameter estimates. After
adding the filter factor, the SVD can be expressed as follows:

!
0, = Z fiul yVi’ (23)

where the filter factor is f; = 0?/0> + 6> and 6, is obtained
using the Tikhonov method. Equation (27) can be expressed
as follows:

1
§L=Z 9 Ui yv (24)

By combining the linear parameter and nonlinear pa-
rameter estimation methods, three algorithms can be ob-
tained. The LM algorithm is used to estimate the nonlinear
parameters. During the iterative process, the Jacobian matrix
takes three forms—J gy, Jgso> and J QR—for the SVD, GSO,
and QR methods, respectively. The least squares method is
used to estimate the linear parameters. During the iterative
process, the Tikhonov regularization method is used to
control the ill-conditioning. After the combination, the
following estimation method can be obtained:



o, '

I 2 T

(GL,GN) = arg{n}in ”y - ®(6N)0L|z, 0, = 2‘7;' 5 ﬂv }
Ox i-10; +0p i

(25)

The specific calculation process of the algorithm is as
follows:

(1) Set the initial values of the nonlinear parameter 9?\,,
control error & and maximum number of iteration
steps Kpax

(2) Use equation (21) to calculate the initial value of the
linear parameter 67

(3) Calculate the linear and nonlinear parameters se-
quentially and iteratively

(4) Repeat the third step until it meets the condition
|9]f\71 - 9’;\,| < ¢ or reaches the maximum number of
iterations k,,,

3. Numerical Experiments

The experiments were conducted on a PC with a 2.30 GHz
processor and 4 GB of memory, running on Windows 10.
Software used was MATLAB 2016b. The experiment was
conducted to verify the three algorithms proposed in this
paper.

In this experiment, the Mackey-Glass differential
equation was used to generate a sequence of points.

dy(t)  ay(t-7)
dt  1+y°(t-1)

—by(t), (26)

where  the  values of the  parameter are
a=0.2, b=0.1, c=10, and7=10 The fourth-order
Runge-Kutta method was used to intercept 500 points to test
the SNLLS model. Figure 1 shows the specific point chart.
The horizontal and vertical axes are the value points of x and
y, respectively.

First, the first 200 points were used to learn and train the
model and estimate the linear and nonlinear parameters.
Subsequently, the remaining points were used to verify the
identified model.

The RBF — AR (m, d) model is a linear combination of
Gaussian RBFs, expressed as

y()=0p, + Z Op i1 eXP{_Ak“tt - Zk”z} +¢(t)
k=l (27)

m+1

= D 01¢;1 (Onit) +E(0),
j=1

where m, d € Z* is the model number, A, is the model
scaling parameters, z;, (k =0, 1,...,m) is the center of the
model, 0, represents the linear parameters, and 6, repre-
sents the nonlinear parameters. The number of linear pa-
rameters in the RBF-AR model is often greater than the
number of nonlinear parameters. The parameter estimation
using the VP theory is suitable. The scaling parameter A, can
be calculated using the following formula:
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FIGUure 1: Mackey-Glass time series.

Ay = —log ,0.0001<e<0.1. (28)

max{[t, - z[,}

When the model is solved, the following four methods
are used: parameter nonseparation method, VPqr, VPgs0,
and VPgyp. Figure 2 shows the curves of the training and
prediction points obtained using different methods. The first
half of the curve represents the parameter training curve,
containing 200 points. The parameters were estimated
through these points, and a neural network model was
established. The latter half of the curve represents the
prediction curve obtained using the estimated model.

Figure 2 shows that the curves obtained using the four
methods are consistent with the Mackey-Glass time-series
curve. This shows that the four models are accurate and that
they can predict the curve well.

The residual error and RMSE values of the four methods
are low. The calculation formula of RMSE is shown in the
following:

RMSE = \127_1 (GND,i - eNE,i)Z) (29)

n

where 0, ; and 0, ; are the observed value and estimated
value, ’

Table 1 lists the quantitative indicators.

As listed in Table 1, this shows that they yield accurate
estimation parameters and prediction curves. The residual
and RMSE of the three proposed methods are lower than
those of the method without matrix decomposition. The
proposed methods have higher accuracy. Therefore, the
three methods proposed in this article are compared in the
following part.

Figure 3 shows the RMSE curves of the multistep pre-
diction of the three methods. The horizontal axis is the
number of prediction points. The vertical axis is the RMSE
value.

As shown, with the increase in the number of prediction
points, the three methods have a higher error growth rate in
the early stages and a lower error growth rate in the later
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FIGURE 2: Curves of training and prediction points: (a) not separated, (b) QR, (c) GSO, and (d) SVD.
TaBLE 1: Quantitative indicators.
Not separated VPQR VPSVD VPGSO
Residuals of training points 0.1340 1.5349x10°° 0.0260 0.0421
RMSE of training points 0.4177 6.1945x107° 0.0806 0.1025
Residuals of predicted points 0.2831 5.8095x107® 0.0936 0.3554
RMSE of predicted points 0.5949 1.2051x107* 0.1530 0.2981
Iteration time (s) 17368 719 542 528

stages. This shows that the proposed methods can accurately
estimate the model parameters. The RMSE is the lowest for
VPqr and highest for VPgyp; however, the difference is
small, indicating the reliability of the parameters obtained by
using the three methods.

With a random initial point, the experiment was re-
peated 30 times, and the box plots of the RMSE were ob-
tained, as shown in Figure 4. The vertical axis is the RMSE
value. From left to right are the box plots for the VPgyp,
VPgso, and VPqr methods.

The residuals of the prediction points of the three
methods are relatively stable. From the graph, it is found that
the prediction point residuals obtained by using the VPqr
method are the most stable.

The LM algorithm was used to estimate the nonlinear
parameters. Figure 5 shows the iterative convergence curves
of the nonlinear parameters of the three methods.

From the iterative convergence of the nonlinear pa-
rameters, it is found that, after multiple iterations, the
nonlinear parameters yield stable estimates. The three matrix
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FIGURE 3: RMSE values of the multistep prediction of three methods: (a) QR, (b) GSO, and (c) SVD.
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FIGURE 4: Box plots of the RMSE for three methods.

decompositions are all orthogonal decompositions. When
solving the model, the three methods require different
numbers of iterations. The VPgso method requires fewer
iterations to reach a stable estimate. When using the LM
algorithm to estimate the nonlinear parameters, the total

residual change after each iteration of the parameter is
calculated. The rise or fall of the curve during the iteration
process does not mean that the algorithm is unstable. All the
three parameter estimation methods stably converge to the
optimal estimate.
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FIGURE 5: Iterative convergence curves: (a) VPqg, (b) VPgso, and (c) VPgyp.

4. Conclusion

This paper reports a variable projection algorithm to solve
SNLLS problems. In the solution, the Jacobian matrix was
decomposed to improve the iteration efficiency and stability
of the algorithm. When solving the linear parameters, the
Tikhonov regularization method was used to control the ill-
conditioning of the model parameters. The RBF neural
network data were used for the experiments, and the algo-
rithm was verified through qualitative and quantitative in-
dicators. The experimental results were compared with those
obtained by using the variable projection-based matrix
nondecomposition method. The experimental results showed
that the proposed methods are more efficient than the matrix
nondecomposition method. The three proposed methods
have their own advantages. The VPqp algorithm is the best in
terms of the accuracy, the VPgso algorithm has the highest
computational efficiency, and the VPgyp algorithm is the best
in terms of the prediction point residual stability.
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